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Abstract—With the proliferation of mixed-reality
(MR) systems in aerospace and defense, there is
increased potential for adversarial exploitation of
system vulnerabilities and/or properties in the hu-
man cognitive process in order to reduce mission-
effectiveness. This paper presents our preliminary
work on the Modeling and Analysis Toolkit for Realiz-
able Intrinsic Cognitive Security (MATRICS), a formal
methods-based approach to provide a mathematically
rigorous design and verification framework for pro-
tecting MR systems and operators in mission-critical
applications from cognitive attacks. We describe our
approach and present initial results, including formal
models of the human operator, MR device, and mission
environment, and apply existing formal methods tools
to prove the holistic cognitive security of MR systems.

I. Introduction

Mixed-reality (MR) and augmented-reality (AR)
systems are becoming increasingly prevalent for
aerospace and defense applications. For such mission-
and safety-critical applications (e.g., military helmet-
mounted displays (HMDs) [1] and the F-35 joint strike
fighter HMD [2]), the required assurance may be con-
siderably more complex than consumer-level applica-
tions. Traditional design-time assurance of mission-
and safety-critical systems does not explicitly include
a model of the human operator in the analysis but
rather relies on assumptions about the behavior of the
operator (e.g., the pilot is expected to perform pre-
determined tasks within a certain time period in the
event of a specific contingency). It is foreseeable that
in the context of military operations, potential mali-
cious attacks from adversaries could be directed to
exploit certain cognitive vulnerabilities of the human
operator [3]. In addition to cyber attacks on devices,
cognitive attacks executed in either the real or digital
world could degrade or influence the performance
of the human-machine system. Potential cognitive
vulnerabilities in MR-human systems and the need
for strong guarantees (i.e., high-assurance of mission
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success) motivates the development of formal meth-
ods [4] and formal cognitive behavioral models for
a comprehensive security assessment of this emerg-
ing class of systems. There are challenges in vali-
dation of formal human cognitive models. For exam-
ple, internal cognitive processes need large amount
of experiments to validate and logistics constraints
prohibits such experiments. To better align to the
available, non-intrusive, and no-contact state-of-art
measurement instrumentations, we are developing
task performance models rather than very complex
cognitive architectural models.

In this paper, we provide preliminary results on
using formal methods to specify, analyze and design
a HMD with provable guarantees of mission goals
under cognitive attacks. We focus on visual percep-
tion attacks (i.e., cognitive attacks that degrade the
performance of the operator doing a visual perception
task such as detection of symbology on the MR/AR
device display). The intended application of our effort
is to develop formal models of the human operator
that are useful for conducting a security assessment
of the MR-operator system for a particular mission.
The mission centers around a checkpoint for identi-
fying adversary targets (i.e., vehicles, persons, etc.).
The operator’s task is to scan a surveillance area with
the assistance of digital automated target recognition
(ATR) overlayed on the HMD display to identify all
valid targets. We present some background on MR/AR
systems, cognitive vulnerabilities, formal methods for
human-machine systems, and the formal methods
framework used in this work in Sec.[[I} In Sec. [Tl we
present our preliminary formal model of the HMD-
operator system and the analysis results. Finally in
Sec. we discuss future work including planned
refinements of the model.

II. Background and Reasoning Framework
A. Background and Related Work

Over the past thirty years, mixed-reality systems
have rapidly evolved from proof-of-concept novel-
ties to utilization in high-assurance domains such
as aerospace [2] and healthcare [5]. This growth
can be attributed to multiple factors, including ad-
vancements in computer vision, graphical processing
and display technology, hardware miniaturization and
inexpensive high-fidelity sensors [6]. The ability to



effectively process human and environmental input
in combination with digital elements is also crucial
for creating true MR experiences, necessitating sig-
nificant contributions from the cognitive science and
human factors domains.

The cognitive science literature includes studies
going back more than half a century on the human
response to various stimuli [7], [8]. More recently,
in part driven by the video game industry, numer-
ous studies have been conducted on cyber-sickness
onset in immersive environments [9], [10]. However,
far fewer studies have been published that focus on
malicious cognitive attacks on operators of mixed-
reality systems.

Deceptive techniques for influencing user behavior
have become commonplace across the internet and
typically involve confusing interfaces that mislead the
user into providing personal information they might
not otherwise disclose. Users of mixed-reality systems
are susceptible to similar manipulations, and some of
these dark patterns have been identified for VR [11]
and AR [12] environments. A detailed exploration of
the perceptual manipulation attack space is provided
in [13]. However, none of these studies consider ap-
plying formal analysis to prove protection guarantees
on cognitive attack models.

B. Formal Methods

The Assume Guarantee Reasoning Environment
(AGREE) [14] provides model checking for systems
modeled in the Architecture Analysis and Design
Language (AADL) [15] with behaviors specified using
assume-guarantee contracts. AGREE’s compositional
reasoning framework attempts to prove properties
about one architecture layer using properties of com-
ponents and subcomponents of the underlying layer.
The composition is performed in terms of assump-
tions and guarantees provided as contracts for each
component, where assumptions describe the expec-
tations the component has on the environment and
guarantees describe bounds on the behavior of the
component when the assumptions are valid. AGREE
is translated into Lustre [16] and analyzed using
JKind [17], a k-induction model checker that supports
multiple back-end solvers.

Formal methods have been used in prior works
to analyze human-machine systems, albeit rarely, if
ever, in the context of cognitive security. A survey
of formal methods particularly for human-automation
interaction can be found in [18] and a broader survey
of the topic including formal methods for human-
autonomy interaction can be found in [19].

III. Formal Models and Verification

In this section, we describe the formal HMD-
operator model expressed using assume-guarantee
contracts in AGREE. The overall model captures the
mission task of a guard wearing a HMD visually
confirming targets identified by ATR at a checkpoint.
The ATR is a bounding box digitally rendered around
the target on the HMD display. The goal of the adver-
sary is to prevent the guard from seeing the ATR by
directing an intense light source at the guard.

A. Modeling Assumptions

We make the following assumptions in the current
model. Some of these assumptions will be relaxed in
future models.

1) There is only one target in the field-of-vision
(FOV) of the HMD at any given time. This greatly
simplifies the model as we do not wish to model
operator attention at this time.

2) There is only one source of light attack and it is
localized around the attacker.

3) The perception process in the human oper-
ator is well-approximated by a reactive syn-
chronous [16] process with a discrete-time
clock, which is sufficient for the design and
analysis of MR/AR devices.

4) The operator and HMD components are on the
same clock (i.e., synchronized with the same
sample period). A sample period of 20ms is
assumed for both components. This assumption
is made to simplify the AGREE analysis.

B. Cognitive Foundations

Changes in brightness can occur at a rate higher
than what a human eye can adjust to, which can
affect one’s ability to perceive objects, either real
or virtual. In a high tempo mission, the inability for
the human to correctly distinguish between different
types of symbology can have a detrimental effect on
mission outcome. An average duration (596.4 + 68.7
ms, 1607.6 +86.1 ms) of pupil contraction and dilation
for healthy human subjects from 11-70 are observed
in [20]. For the modeling of the operator’s perceptual
behavior, the pupil dilation and contraction period is
currently used as a proxy for a bound on the duration
in which the operator’s ability to perceive symbols on
the HMD display is compromised. We consider a brief
bright light attacks during low light conditions similar
to the preconditions in [20].

C. Details of the Model

A hierarchical illustration of our AGREE/AADL
assume-guarantee model of the HMD-operator system
is shown in Figure [I] A tutorial on the AADL/AGREE



tool could be found in [21]. The top-level component,
Checkpoint, is a model of the mission. This top-level
component is further refined into a composition of a
HMD component and an Operator component. The
Operator component formally captures a cognitive
behavior of the human operator performing the mis-
sion. The HMD component is further refined into a
composition of a mitigation component (HMD Filter),
designed for reducing or eliminating the effects of the
attack, and the display component (HMD Display),
which detects targets and marks them with symbol-

ogy (i.e., bounding boxes).
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Fig. 1.

Architecture of the overall HMD-operator model.

The assumptions and guarantees of components are
expressed using AGREE and Lustre. The goals and
objectives of the mission, i.e., the success criteria
and operational domain of the mission (including
the light-induced perception attack), are encoded in
the assumptions, guarantees, and assertions of the
AGREE contract. Assumptions are used to encode the
operational domain and the set of possible attacks:

1) The ambient lighting condition is low, represent-
ing nighttime conditions.

2) The target is within the field of view.

3) At any given sample period, there is either an
attack or there is no attack.

The guarantee expresses the criteria for mission suc-
cess in the form of P — (), where the pre-condition P
states that the target is persistently within the FOV
for at least X ticks and the post-condition () states
that the mission task success is true for at least one
tick.

For the HMD component, since it is comprised of
the display and filter, its guarantees are a composition
of the display and filter guarantees:

1) If the target is within the FOV for at least Y
ticks, then the HMD display will mark it with a
bounding box.

2) Otherwise, it will not.

3) Effective filter: after an intense light attack, the
filtered light around the target converges to the
ambient light within a short duration.

4) Ineffective filter: the filtered light around the
target is equal to the perceived light around
target.

In our model, there are two filter component imple-
mentations. The ineffective implementation does not
filter out any light transients while the effective one
always filter them out within a short duration. We
specified an ineffective filter to illustrate that AGREE
can uncover counterexamples in instances when MR
device insufficiently protects against cognitive at-
tacks. We also provide an effective filter to illustrate
that AGREE could provide strong guarantees about a
mission with a better designed MR device.

The operator’s behavior in the presence of the light
attack is captured by the following guarantees:

1) If a light attack of intensity a with duration
between §; and d, ticks has occurred within the
last Z ticks, then the operator does not detect
the target.

2) Otherwise, the operator detects the target.

The time delay parameter Z, in which the operator’s
ability to detect the marked target on the display
is degraded, is obtained by computing the +2¢ val-
ues of contraction and dilation duration. This time
delay parameter along with other parameters of the
guarantee (e.g., duration and intensity of the light
attack) will be further refined using human subject
experimentation. The formal AGREE contract of the
Operator component is shown in Figure@ The Lustre
nodes occurred and persistent are used to capture
certain time-bounded operators from past-time Linear
Temporal Logic (LTL). The node duration is equivalent
to persistent but for a range of durations. With this
model, we can now formally analyze the top-level
Checkpoint contract to either yield a possible cogni-
tive attack in the form of an AGREE counterexample
or guaranteed absence of such.

D. Formal Verification with AGREE

The model is publicly available [[] We use AGREE’s
Verify Monolithically function to prove the following
properties: consistency, compatibility and feasibility
of the contracts, satisfaction of top-level mission con-
tract by the composition of the lower-level contracts,
and satisfaction of leaf node contracts by the imple-
mentations. For the MR model with an ineffective
filter, the AGREE analysis (as expected) returns a
counterexample representing a possible light attack

Uhttps://github.com/loonwerks/MATRICS/tree/main/Models/
Perception/contract based/Perception
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fun exceed(ql: real, g2: real, d: real) :

bool = (ql1 - q2) >=d ;

node occurred(cond : bool, t: int) returns (output : bool);
var count : int;
let

output = if cond then true
else if count <= t then (false -> pre(output)) else false;
count = if not cond then (0 -> pre(count) + 1) else 0;

tel;

node persistent(cond : bool, t: int) returns (output : bool);
var count : int;
let

output = if count >= t then true else false;
count = if cond then (0 -> pre(count) + 1) else 0;

tel;

node duration(cond : bool, tl: int, t2: int) returns (output : bool);
var count : int;
let

output = if (count <= t2 and count >= tl1) then true else false;
count = if cond then (0 -> pre(count) + 1) else 0;
tel;
assume ambient_light_range "A: Ambient light between this range":
ambient_light <= LOW_LIGHT and ambient_light >= 1.0;
guarantee target_detection "G: no attack means detection.":
persistent(target_is_marked, 15) and
not occurred( duration(
exceed(filtered_light_around_target, ambient_light, 90.0),
10, 36), 124)
=> detect_target;
guarantee no_target_detection
"G: an attack means no detection for a period.":
not persistent(target_is_marked, 15) or
occurred( duration(
exceed(filtered_light_around_target, ambient_light, 90.0),
10, 36), 124)
=> not detect_target;

Fig. 2. The Operator component contract in AGREE and Lustre.

on the human operator. On the flip side, according
to AGREE, the mission guarantee holds when the MR
model with the effective filter is selected.

IV. Conclusion and Future Steps

We have presented our approach for the formal
cognitive security analysis of mixed-reality systems.
For future work, in addition to human subject exper-
imentation to validate the operator component, we
will create a more detailed implementation of the
operator model and formally analyze the leaf operator
component contract over this implementation. The
detailed implementation will include various refine-
ments to capture additional complexities involved in
(1) the attack, (2) the lighting conditions (e.g., differ-
ent colors instead of broad spectrum), (3) the exter-
nal environment (e.g., occlusions and shadows), and
(4) different perception modalities including auditory
attacks. Furthermore, we will explore relaxation of
some of the global modeling assumptions described
in Section (e.g., to include multiple targets and
non-targets moving across the surveillance area in a
dynamic fashion).
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