When Human Intuition Fails: Using Formal Methods to Find an Error in the 'Proof' of a Multi-Agent Protocol

J. Davis, D. Kingston, L. Humphrey

CAV 2019

Designing protocols for multi-agent interaction that achieve the desired behavior is a challenging and error-prone process. The standard practice is to manually develop proofs of protocol correctness that rely on human intuition and require significant effort to develop. Even then, proofs can have mistakes that may go unnoticed after peer review, modeling and simulation, and testing. The use of formal methods can reduce the potential for such errors. In this paper, we discuss our experience applying model checking to a previously published multi-agent protocol for unmanned air vehicles. The original publication provides a compelling proof of correctness, along with extensive simulation results to support it. However, analysis through model checking found an error in one of the proof's main lemmas. In this paper, we start by providing an overview of the protocol and its original "proof" of correctness, which represents the standard practice in multi-agent protocol design. We then describe how we modeled the protocol for a three-vehicle system in a model checker, the counterexample it returned, and the insight this counterexample provided. We also discuss benefits, limitations, and lessons learned from this exercise, as well as what future efforts would be needed to fully verify the protocol for an arbitrary number of vehicles.