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Abstract

The inordinate financial cost of mitigating post-production
cybersecurity vulnerabilities in cyber-physical systems
(CPS) is forcing the industry to rethink systems design cy-
cles: greater attention is being given to the design phase –
with the goal of reducing the attack surface of systems at
an early stage (i.e., before silicon tape out). Fortunately,
formal methods have advanced to the point that they can
address such needs and contribute towards achieving se-
curity certification. However, new methods and tools fo-
cusing on industrial scalability and usability for systems
engineers are required. In this ongoing research paper,
we describe a framework that will help systems engineers
to: a) design cyber-assured CPS using a Model Based
Engineering (MBE) approach; b) formally map security
requirements to different hardware and software blocks in
the model; and c) formally verify security requirements.
Based on the nature of each requirement, our framework
collects formal correctness evidence from different tools:
while high-level architectural properties are suitable for
a contract- or ontology-based reasoning, more complex
properties with rich semantics require the use of model
checking or theorem proving techniques.

Keywords: Formal Methods, Cybersecurity, Cyber-
Physical Systems, Model Checking, Theorem Proving.

1 Introduction
In 2020, researchers estimated that there were 12 billion active
Internet of Things (IoT) devices, and that number would at least
double within five years [1]. The attack surface for IoT devices
is large, and an attacker may use several attack vectors to com-
promise a device, ranging from physical side-channel attacks to
programming bugs like buffer and arithmetic overflows [2].
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Considering that many of these IoT devices are used in critical
Cyber-Physical Systems (CPS), security breaches can lead to
seriously hazardous outcomes, both in terms of human life and
financial loss. A well-publicised example of an IoT security
breach is the remote hijacking of a Jeep on a U.S. highway [3]:
white hat hackers were not only able to manipulate non-critical
systems (e.g. display, air conditioning), but they were also able
to control the engine and brakes.

Given the high stakes, guaranteeing that these devices correctly
implement the appropriate security countermeasures is crucial.
Furthermore, in order to achieve a high degree of trust regarding
security claims, engineering teams must go beyond dynamic
testing of software and hardware components and tackle the
problem with formal methods tools.

While in the past formal methods encountered a strenuous bar-
rier regarding industry adoption, theoretical advances led by
academia, software engineering best practices, and the expo-
nential growth of computational power have all contributed to
reaching the current state-of-the-art: tools are now sophisticated
enough to abstract from mathematical theories and provide
user-friendly interfaces for systems engineers. This is highly
beneficial, given the fast-paced needs of the industry.

Although recent research has successfully proposed frameworks
for formal reasoning about cybersecurity in CPS, no compre-
hensive framework exists for modelling and formally verify-
ing general-purpose CPS, such as IoT devices. Therefore, we
propose a framework that will allow engineers to write require-
ments (not only security-related but also safety, timing, and func-
tional requirements), design system architectures, and gather, on
the same model, formal evidence that the stated requirements
are satisfied either by the architectural model or by specific
component implementations.

2 Related Work & Background
2.1. Model-Based Engineering & AADL

Model-Based Engineering (MBE) has emerged as a key set of
methodologies to design complex systems [4]. One widely-
adopted MBE technology is the Architecture Analysis & Design
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Language (AADL) [5]. Initially developed for avionics appli-
cations, AADL has since been used to design a wide range
of embedded real-time system architectures, largely due to its
language constructs for specifying both software and hardware
configurations. Moreover, AADL has a reference implemen-
tation called OSATE [6], which is an open-source modelling
environment that comes with a few built-in analysis tools such
as flow control and schedulability. Because OSATE is based
on the Eclipse framework, creating new analysis plugins is
relatively straightforward.

AADL includes an annex mechanism for extending the base
grammar, thereby supporting new language features and anal-
yses. One such annex is the Assume Guarantee REasoning
Environment (AGREE) [7], which is a compositional assume-
guarantee-style formal analysis tool. AGREE attempts to prove
properties about one layer of the architecture using properties
allocated to subcomponents. The composition is performed in
terms of formal assume-guarantee contracts that are provided
for each component. Assumptions describe the expectations
the component has on its inputs and the environment, while
guarantees describe bounds on the component’s behaviour. The
model checker then attempts to find any model execution traces
that violate these contracts using one of several Satisfiability
Modulo Theories (SMT) solvers. If the model checker covers
all reachable states in the model without finding a violation, the
model is proven to satisfy its contracts.

Another important annex for reasoning over AADL models is
Resolute [8], which includes a language for embedding assur-
ance cases in AADL models and a tool for evaluating the validity
of the associated evidence. An assurance case is a structured
argument, supported by evidence that a system will operate as
intended in a specified environment. Because high-assurance
products generally undergo certification at the system level,
there is a natural mapping between a system design and the
corresponding assurance argument. Resolute takes advantage
of this alignment by enabling the specification of the assurance
argument directly in the AADL model. The assurance case can
then be instantiated and evaluated with elements specified in
the model. The resulting assurance case can be viewed in the
modelling environment, or exported to graphical tools such as
AdvoCATE [9]. Resolute assurance cases are at the core of our
approach, and we describe them in greater detail in Section 3.

Our choice of using AADL over other MBE languages such
as SysML [10] is informed by multiple factors. First, AADL
was designed for specifying hierarchical system architectures,
enabling the composition of systems from subsystems, and re-
finement from abstract to concrete types. It includes first class
objects for representing components that comprise embedded
systems such as memory, buses, processors, threads, subpro-
grams, and data. SysML, on the other hand, is more abstract
and thus better-suited for early stages of system engineering.
Second, AADL has a sufficiently rigorous run-time semantics,
enabling a wide range of analyses that would otherwise not be

possible. And third, AADL’s annex support cannot be over-
stated. The ability to extend the language in order to perform
new types of analyses is critical in the rapidly evolving – and
heavily regulated – CPS design space.

2.2. Cyber-Assured Systems Engineering Framework

Cofer et al. recently developed BriefCASE [11], an AADL-
based framework for designing, building and assuring cyber-
resilient systems. In that work, high-level security requirements
are mapped to seL4 microkernel [12] features via a (very) trust-
worthy tool chain. Although they did succeed at creating a
framework for crafting formally verified secure applications,
their work did not focus heavily on hardware security, which
plays a fundamental role in protecting a wide range of CPS
including IoT devices. In contrast, we propose a framework
that allows system engineers to specify a wide range of sys-
tem requirements and map them to the appropriate software or
hardware block.

For example, one might require a platform capable of perform-
ing trusted boot to verify the authenticity of an over-the-air
firmware update, or a platform capable of executing hardware-
implemented crypto-primitives (e.g., symmetric or asymmetric
encryption, hash functions, etc.). While the former security goal
could be achieved through the use of a hardware Root of Trust
(RoT) acting as the Trusted Platform Module (TPM), the latter
would require Instruction Set Extensions (ISEs) or memory-
mapped crypto-accelerators. These solutions are outside the
scope of what BriefCASE currently offers.

Another important work that introduces a tool aimed at formal
reasoning about CPS is KeYmaera X [13], a theorem prover
for differential dynamic logic (dL). KeYmaera X introduces
important advances in formal verification of CPS – its logic is
well suited for reasoning about discrete and continuous dynam-
ics, which are useful to encode functional and safety properties
of CPS. It has been used, for instance, to model and verify
the safety of flight collision avoidance software [14] and train
controls with air pressure brakes [15]. In comparison, our work
focuses instead on characterising software/hardware running in
CPS and its underlying cybersecurity properties.

Finally, VRASED [16] is a HW/SW co-design that implements
a formally verified Remote Attestation protocol. To achive that
ultimate goal, VRASED relies on different formal verification
techniques: a custom hardware module (used to reset the in-
ternal state of the micro-controller studied in their paper in
case the code to be attested is compromised) has its correctness
specified with Linear Temporal Logic (LTL) and checked with
NuSMV – a model checker; the overall soundness and correct-
ness of the resulting system is modelled and proved in a theorem
prover; and finally, they also make use of pre-verified crypto-
graphic code [17]. While VRASED is an impressive effort,
their architecture is bare-metal and specific to a family of micro-
controllers, such as MSP430. The goal of our work, contrarily,
is to leverage MBE tools in conjunction with formal verifica-
tion techniques to formally reason about more generic, richer



architectures (e.g. with RISC-V cores and Trusted Execution
Environments (TEE)).

We thus propose building a framework that: a) provides the tools
to formally reason about security solutions implemented by both
software and hardware; and b) maps security requirements to
evidence gathered not only from AADL and its plugins, but also
external tools, such as Coq.

3 Framework Description
Figure 1 presents an abstract architectural overview of the tool-
chain, under development at the time of writing. Note that,
while some of the tools are embedded within OSATE, some are
called by Resolute as an external source of formal correctness
evidence.

Figure 1: Toolchain. Legend: OSATE tools External tools

The framework we propose is intended to be used according to
the following workflow:

1. Security requirements are specified;

2. System architecture is modelled in AADL;

3. Formal analysis of model is performed using AGREE to
verify the design satisfies security properties;

4. Hardware and Software components are implemented man-
ually, or through verified synthesis [18];

5. Where possible, formal analysis is performed on compo-
nent implementations – this could be done by a variety
methods (e.g., model checking and theorem proving);

6. Component implementations are integrated into a system
build;

7. System testing is performed;

8. An assurance case is generated using Resolute, confirming
that security goals are support by evidence (maintained by
the framework).

In the following, we detail some of the steps presented above.

Requirement Specification (Step 1)

Consider three illustrative high-level security requirements,
which are motivated by industrial use-case scenarios for embed-
ded systems controlling safety-critical operations of CPS:

R1: “The TEE shall provide the necessary mechanisms to en-
able the isolated execution of sensitive functions in enclaves”

R2: “The crypto schemes that will be used for the secure com-
munication of devices shall be provably secure, based on well-
accepted underlying assumptions”

R3: “The system shall include mechanisms that detect replay
attacks and can tell if newer messages or part of them are
unauthorised repetitions of previously authorised exchanges”

Architecture Modelling (Step 2)

Based on the security requirements from Step 1 (as well as
other high-level requirements), engineers use AADL to model
a system architecture that captures the appropriate security so-
lutions. Here, for illustrative purposes, consider the following
architecture:

• On the hardware layer: a RISC-V core, such as the 2-
stage pipeline 32-bit Ibex core1 or the 6-state 64-bit Ari-
anne core2, and a hardware RoT (such as the OpenTitan3),
which is assumed to have a crypto co-processor capable of
enhancing the performance of functions such as AES and
SHA-256.

• On the firmware layer: a custom-tailored Keystone
TEE [19], configured to use not only the RISC-V Physical
Memory Protection (PMP) Registers – primitives for ensur-
ing memory isolation between secure enclaves – but also
custom RISC-V instructions to access crypto co-processors
and the RoT;

• On the software layer: a set of secure applications (Key-
stone enclave application), such as attestation agents, evi-
dence collectors, and SW/FW update agents.

Figure 2 shows an abstraction of the proposed architecture.4

Modelling software and hardware components in AADL is
a straightforward and well-documented process: software is
described using components such as processes and threads,
while hardware components include processors, buses, and
memories. Modelling the TEE and its properties in AADL
however is still an open problem and we consider it to be part
of our research.

1https://ibex-core.readthedocs.io/en/latest/
2https://github.com/lowRISC/ariane
3https://opentitan.org/
4The architecture used as example here is similar, in some sense, to Key-

stone’s architecture [19], although not entirely. Keystone, in this case, would
have to be configured by the Keystone Programmers [19] to use the custom
proposed hardware.
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Figure 2: Abstraction of the example architecture.

Note that the architecture proposed above is merely illustra-
tive and its security implications are not the focus of this pa-
per. Rather, here our focus is on providing an overview of
a methodology to formally verify a diverse range of security
requirements.

Translation of Higher-Level Requirements into Low-Level
Specifications (Step 5)

In order to determine whether individual component implemen-
tations satisfy their requirements, a necessary prerequisite is the
translation of those requirements into a formal representation
that facilitates (semi-)automated, computer-aided analysis/rea-
soning.

For low-level functional requirements characterising compo-
nent behaviour, this representation can, for example, be a form
of modal logic, such as Linear Temporal Logic (LTL) or Com-
putation Tree Logic (CTL) [20], or differential dynamic logic
(dL) [21].

For intermediate-level non-functional requirements, approaches
for describing constraints on system architecture / component
interconnections (or other desired properties of a non-functional
nature) can vary. For example, in cases where properties are
quite abstract and their satisfaction is difficult to define, so
called soft-goal approaches are more appropriate [22], while in
cases where properties are more concrete, a (constraint) logic-
based approach is preferred [23]. Requirements R1, R2, and R3
fall under the latter category. R1, for instance, can be formalised
in first-order logic as follows:

∀e ∈ Enclaves,

∀f ∈ Functions, sensitive(f) =⇒
allocated_on(f, e) =⇒
ensured_isolated_execution(f, e)

(1)

In natural language, R1 is said to be satisfied if any arbitrary
sensitive function f is allocated inside of a secure enclave e.

Development of automated requirement formalisation tools is
out of scope for this work. Furthermore, it will likely be the
case that not all requirements can be formalised in a manner
that permits automated reasoning. For now, we assume that
translating high-level requirements into low-level specifications
is a manual task to be performed by the framework user and
verified through manual review.

Formal Verification of Requirements (Step 5) and System As-
surance (Step 8)

Here, we detail how formal analysis can be performed (Step
5) considering requirements R1, R2, and R3; and how we can
use Resolute to generate assurance cases, which can be used to
provide confidence that cybersecurity requirements have been
satisfied in both the design and implementation.

Requirement R1 can be checked using Resolute, since it is struc-
tural in nature. We can use Resolute to “traverse” the model
and check that a component implementing the desired function-
ality is present, cannot be bypassed, and has been implemented
appropriately. In the proposed architecture, Keystone’s Secure
Monitor (SM) [19] implements enclave isolation by manipulat-
ing RISC-V Physical Memory Protection (PMP) registers, and
thus, “isolated execution of sensitive functions in enclaves” is
achieved.

Listing 1 is a first attempt at writing an assurance argument
for requirement R1 in Resolute. In the listing, SW.Impl is a
rather simplified representation of a software process hosted in
a system equipped with Keystone, where Eapp is a sensitive
function. The Resolute goal Iso_Exec traverses the model
to check that: 1) the enclave where Eapp executes is properly
implemented and initialised, 2) Eapp executes on the enclave,
and 3) Applications on U-Mode or S-mode cannot bypass the
Security Monitor (see Figure 2). We omit the connections
between threads for conciseness.

Listing 1: Verifying R1 with Resolute.

process implementation SW.Impl
subcomponents

Eapp : thread Eapp.Impl;
RT : thread RT.Impl;
Enclave : thread Enclave.Impl;
SM : thread SM.Impl;

annex resolute {**
argue Iso_Exec (this.Eapp, this.Enclave,

this.SM)
**};

end SW.Impl;

goal Iso_Exec (eapp : component, encl :
component, sm : component) <=
strategy: "Reason about architecture";
enclave_exists(encl) and
enclave_initialized(encl) and
allocated_on(eapp, encl) and
sm_not_bypassed(sm, encl)



The second requirement, R2, is more difficult. Informally, “prov-
ably secure” is naturally more complex than “shall provide”.
Here, for simplicity, let us first assume that the “crypto-schemes
that will be used for the secure communication of devices” can
be simply reduced to AES and SHA-256, as these are the co-
processors specified in the architecture. Realistically, this is a
strong assumption, since a real device would also require asym-
metric encryption schemes, which are mostly implemented in
software.

We can assume that the cryptographic algorithms themselves
(AES and SHA-256) are secure by design and focus our efforts
in proving that the actual hardware implementations are correct
against a high-level formal specification of these algorithms.
For that goal, considering that the architecture proposes the use
of hardware co-processors, we could either: a) perform typical
verification techniques, such as property checking with Sys-
temVerilog Assertions (SVA) on existing HW IPs or b) produce
correct-by-design Register Transfer Level (RTL) code using
Coq Domain Specific Languages (DSLs), such as Kôika [24].
At this phase of our research, we explore the second option, as
depicted in Listing 2. Notably, we prove that the hardware im-
plementation of the RISC-V standardised crypto custom instruc-
tions [25] is correct against the instruction semantics, expressed
in SAIL [26].

Listing 2: Verifying R2 with Resolute.

system implementation HW.Impl
subcomponents

AES : processor AES.Impl;
SHA_256 : processor SHA_256.Impl;

annex resolute {**
argue Correct_By_Design (this)

**};
end HW.Impl;

goal Correct_By_Design (sys : system) <=
** "RTL code is provably correct" **
forall(proc : processors(sys)) .

analysis("coq", proc)

Finally, R3 requires that the architecture includes mechanisms
for detecting intruder operations such as message replay attacks.
In such an attack, a malicious agent intercepts a message and/or
controls its delivery to the intended target, thereby disrupting
system operations or obtaining unauthorised information. If
a protection mechanism is enabled (e.g., by including times-
tamps), then a model checker could explore whether or not a
successful replay-attack state is reachable in which the protec-
tion would fail to detect the repetition of the message within a
specific time threshold.

Devices that are part of communication networks are commonly
modelled together with an intruder model (e.g., Dolev-Yao [27])
that can perform attack operations against eavesdropped mes-
sages. Model checking using SPIN [28] or OFMC [29] can pro-
vide evidence that proves the absence of a series of such attacks.

Recent approaches also involve the usage of TAMARIN [30] in
an attempt to verify cryptographic protocols using adversaries
within the tool itself. In the case of R3, since the requirement
can be directly modelled in the language of a model checker,
the Resolute assurance argument can take the form of a sim-
ple predicate: safe_against_replay_attacks(), supported by
evidence generated by the model checking tool.

4 Conclusion & Next Steps
We propose a framework aimed at modelling and formally veri-
fying cyber-assured CPS under the following design principles:
a) security requirements are allocated to either system soft-
ware or hardware, b) the system is modelled in a language
(e.g., AADL) with sufficiently rich semantics that enable for-
mal analysis, c) formal methods are applied at multiple points
in the development workflow (compositional reasoning at the
architecture level, verified synthesis for component generation,
model checking and theorem proving of hardware and software
component implementations, etc.), and c) an assurance case is
generated that substantiates cybersecurity claims with evidence
from formal analyses (and other workflow processes managed
by the framework).

Currently, we focus our efforts on modelling Keystone and
custom hardware in AADL – an open problem – since AADL
has not been previously used to model TEEs. A subsequent
challenge is how to scale the approach to model larger systems.
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