A framework for specifying, prototyping, and reasoning about computational systems

A. Gacek

Ph.D. thesis, University of Minnesota, September 2009

This thesis concerns the development of a framework that facilitates the design and analysis of formal systems. Specifically, this framework provides a specification language which supports the concise and direct description of formal systems, a mechanism for animating the specification language thereby producing prototypes of encoded systems, and a logic for proving properties of specifications and therefore of the systems they encode. A defining characteristic of the proposed framework is that it is based on two separate but closely intertwined logics: a specification logic that facilitates the description of computational structure and another logic that exploits the special characteristics of the specification logic to support reasoning about the computational behavior of systems that are described using it. Both logics embody a natural treatment of binding structure by using the lambda-calculus as a means for representing objects and by incorporating special mechanisms for working with such structure. By using this technique, they lift the treatment of binding from the object language into the domain of the relevant meta logic, thereby allowing the specification or analysis components to focus on the more essential logical aspects of the systems that are encoded. The primary contributions of these thesis are the development of a rich meta-logic called G with capabilities for sophisticated reasoning that includes induction and co-induction over high-level specifications of computations and with an associated cut-elimination result; an interactive reasoning system called Abella based on G; and several reasoning examples which demonstrate the expressiveness and naturalness of both G and Abella.