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Abstract. Assurance cases (ACs) have gained attention in the aerospace,
medical, and other heavily-regulated industries as a means for providing
structured arguments on why a product is dependable (i.e., safe, secure,
etc.) for its intended application. Challenges in AC construction stem
from the complexity and uniqueness of the designs, the heterogeneous
nature of the required supporting evidence, and the need to assess the
quality of an argument. We present an automated AC generation frame-
work that facilitates the construction, validation, and con�dence assess-
ment of ACs based on dependability argument patterns and con�dence
patterns capturing domain knowledge. The ACs are instantiated with a
system's speci�cation and evaluated based on the available design and
veri�cation evidence. Aerospace case studies illustrate the framework's
e�ectiveness, e�ciency, and scalability.
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1 Introduction

Assurance about certain properties of mission-critical systems, such as safety,
security, and functional correctness, is essential throughout the product devel-
opment lifecycle. Certi�cation standards (e.g., DO-178C in the aerospace indus-
try) tend to be prescriptive in nature, enforcing a rigid, often costly, evaluation
process. Assurance evaluation is currently performed mostly manually, and due
to the substantial amount of evidence that needs to be examined, can lead to
incomplete or biased assessments.



1. INTRODUCTION

The trend in research is shifting from a prescriptive certi�cation process to
argument-based certi�cation (e.g., based on overarching properties (OPs) [1]),
which o�ers more �exibility to certify emerging technologies, including systems
enabled by arti�cial intelligence (AI). However, this approach expands the scope
of the evidence evaluation process, beyond checking the su�ciency of evidence,
to validating whether the proposed system development activities and outcomes
are appropriate to establish safety, security, or standard compliance for a given
application. In this context, automated methods and tools that support the
creation, maintenance, and evaluation of arguments are deemed as necessary for
a streamlined assurance process.

Assurance cases (ACs) are explicit arguments that desired properties have
been adequately established for a given system. ACs are typically created manu-
ally and, at present, are mostly used to document the argumentation structure.
There is a lack of consensus on a systematic approach for creating and validat-
ing ACs. Tools for AC visualization and manipulation exist, but notations are
often not completely de�ned, leaving room for interpretation and misunderstand-
ing [2]. For example, the Goal Structuring Notation (GSN) speci�es the visual
syntax and semantics of its elements, such as goals, strategies, justi�cations,
and solutions. However, the standard [3] primarily relies on natural language
for expressing claims, which can be ambiguous and open to misinterpretation.
Formalisms and tools that can assist in the creation of rigorous and interpretable
arguments are limited to only a few attempts [4�6].

This paper addresses some of the challenges in constructing and validating
ACs, including (a) the complexity of modern safety and security-critical systems,
(b) the heterogeneous nature of the evidence, and (c) the need to assess the argu-
ment quality, i.e., quantify the persuasiveness of the argument given the sources
of doubt. We present an automated, end-to-end framework that synthesizes and
validates ACs. The framework includes (i) an e�cient synthesis algorithm that
automatically creates AC candidates using a pattern library of pre-order re-
lations linking claims with their supporting (sub)-claims and (ii) a validation
algorithm that uses logic and probabilistic reasoning to e�ectively identify a set
of logically valid and most persuasive AC candidates. The framework also in-
cludes a visualization tool for traversing the generated ACs in multiple formats
at di�erent levels of the argument hierarchy.
Related Work. Several tools [7�10] support manual or partly automated AC
creation, instantiation, management, and analysis. Approaches based on the
AMASS platform [11�14] use contracts for automated AC creation to enable
compositionality and reuse of argumentation patterns. Beyond automated and
compositional AC generation with contracts, our framework also provides quan-
titative assessment of the persuasiveness of an AC, based on design artifacts and
evidence, by leveraging Bayesian reasoning [15] to compute con�dence values.

A few tools [16, 17] also support automated AC generation and con�dence
assessment, albeit not within a contract-based, compositional framework. A pos-
sible limitation of existing approaches to con�dence quanti�cation stems from
the fact that missing or contrary information may be �masked� by an overall
high con�dence score at the top-level claim, leading to insensitivity to critical
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local evidence [18]. We address this issue via a compositional and hierarchical ap-
proach that combines local probabilistic reasoning with global logical reasoning
to derive the con�dence of the top-level claim [19]. Our assessment algorithm,
consisting of uncertainty quanti�cation steps followed by decision-making steps,
allows appropriately weighing di�erent evidence items and early discounting of
unreliable evidence with low con�dence levels, thus making the overall process
of propagating con�dence values to the top-level claim and determining their
su�ciency more robust to inaccuracies in the con�dence models.

2 Background

Assurance Cases. An assurance case (AC) is an argument constructed to es-
tablish that a system satis�es the requirements in its operative environment by
means of hierarchical steps that map a claim to evidence via strategies and inter-
mediary claims [2, 6]. ACs are often described using a structured language [20]
or graphical notations such as the Goal Structuring Notation (GSN) [21] and
the Claims-Arguments-Evidence (CAE) notation [22]. An AC can then be repre-
sented as a directed acyclic graph mapping the system speci�cation (the top-level
claim) from the root node to the leaf nodes representing the evidence.

Software tools such as AdvoCATE [7] and DS-Bench [23] can be used to spec-
ify GSN (or CAE) pattern libraries, providing a limited degree of automation for
representation and validation of ACs. However, some semantic elements in these
tools are not well-de�ned in their respective conventions, leaving room for an in-
dividual developer to clarify them [2]. The argumentation steps between claims
often lack rigor, opening the door for con�rmation bias [6]. We address these
concerns by leveraging contract operations to solidify the relationship between
claims, allied with Bayesian reasoning to assess their strength.

Assume-Guarantee Contracts. Assume-guarantee (A/G) contracts o�er ef-
fective mechanisms to analyze system requirements in a modular way [24, 25].
We use contracts as a speci�cation formalism to represent claims about the sys-
tem and the development process as well as the contexts under which the claims
hold. We represent a contract C as a pair of logic formulas (ϕA, ϕG), where ϕA

(assumptions) speci�es the context under which the claim holds and ϕG (guar-
antees) speci�es the promise of the claim in the context of ϕA. We can reason
about the replaceability of a contract (or a claim) by another contract via the
re�nement relation. We say that C2 re�nes C1, written C2 ⪯ C1, if and only if
C2 has weaker assumptions and stronger guarantees than C1. When this is the
case, we can replace C1 with C2. Contracts C1 and C2 can also be combined, e.g.,
using composition (denoted by C1 ⊗ C2) to construct more complex arguments
from simpler claims.
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3. AC GENERATION FRAMEWORK

Fig. 1. Overview of the AC generation framework with summary of output candidates.

3 AC Generation Framework

As shown in Fig. 1, our framework automatically generates and validates ACs
given a top-level goal from a pattern library, the evidence database, and the sys-
tem speci�cation. We refer to the synthesis and validation processes collectively
as generation. Validation itself coordinates logic and probabilistic reasoning to
select valid AC candidates and assess their con�dence level.

AC patterns are reusable AC templates that can be instantiated using system
speci�c information to construct larger ACs. The patterns capture, in the form of
generic argumentation steps, domain knowledge about what evidence is required
to achieve speci�c goals. We employ hierarchical contract networks (HCNs) to
formalize AC patterns and use Resolute [26] as the underlying language for
their speci�cation. Uncertainty in assertions is instead modeled using Bayesian
networks (BNs). Given a top-level claim from the pattern library and a system
under evaluation, the synthesis algorithm automatically selects and instantiates
the patterns and assembles the instantiated patterns together into an HCN that
represents a set of AC candidates.

We denote by evidence a set of objective facts collected, for example, via
tests, analyses, or proofs, that can be used in support of, or against, a claim.
The evidence is maintained according to an evidence ontology in a database that
is accessible by the AC generation framework. The availability of evidence could
be considered by the synthesis algorithm for eliminating certain AC candidates
early. However, our framework also targets an assurance-driven development
process with objectives (e.g., cost and development time) taken into account
during certain stages of the product lifecycle. Particularly, in the early stages of
product development, when the system design is incomplete, we are interested
in exploring the set of all potential evidence items and assurance arguments,
to analyze cost and bene�t trade-o�s. The validation algorithm selects the AC
candidates with the lowest number of missing supporting evidence. The selected
ACs undergo con�dence level quanti�cation, which assesses the ACs' persua-
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siveness. Finally, our framework returns a set of valid ACs and their con�dence
scores, ensuring that the most convincing and well-supported ACs are presented
to system designers and certi�cation authorities.

Overall, by leveraging our previous results on generic HCN synthesis [27]
and AC validation [19], our framework supports the �rst end-to-end automated
methodology that seamlessly integrates contract-based synthesis and validation
of ACs, and makes it accessible, via intuitive user interfaces, to system designers
and certi�cation authorities.

3.1 AC Pattern Formalization

We formalize an AC pattern as a pair consisting of an HCN (assurance pattern)
and a set of BNs (con�dence patterns).

Hierarchical Contract Networks. An argumentation step involving a con-
catenation of claims can be represented as a graph of interconnected contracts,
termed contract network (CN). A network N of m contracts is equivalent to the
contract CN = C1 ∥ · · · ∥ Cm, where ∥∈ {⊗,∧} denotes a contract operation [24].
Stepwise re�nements of higher-level claims into lower-level claims can then be
captured by a tree of contract networks, that is, a hierarchical contract network
(HCN) using contract re�nement [19, 27]. Fig. 2a shows the HCN correspond-
ing to the pattern P2 in Fig. 3. The patterns in Fig. 3 and 4 are depicted in
GSN only for illustrative purposes. Every statement in the pattern is formalized
as a logical predicate, which forms the contract assumptions and guarantees.
The goal is translated into contract C1, while the premises are translated into
contracts within the contract network N1.

Con�dence Networks. We use con�dence networks to capture the sources
of uncertainty in the claims of an HCN. In this paper, con�dence networks are
implemented as BNs, which have been used in the past to incorporate subjective
notions of probability or belief and quantitatively reason about the con�dence
in assertions a�ected by uncertainty [28]. BNs can encompass aleatoric and epis-
temic uncertainty and tend to produce more compact models in the number of
parameters than other probabilistic reasoning frameworks for uncertainty quan-
ti�cation [29]. BNs can be constructed based on domain expert knowledge, e.g.,
via an elicitation and calibration process, and can leverage notions from Bayesian
epistemology to account for lack of knowledge.

Example 1. Assume an AC pattern library that partially addresses the correct-
ness goal, shown in Fig. 3. P1 argues that test cases are su�cient for demon-
strating system correctness if the tests exercise all requirements and cover the
entire source code. P2 argues that a set of tests cover the entire source code
based on documented coverage metrics. P3 argues that requirements are cov-
ered by a set of test cases if the tests cover the normal and robust ranges of
requirements. The BN in Fig. 2b models a con�dence pattern expressing the
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𝐶 𝐴: 𝑒𝑥𝑖𝑠𝑡𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠(𝑠)

𝐺: 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑠)

𝑁

⨂
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Contract

Network

Refinement 
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operator

𝐶 𝐴: 𝑒𝑥𝑖𝑠𝑡𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠(𝑠)

𝐺: 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑦𝐷𝐶(𝑠)

𝐶 𝐴: 𝑒𝑥𝑖𝑠𝑡𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠(𝑠)

𝐺: 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑦𝑀𝐶𝐷𝐶(𝑠)

(a) HCN (assurance pattern)

𝑀𝐶𝐷𝐶𝑂𝑟𝑎𝑐𝑙𝑒(𝑠)𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠(𝑠) 

𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑦𝑀𝐶𝐷𝐶(𝑠) 

𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑑𝑒(𝑠) 𝐷𝐶𝑂𝑟𝑎𝑐𝑙𝑒(𝑠)

𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑦𝐷𝐶(𝑠)

𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠(𝑠)

(b) BN (con�dence pattern)

Fig. 2. AC pattern for P2 in Fig. 3.
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Fig. 3. AC pattern library used in the running example. Evidence items are represented
as solution nodes (Sn); claims are represented as goal nodes (G).

key correlations between the outcome of a coverage test and the quality of the
artifacts (e.g., source code, test oracle) produced during software development
and testing. The BN in Fig. 2b can be associated to pattern P2 in Fig. 3.

3.2 AC Synthesis Algorithm

Given a contract network N0, an AC pattern library L, and a set of formulas
specifying the context about the system, the synthesis algorithm automatically
generates a set of AC candidates in terms of an HCN H with N0 as the top node.
By leveraging the synthesis algorithm �rst introduced for generic HCNs [27], our
synthesis procedure proceeds as follows. The top-level goals N0 are instantiated
with the system under evaluation. N0 is a contract network containing one or
more goals. For each instantiated contract C̃ of Ñ0, the algorithm searches the
AC pattern library L for contract networks that are potential re�nements. Any
contracts that are not re�ned by any other contract networks in the library
are either evidential, indicating that they can only be established by evidence
from the lifecycle activities, e.g., requirements review, test results, code reviews,
formal methods, or they are undeveloped goals.

The returned re�nements are also instantiated with the system under evalu-
ation. After instantiation, the validity of potential re�nements is determined by
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G1
Test cases are sufficient to verify system (s) correctness

P1

G5
Tests exercise entire 

source code (s)
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Sn1
Source code 
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Source code 
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0.9710.493

0.9860.9860.9960.996 0.9860.5 0.9880.988 0.9970.997

Fig. 4. Generated AC based on the AC pattern library in Fig. 3. Dotted boxes highlight
the instantiated pattern. Con�dence values when all evidence items are available are
shown in green, while red values indicate con�dence with missing evidence for Sn4
(�Tests exercise robustness of the system�).

converting contract properties (consistency, compatibility, and re�nement) into
satis�ability problems that are passed to a satis�ability modulo theory (SMT)
solver. The algorithm checks that a re�nement holds with respect to the system
contexts, which are con�gurations, properties, and operating contexts of the
system, encoded as assertions, e.g., �the software component targets the highest
safety integrity level,� �the wireless communication in component A is disabled.�
If the validity of the potential re�nement is established, then an edge is added
between C̃ and Ñ to form an HCN H. The procedure is recursive, i.e., it starts
again with the contract network Ñ and terminates when all the leaf contracts
are either evidential or undeveloped goals. Since a contract could be linked to
more than one contract network, the output of the algorithm, a hierarchy of con-
tracts, is a set of one or more AC candidates that connects the top-level claim to
evidence items through multiple argumentation levels. An example output AC
candidate is shown in Fig. 4.

3.3 AC Validation and Assessment

Among the AC candidates generated from AC synthesis, our selection process
prioritizes candidates that are fully supported by evidence items within the ev-
idence library. In addition, we select a set of AC candidates that are partially
supported. For these candidates, we determine the minimum number of addi-
tional evidence items required to fully support their claims. We then proceed
to assess the con�dence level associated with each selected candidate, which
accounts for the uncertainty associated with the evidence.

Selecting AC Candidates. AC validation and assessment for a realistic sys-
tem can be time-consuming, particularly when dealing with a large number of
candidates (e.g., 106), which can also require signi�cant memory. To address
this issue, we employ a depth-�rst-search approach to select AC candidates that
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Algorithm 1: assessConf(T , E , W, R)

input : Top-level re�nement T = (Cr, φr, Nr); library of con�dence networks
E ; library of decision rules W; set R of HCN re�nements.

output: Con�dence P(Cr), ⊥ if assessment fails; infeasibility certi�cate cert.
1 cert← ⊥ and P, Q← ⊥
2 for C ∈ Nr do

3 Rcurr ← ⊥
4 for R = (Cu, φ,Nl) ∈ R do

5 if C = Cu then Rcurr ← R; break;
6 if Rcurr = ⊥ then

7 P(C)← inferConf(C, E)
8 else

9 P(C), certificate← assessConf(Rcurr, E , W, R)
10 if P(C) = ⊥ then return ⊥, cert
11 Q← decideConf (P, E , W)
12 if Q = ⊥ then return null, cert
13 else return propagateConf(P, Rcurr), cert

can be supported with no or minimum number of additional evidence items. We
employ the following completion metric to rank and select the AC candidates:

Cpl(H) =
# of evidential contracts in H with no missing evidence

# of total evidential contracts in H
. (1)

The completion metric measures the percentage of evidential contracts in H that
have complete evidence, thus prioritizing AC candidates with higher completion
levels. We then compute the con�dence values for these AC candidates.

Assessing AC Candidates. Given the selected AC candidates as a set of HCNs
and a library E of con�dence networks, we employ a combination of probabilistic
and rule-based automated reasoning [19] to quantify the con�dence associated
with an HCN candidate H as summarized by Algorithm 1. The algorithm recur-
sively traverses H using a depth-�rst-search approach, propagating con�dence
values up from lower-level CNs to higher-level ones. Speci�cally, for each evi-
dential contract encountered during traversal, the algorithm uses one or more
corresponding networks in E to calculate its con�dence value. If a contract is
not evidential, the con�dence value is propagated from its lower-level CN by
recursively calling assessConf. However, if any con�dence propagation rule is
violated (as evaluated by decideConf), the validation process terminates with
a failure. For example, the decision-making step in our algorithm can apply a
simple rule requiring that the majority of the premises in an evidential contract
must have a high con�dence level according to a pre-determined threshold. Fur-
ther details about the AC validation and decision making processes can be found
in our previous publication [19].

Example 2. Given the AC pattern library in Fig. 3 and the top-level claim �Test
cases are su�cient to verify system correctness,� the synthesis algorithm gener-
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ates the AC in Fig. 4, where the contract networks de�ned in P2 and P3 re�ne
the two premises of P1. The logic validity of the AC is established by checking
the compatibility and consistency of each claim and the re�nement relationships
between the claims. The con�dence level can be assessed using Bayesian infer-
ence on the con�dence networks associated with the pattern, such as the one in
Fig. 2b. Con�dence assessment produces the color-coded values in Fig. 4.

4 Evaluation

In this section, we present two case studies for arguing the security of (1) the
Advanced Fail Safe (AFS) module for the ArduCopter rotorcraft [30] given a set
of evidence items [31] and (2) an industrial-level aerospace system.

Advanced Fail Safe Module of ArduPilot. ArduPilot is an open source
platform for controlling vehicles including rovers, �xed-wing aircraft, and rotor-
craft. It is a software stack that performs estimation, control, and communi-
cation between the software and hardware. In this experiment, we focus on the
ArduPilot modules used for the ArduCopter [30] rotorcraft. We created a library
consisting of 17 patterns that incorporate system development best practices for
compliance with DO-178C, DO-333, and vetted security arguments from domain
experts. For example, Fig. 6 shows a pattern for arguing speci�cation quality via
three supporting premises.

Security of an Industrial Aerospace System. Our approach was also vali-
dated on an industrial aerospace system to argue that the system meets certain
security requirements. The results are provided in Table 1 under the name In-
dustrial Case Study.

4.1 AC Generation Framework in Action

Synthesis. Given a top-level argumentation goal, �the ArduCopter software s is
acceptably secure�, the pattern library, and a set of desired security properties ℓ,
with |ℓ| as the number of properties, a total of 3|ℓ| AC candidates were generated,
as shown in Table 1. Fig. 5 compactly represents the set of all possible ACs for an
arbitrary |ℓ|. The top-level goal is supported by the completeness (C3 of N1) and
correctness (C4 of N1) of the software speci�cation, i.e., the set of requirements
that must be satis�ed, including a set of security properties, the correctness
of the software implementation with respect to the security requirements (C2 of
N1), and the satisfaction of the security properties of interest, e.g., by eliminating
or mitigating certain system-speci�c security hazards, (C1 of N1). Parts of the
HCN for supporting C2, C3, and C4 of N1 are omitted due to the limited space.

AC synthesis considers three methods to assess the satisfaction of a security
property pi ∈ ℓ (Ci of N2), namely, architecture analysis (N6,1), model checking
(N6,2), and static analysis (N6,3). These methods are denoted by the conditional
re�nements (R2,1,1, R2,1,2, and R2,1,3) represented by dotted lines in Fig. 5. Not
all the methods can support every security property. AC synthesis only provides
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A: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑒𝑥𝑖𝑠𝑡𝑠 𝑠
G: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑖𝑠_𝑠𝑒𝑐𝑢𝑟𝑒 𝑠, 𝑙

𝑪𝟏

𝑵𝟎

𝜙 , ≔ 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠_𝑎𝑟𝑒_𝑡𝑟𝑢𝑒(𝑠, 𝑙) ∧ 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑖𝑠_𝑔𝑜𝑜𝑑(𝑠) ∧ 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠_𝑎𝑟𝑒_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑠) ∧ 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠_𝑎𝑟𝑒_𝑔𝑜𝑜𝑑(𝑠)
↔ 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑖𝑠_𝑠𝑒𝑐𝑢𝑟𝑒(𝑠, 𝑙)

𝑅 ,

𝑵𝟐

A: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑒𝑥𝑖𝑠𝑡𝑠 𝑠
G: 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑖𝑠_𝑡𝑟𝑢𝑒 𝑠, 𝑝

𝑪𝟏

…

𝜙 , ≔∧ ∈ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑖𝑠_𝑡𝑟𝑢𝑒(𝑠, 𝑝 )

↔ 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠_𝑎𝑟𝑒_𝑡𝑟𝑢𝑒(𝑠, 𝑙)

𝑅 ,

𝑵𝟔,𝟏

A: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑒𝑥𝑖𝑠𝑡𝑠 𝑠
G: 𝑎𝑟𝑐ℎ_𝑟𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑝

𝑪𝟏

𝑵𝟔,𝟑

A: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑒𝑥𝑖𝑠𝑡𝑠 𝑠
G: 𝑠𝑡𝑎𝑡𝑖𝑐_𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑟𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑝

𝑪𝟏

𝑵𝟏

A: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑒𝑥𝑖𝑠𝑡𝑠 𝑠
G: 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠_𝑎𝑟𝑒_𝑡𝑟𝑢𝑒 𝑠, 𝑙

𝑪𝟏

A: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑒𝑥𝑖𝑠𝑡𝑠 𝑠
G: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑖𝑠_𝑔𝑜𝑜𝑑 𝑠

𝑪𝟐

A: ⊤
G: 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠_𝑎𝑟𝑒_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠

𝑪𝟑

A: ⊤
G: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠_𝑎𝑟𝑒_𝑔𝑜𝑜𝑑 𝑠

𝑪𝟒

𝑵𝟔,𝟐

A: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒_𝑒𝑥𝑖𝑠𝑡𝑠 𝑠
G: 𝑀𝐶_𝑟𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑝

𝑪𝟏

𝜙 , , ≔ 𝑠𝑡𝑎𝑡𝑖𝑐_𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑟𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑝
↔ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑖𝑠_𝑡𝑟𝑢𝑒 𝑠, 𝑝

𝑅 , ,𝑅 , ,

𝜙 , , ≔ 𝑀𝐶_𝑟𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑝
↔ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑖𝑠_𝑡𝑟𝑢𝑒 𝑠, 𝑝

Refinement

Options for       
Refinement

𝜙 , , ≔ 𝑎𝑟𝑐ℎ_𝑟𝑒𝑠𝑢𝑙𝑡 𝑠, 𝑝
↔ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑖𝑠_𝑡𝑟𝑢𝑒 𝑠, 𝑝

𝑅 , ,

Fig. 5. Compact representation of AC candidates for arguing the security of the Ar-
duCopter software in HCN form.

candidates whose conditional re�nements connect the properties to the appro-
priate supporting methods. For example, if a multi-rate, quasi-periodic model
of computation is adopted, where processes operate periodically at their indi-
vidual periods and communicate via bounded latency channels, the satisfaction
of a property such as �the processing latency for a message between a pair of
communicating AFS subsystems is bounded� can be supported by the evidence
generated by an architecture modeling and timing analysis tool geared toward
the selected model of computation [32]. On the other hand, the security property
that �no denial of service occurs due to triggering of nullness exceptions� can be
better supported by evidence generated via static analysis. In our example, with
a total of |ℓ| = 4 properties, it took 12 s to generate 34 AC candidates (4 prop-
erties with 3 options for re�nement), e�ectively capturing all the possible means
of compliance and evaluation strategies.

Validation. To test the selection capability of our framework, we designed the
ArduCopter case study to only have one fully supported candidate, out of a
total of 81 candidates. However, AC validation also retained 9 AC candidates
with the highest completion scores to suggest AC candidates requiring the least
additional evidence items. The candidate with the highest completion score was
successfully validated with con�dence 0.9836 [19]. Its assessment, consisting of
24 re�nement steps, took 8 s.

Performance Evaluation. We report the performance and scalability of the
AC generation framework by increasing the number of total AC candidates from
9 to 6 × 105 in Table 1. We observed a sub-linear increase in the execution
time for the generation and con�dence assessment of ACs as the total number
of AC candidates increased. The time spent for selecting the ACs grew linearly
with the total generated candidates. Larger ACs in the industrial case study
resulted in greater execution time for con�dence assessment. When applied to an

10



4. EVALUATION

Fig. 6. Detailed view of pattern justi�cation and its instantiation in the generated AC
for the ArduCopter platform.

augmented version of the industrial case study, our framework could synthesize
1024 AC candidates in about 2,100 s from a library of 91 patterns. Overall,
our generation framework was able to generate over 6× 105 AC candidates and
recommend those with the highest con�dence values and completion metrics in
less than 100 minutes on an Intel Core i3 CPU with 32-GB RAM.
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Case Study
Pattern

Library Size
Security

Property Count
Total

Candidates
Valid

Candidates
Average Claims
per Candidate

Synthesis (s)
Validation (s)

Pruning Assessment

ArduCopter

17 2 32 1 43 10 18 69
17 4 34 1 50 12 21 82
17 6 36 1 58 16 26 92
17 8 38 1 66 18 41 102
17 10 310 1 73 21 152 119
17 12 312 1 81 25 3,143 832

Industrial
Case Study

91 N/A 6× 105 10 652 819 1,683 3,322

Table 1. Performance of the AC generation framework for the ArduCopter software
and an industrial-level aerospace system.

5 Conclusion

We presented a framework for computer-aided generation and validation of ACs
leveraging domain knowledge-based assurance patterns. ACs are formalized as
hierarchical contract networks, which allow for e�cient, modular synthesis and
validation of arguments. Empirical results show that our framework is able to
e�ciently generate AC candidates for representative real-world systems in a
scalable manner. We intend to improve it by normalizing evidence items from
di�erent sources, by ranking candidates using a predictive cost model, and by
introducing mechanisms for the elicitation of con�dence models. While gener-
ating assurance patterns and con�dence models may require signi�cant initial
e�ort, we also aim to investigate methods to alleviate this burden by providing
templates for computer-aided pattern elicitation, formalization, and validation.
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