
SIMPAL: A Compositional Reasoning Framework for Imperative
Programs

Lucas Wagner
Iowa State University
Ames, IA 50013, USA
lgwagner@iastate.edu

David Greve
Rockwell Collins

Cedar Rapids, IA 52498, USA
david.greve@rockwellcollins.com

Andrew Gacek
Rockwell Collins

Bloomington, MN 55438, USA
andrew.gacek@rockwellcollins.com

ABSTRACT
The Static IMPerative AnaLyzer (SIMPAL) is a tool for perform-
ing compositional reasoning over software programs that utilize
preexisting software components. SIMPAL features a specification
language, called Limp, for modeling programs that utilize preex-
isting components. Limp is a Lustre-like imperative language. It
provides control flow elements, global variables, and a syntax for
specifying preconditions, postconditions, and global variable inter-
actions of preexisting components.

SIMPAL translates Limp programs to an equivalent Lustre rep-
resentation which can be passed to the JKind model checking tool
to perform assume-guarantee reasoning, reachability, and viability
analyses. The feedback from these analyses can be used to refine
the program to ensure the software functions as intended.

CCS CONCEPTS
• Theory of computation → Logic and verification; Verifica-
tion by model checking; Hoare logic;

KEYWORDS
assume-guarantee reasoning, model checking, lustre

ACM Reference format:
Lucas Wagner, David Greve, and Andrew Gacek. 2017. SIMPAL: A Compo-
sitional Reasoning Framework for Imperative Programs. In Proceedings of
SPIN’17, Santa Barbara, CA, USA, July 13-14, 2017, 4 pages.
https://doi.org/10.1145/3092282.3092290

1 INTRODUCTION
Software reuse is the practice of using existing software to build
new software. Reasons for resuing software are convenience, econ-
omy, and recognized service history of preexisting code. However,
software is specifically engineered and tested to work for a specific
purpose. If software is reused in a different context the overall as-
surance case for it is incomplete; the original claim for trusting the
software is based on a specific usage.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only. Permission to make digital or hard copies for
personal or classroom use is granted. Copies must bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5077-8/17/07. . . $15.00
https://doi.org/10.1145/3092282.3092290

This paper introduces the Static IMPerative AnaLysis (SIMPAL)
tool. SIMPAL provides capabilities to model and analyze programs
composed of preexisting software components. It allows users to
specify precisely how components utilize and modify global vari-
ables, what preconditions a component is expecting to be invoked
with, and what postconditions the component will provide back
to the calling context. SIMPAL uses assume-guarantee analysis to
ensure that each component correctly adheres to its specification.
Additional analyses are also performed to identify unreachable or
nonviable code in the program model. Analyses results are reported
back to the user and property violations are accompanied by a
sequence of inputs that demonstrate how to violate the component
contracts specified in the new program. This information can be
used to refine the program specification.

SIMPAL models interactions among program components in the
context of a new program. To use it one must generate specifica-
tions for preexisting components to be reused in a new program.
Component specifications may be derived manually or automati-
cally with tools. Once the components are modeled, the behavior
of a new program using those components can be analyzed using
SIMPAL. The proposed work flow for SIMPAL is shown in Figure 1.

Figure 1: SIMPAL architecture flow.

2 RELATEDWORK
Assume-guarantee reasoning [10] is a method of compositional
useful for analyzing a system’s components without considering
their internal design. Instead, each component is described by a
contract that describes the assumptions the component expects
from the environment and a set of guarantees the component pro-
vides back. The AGREE [6] framework performs assume-guarantee
reasoning over models written in the AADL language. AGREE can
reason about systems and software architectures expressed in the
Architecture Analysis and Design Language[8] (AADL). Behavioral
aspects of an architectural component are captured in the AGREE

The views expressed are those of the authors and do not reflect the official policy
or position of the Defense Advanced Research Projects Agency (DARPA) or the U.S.
Government.

90

https://doi.org/10.1145/3092282.3092290
https://doi.org/10.1145/3092282.3092290

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA Lucas Wagner, David Greve, and Andrew Gacek

annex to AADL. AGREE merges architectural and behavioral infor-
mation into a Lustre[11] model which can be analyzed using the
Kind 2[2] or JKind[9] model checking tools. While AGREE can be
used to reason about software architecture modeled as threads and
processes, it cannot reason about software behaviors.

Similar to AGREE, the Othello Contracts Refinement Analysis
(OCRA) [3] tool performs compositional reasoning over systems
described in the OCRA System Specification language (OSS), a
textual format unique to the OCRA tools. OCRA allows users to
model hybrid and discrete time systems. OCRA targets the NuXMV
model checker [1] for discrete time systems and the HyCOMP [4]
analysis tool for hybrid systems. Similar to the AGREE tool, OCRA
performs assume-guarantee reasoning over discrete time but also
extends the concept to hybrid systems.

Frama-C[13] a C source code analysis framework, utilizes assume-
guarantee reasoning as part of its abstract interpretation [7] based
Value analysis plug-in. The tool provides an option to use contracts
to substitute behavior of called functions. Similarly, the SPARK
2014[14] tool set provides a utility, gnatprove[12] based on abstract
interpretation, and utilizes assume-guarantee reasoning for subpro-
grams.

3 LIMP
The Limp language is an imperative language for modeling pro-
grams constructed from preexisting components. It has syntax like
the Lustre synchronous dataflow language but incorporates con-
cepts from imperative programming languages, such as control flow
and repeated variable assignment. This allows the language to more
efficiently represent software programs. The following subsections
discuss the key features of the Limp language.

3.1 Key Features of the Limp Language
The Limp type system is similar to the Lustre type system in that
it supports primitive types of integer, boolean, real, enumerations,
and composite types record and array. Limp extends the Lustre type
system by adding abstract types and strings. Abstract types can be
used to model elements abstractly when the details of a type are
not needed. String types are useful for reasoning about programs,
but support for them in SIMPAL’s analyses is limited, as JKind’s
lacks support for strings.

Limp provides a full complement of control flow constructs,
including if-then-else statements, for and while loops, break and
continue statements for early loop termination, and goto and label
statements for arbitrary control flow. These constructs provide an
enhanced specification of software programs than that provided by
the Lustre language. Additionally, global variables are present in
Limp to provide a richer language for describing programs.

Finally, Limp provides a specification language for a compu-
tational modules, referred to procedures. Procedures capture the
signature of the computational module and contractual information
of the module. A module’s contract is composed of its preconditions,
postconditions, and specifications for how the module uses (reads)
and defines (writes) global variables. These elements provide com-
plete information about how the program uses each component to
adequately reason about it’s behaviors.

3.2 A File Writing Example
Shown in Figure 2 is a Limp specification that describes a program
that uses an existing component to write a file object. This program
defines a data object called File (lines 1-5) that contains fields open,
writes, and data which refer to relevant characteristics of a file. The
instantiation of the File data object is the global variable, file (line
7). Next, a constant MAX_WRITES (line 9) defines the max number
of times a File object can be written.

Figure 2: Specification for a file writing program.

Next, an external procedure writeFile (lines 11-19) accepts a in-
teger input named data and modifies the global variable file by
updating its data field to the value contained data input variable.
The procedure is allowed to read (line 14) the open field of the
global variable file and write (line 15) the data field. The writeFile
procedure has one precondition pre (line 16) that requires that the
file to be written is open. It has a single postcondition post (line
17-18) that ensures that the global file variable’s data field has been
assigned to the value of the procedure’s data input.

Finally, themain (lines 21-36) procedure has one input argument
and one output argument. The input data is the data to be written
to the global file. The output success is a boolean that represents
whether or not the file object was written successfully. The proce-
dure has a single postcondition named post (line 24) and it states
the procedure will set the success variable to true in its final state.
Also, the main procedure has a precondition pre (line 25) that ex-
pects the open field to be true, and the writes field to be 0, prior to
executing the procedure. Together pre and post form the contract
for this procedure. This contract states that if the global variable
file is open prior to executing main the procedure will always end
with the successful flag being set to true.

91

SIMPAL: A Compositional Reasoning Framework
for Imperative Programs SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

4 ANALYSES
SIMPAL provides three analyses which are useful for evaluating
whether or not a program specification meets its intended function.
The first analysis is assume-guarantee reasoning. Its purpose is to
ensure the specified program will satisfy its postconditions and
always call preexisting components such that their preconditions
are satisfied. Reachability analysis identifies dead code. Viability
analysis identifies code that is unreachable when all component
preconditions and postconditions are satisfied.

All three analyses are supported by transforming a Limp specifi-
cation into a Control Flow Graph (CFG) and then translating the
CFG into an equivalent Lustre state machine. The CFG for Figure 2
is shown in Figure 3.

Figure 3: Control flow graph for Figure 2

The input, output, local, and global variables of the program are
provided as inputs to each node of the CFG. The CFG node performs
its computation and returns modified outputs, locals, and globals.
SIMPAL annotates the resultant Lustre model of the program with
properties that embody the analyses which can be analyzed by
JKind. The following subsections discuss the three analyses and
how the Lustre model is annotated with properties to perform each.

4.1 Assume-Guarantee Reasoning
SIMPAL produces a Lustre state machine that represents the Limp
program. Assume-guarantee reasoning is performed by adding
proof obligations to the Lustre model that determine if the specified
program’s final postconditions are satisfied and whether each called
component’s preconditions are satisfied. It also adds assumptions
that ensure the analysis only considers traces in which the pro-
gram’s preconditions hold as well as assumptions that ensure each
called component’s postconditions hold. Finally, it is necessary to
assume that each component will only modify the portions of a
global variable as defined by its defines specification.

In the example shown in Figure 2 this means we must ensure the
main procedure’s postcondition post and the called procedure write-
File’s precondition pre are emitted as properties in the generated
Lustre representation. In addition, the tool must ensure that the
main procedure’s precondition pre is asserted as well as the called
procedure writeFile’s postcondition post. This means the global file
must be open at the start of the execution of the main procedure
and that the after execution of the writeFile procedure, the global
file’s writes field will be incremented, and the data field set to the
input value of writeFile. Further, the analysis must also ensure that
the writeFile function only modifies the writes and data fields of
the global variable file. SIMPAL’s analysis results for the example
shown in Figure 2 are shown in Figure 4.

Figure 4: Anaysis results for the example in Figure 2

Here can see the that the main procedure’s postcondition post
is valid as shown by the property main_post analysis result in
Figure 4. Also, we can see that the call to the external procedure
writeFile preserves its precondition pre and it is captured in the
main_block_3∼0.writeFile_pre__prop property in the results. This
analysis informs us that our program always ends with the success-
ful flag being set to true, given the main procedure’s preconditions
and writeFile component’s postconditions.

4.2 Reachability
Reachability analysis is useful for identifying code that cannot be
exercised due to the way the program is constructed. This analysis
is performed by emitting properties that assert each node of the
CFG can never be reached. If the property is valid (green check
mark) we have proven the node is unreachable. If the property is
invalid (red exclamation point) the tool will provides a single trace
that shows how the node can be reached.

The analysis shown in Figure 4 shows us that nodes 0,1,2,3,4,5
from the CFG shown in Figure 3 are reachable, while node 6 is
not. Analysis of the program confirms that if the main procedure’s
precondition is that the global variable file’s open field is always

92

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA Lucas Wagner, David Greve, and Andrew Gacek

true, then the else branch of the if-then-else (the instruction on line
34) will never be executed.

4.3 Viability
A viable CFG node is one that is reachable while satisfying the
contracts of the components contained within the program. To
demonstrate this, consider a modification to the precondition pre
(line 16) of the writeFile procedure of the example in Figure 2 to
require that the open field of the global variable file now be false.
This creates a situation where some CFG nodes are reachable, but
not viable. The analysis results from this modification are shown
in Figure 5.

Figure 5: Analysis demonstrating nonviable CFG nodes

This modification caused nodes 3, 4, 5 of the CFG to become
nonviable. This is because the entrance into to the if-then-else
statement (line 27) requires the global variable file’s open field to be
true, yet the precondition to the writeFile procedure called on line
29 requires it to be false. This contradiction makes the nodes of the
CFG contained within the if-then-else statement to be nonviable.
Node 6 remains unreachable, and by definition, also nonviable.

5 CONCLUSIONS AND FUTUREWORK
This paper presents SIMPAL, a tool for modeling and performing
assume-guarantee reasoning of programs built from preexisting
components. It provides a domain specific language for modeling
programs and performs analyses by translating the models to a
Lustre representation which is analyzed using the JKind model
checker.

Future work on SIMPAL will be focused on improving the perfor-
mance of the underlying Lustre representation. First, the generated
Lustre models map program execution over multiple Lustre exe-
cution steps. This can require large k-values for the underlying
k-induction model checker to prove properties of interest. These
large k-values generally drive up the time it takes to analyze prop-
erties. One solution to this would be to pursue loop-unwinding,

such as that employed by the CBMC [5] model checker. Another
approach to improve performance is the generation of lemmas
that can aid the k-induction engine. JKind already performs in-
variant generation, but generating and emitting lemmas related
to the structure of the Lustre model emitted by SIMPAL may pro-
vide additional information to the solver to reduce analysis times.
SIMPAL is an open source tool and is available for download at
http://www.github.com/lgwagner/simpal.

ACKNOWLEDGMENT
This work was sponsored in part by the United States Department
of Defense.

REFERENCES
[1] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-

dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta.
2014. The nuXmv Symbolic Model Checker. In Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in
Computer Science), Armin Biere and Roderick Bloem (Eds.), Vol. 8559. Springer,
334–342. DOI:http://dx.doi.org/10.1007/978-3-319-08867-9_22

[2] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. 2016.
The Kind 2 Model Checker. Springer International Publishing, Cham, 510–517.
DOI:http://dx.doi.org/10.1007/978-3-319-41540-6_29

[3] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. 2013. OCRA: A
tool for checking the refinement of temporal contracts. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, Ewen Denney, Tevfik Bultan, and Andreas
Zeller (Eds.). IEEE, 702–705. DOI:http://dx.doi.org/10.1109/ASE.2013.6693137

[4] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. 2015.
HyComp: An SMT-Based Model Checker for Hybrid Systems. In Tools and Algo-
rithms for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes
in Computer Science), Christel Baier and Cesare Tinelli (Eds.), Vol. 9035. Springer,
52–67. DOI:http://dx.doi.org/10.1007/978-3-662-46681-0_4

[5] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking
ANSI-C Programs. Springer Berlin Heidelberg, Berlin, Heidelberg, 168–176. DOI:
http://dx.doi.org/10.1007/978-3-540-24730-2_15

[6] Darren Cofer, Andrew Gacek, Steven Miller, Michael W. Whalen, Brian LaValley,
and Lui Sha. 2012. Compositional Verification of Architectural Models. In Pro-
ceedings of the 4th International Conference on NASA Formal Methods (NFM’12).
Springer-Verlag, Berlin, Heidelberg, 126–140. DOI:http://dx.doi.org/10.1007/
978-3-642-28891-3_13

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. ACM, 238–252.

[8] Peter H. Feiler and David P. Gluch. 2012. Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language (1st ed.).
Addison-Wesley Professional.

[9] Andrew Gacek. 2014. The JKind model checker. (2014). http://loonwerks.com/
tools/jkind.html

[10] Susanne Graf, Roberto Passerone, and Sophie Quinton. 2014. Contract-Based
Reasoning for Component Systems with Rich Interactions. Springer New York,
New York, NY, 139–154. DOI:http://dx.doi.org/10.1007/978-1-4614-3879-3_8

[11] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The
synchronous data flow programming language LUSTRE. Proc. IEEE 79, 9 (1991),
1305–1320.

[12] Duc Hoang, Yannick Moy, Angela Wallenburg, and Roderick Chapman. 2015.
SPARK 2014 and GNATprove. Int. J. Softw. Tools Technol. Transf. 17, 6 (Nov. 2015),
695–707. DOI:http://dx.doi.org/10.1007/s10009-014-0322-5

[13] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. 2015. Frama-C: A software analysis perspective. Formal
Aspects of Computing 27, 3 (2015), 573–609. DOI:http://dx.doi.org/10.1007/
s00165-014-0326-7

[14] Ian O’Neill. 2012. SPARK âĂŞ A Language and Tool-Set for High-Integrity Software
Development. John Wiley and Sons, Inc., 1–27. DOI:http://dx.doi.org/10.1002/
9781118561829.ch1

93

http://www.github.com/lgwagner/simpal
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1007/978-3-319-41540-6_29
http://dx.doi.org/10.1109/ASE.2013.6693137
http://dx.doi.org/10.1007/978-3-662-46681-0_4
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-28891-3_13
http://dx.doi.org/10.1007/978-3-642-28891-3_13
http://loonwerks.com/tools/jkind.html
http://loonwerks.com/tools/jkind.html
http://dx.doi.org/10.1007/978-1-4614-3879-3_8
http://dx.doi.org/10.1007/s10009-014-0322-5
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1002/9781118561829.ch1
http://dx.doi.org/10.1002/9781118561829.ch1

	Abstract
	1 Introduction
	2 Related Work
	3 Limp
	3.1 Key Features of the Limp Language
	3.2 A File Writing Example

	4 Analyses
	4.1 Assume-Guarantee Reasoning
	4.2 Reachability
	4.3 Viability

	5 Conclusions and Future Work
	References

