
Evaluation of New Assurance Tools for Airborne
Machine Learning-Based Functions

Cong Liu, Heber Herencia-Zapana, Saqib Hasan, Amer Tahat, Isaac Amundson, Darren Cofer
Collins Aerospace

{first.last}@collins.com

Abstract—As part of the DARPA Assured Autonomy program,
our team has developed or evaluated a number of technologies
to address gaps in traditional hardware and software assurance
processes that make it difficult or impossible to demonstrate the
correctness and safety of machine learning (ML) components.
These include new approaches for testing and completeness
metrics, formal analysis of neural networks, input domain
shift assessment, and run-time monitoring and enforcement
architectures. Although many of these tools and methods were
successfully applied to demonstration platforms, most have not
been evaluated on real-world product development efforts in a
certification context. In this paper, we describe our evaluation
of these new assurance methods and tools applied to ML-based
systems that will soon be undergoing certification.

Index Terms—Assured Autonomy, neural network verification

I. INTRODUCTION

Use of machine learning (ML) technology is expanding
to support autonomy and other advanced functionality in
safety/security-critical applications. Unfortunately, when it
comes to the regulatory approval of these systems, the cer-
tification guidance has not kept pace with the technology.

DO-178C, for example, provides guidance regarding soft-
ware aspects of certification and is used by the commercial
aviation industry and regulators as a means of compliance
with airworthiness regulations. DO-178C fundamentally relies
on requirements-based testing and structural coverage metrics
for confidence that a software development process correctly
implements a set of requirements. When requirements-based
tests fail to exercise part of the software logic (as revealed by
structural coverage metrics), it is reasonable to conclude that
either a requirement is missing, or the implementation includes
unintended behavior. Since neural networks do not explicitly
implement logical decisions, structural coverage can usually be
achieved with a single test case and is therefore not helpful in
identifying and eliminating unintended behaviors. Because it
is difficult to demonstrate assurance by examining the neural
network design, other approaches are needed if we wish to
take advantage of ML in our high-assurance applications.

As part of the DARPA Assured Autonomy (AA) program,
our team has developed or evaluated a number of technolo-

Distribution statement “A” (approved for public release, distribution unlim-
ited). This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA), contract FA8750-18-C-0099. The views,
opinions, or findings expressed are those of the authors and should not be
interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

gies to address gaps in traditional hardware and software
assurance processes that make it difficult or impossible to
demonstrate the correctness and safety of ML components.
These include new approaches for testing and completeness
metrics, formal analysis of neural networks, input domain
shift assessment, and run-time monitoring and enforcement
architectures. Although many of these tools and methods were
successfully applied to demonstration platforms, most have not
been evaluated on real-world product development efforts in
a certification context.

In this paper, we describe our evaluation of new assurance
methods and tools applied to ML-based systems that will need
to be approved by certification authorities before they can be
deployed on aircraft.

II. APPLICATIONS

We have evaluated the tools on a variety of ML-based
systems. In some cases, the system used ML to implement
new aircraft functionality. In other cases, the goal is to use
a neural network (NN) to create a more time- or memory-
efficient implementation of an existing function. ML-based
functions used for evaluation include:
Remaining Useful Life (RUL) [1]: A convolutional neural
network (CNN) uses vibration measurements from rotating
equipment to estimate time until maintenance or replacement.
The RUL NN is reasonably large, with 1600 inputs (a sequence
of snapshots of condition indicators from vibration sensors and
other metrics) and 94,500 learnable parameters arranged in
12 layers. The output is the predicted remaining useful life
of the equipment. A public version with training data and
requirements to be verified was made available as a benchmark
for the 2022 International Verification of Neural Networks
Competition (VNN-COMP).
Recommended Cruise Level (RCL): Computes time and fuel
optimal altitude as a recommendation to the pilot, replacing a
complex optimization calculation and saving CPU time. The
NN is a fully-connected, feed-forward NN with rectified linear
unit (ReLU) activation functions. It has 5 inputs (aircraft and
environment conditions) and 2 outputs (time and fuel costs),
and 5 hidden layers, each with 10 neurons.
Fuel Quantity Measurement (FQM): Computes fuel mass
based on sensor measurements, replacing less-accurate table-
based implementations. A NN is trained to invert a function
that computes sensor measurements from fuel mass, fuel



tank geometry, and aircraft orientation. The NN is a fully-
connected, feed-forward network with 6 sensor inputs and
one output (fuel mass). The NN is very simple, having a
single hidden layer consisting of 50 neurons and uses the tanh
activation function.
Runway Overrun Protection (ROP): Estimates aircraft land-
ing distance based on weight, speed, weather conditions,
runway slope, and other parameters according to the require-
ments of ED-250, Runway Overrun Awareness and Alerting
System (ROAAS). We evaluated one of the NNs from the
system which was a fully-connected, feed-forward network
with 10 inputs and 3 outputs. The outputs correspond to
stopping distances with different brake settings. The NN has 2
hidden layers with 40 neurons each. It uses the tanh activation
function.
Flight Trajectory Optimization (FTO): A neural network-
based implementation of an optimized trajectory function, such
as the A* algorithm and derivatives, to reduce computation
time in a set of complex flight and weather conditions. The
NN is a fully-connected, feed-forward network with ReLU
activation functions. It has 7 inputs, which model aircraft
position relative to an assigned flight altitude limit, distance
to weather/threat, and relative velocity. It has 3 hidden layers
with 35, 70, and 70 neurons, respectively. It has 5 outputs
representing the next flight direction: up, down, right, left,
and straight.

III. FORMAL VERIFICATION

The main purpose of using formal verification in NN certi-
fication is to provide evidence that the NN not only performs
its intended function, but also exhibits no unintended behavior.
We evaluated three state-of-the-art (SOTA) NN verifiers: α-β-
CROWN, Marabou, and Venus2. We applied the tools to for-
mally verify the properties of four Collins NN applications. A
property is an assertion about the mathematical characteristics
of a neural network, often in the form of input and output
relationships.
Verification Tools: α-β-CROWN [2] reduces the property
verification to prove or disprove whether the outputs of a
NN are always non-negative, given the input bounds. The
NN is created by adding a linear output layer to the original
NN, which models the property. It uses abstract interpretation
techniques to efficiently propagate the linear bound of neuron
values through a NN. Its branch-and-bound approach enables
parallelization and it utilizes GPUs to accelerate its perfor-
mance. It has been ranked as the top NN verifier in recent
years of VNN-COMP. It supports many forms of activation
functions (e.g., ReLU, tanh, sigmoid).

Marabou [3] [4] is based on satisfiability modulo theories
(SMT). It transforms a NN property verification problem to a
satisfiability (SAT) instance, which consists of a set of linear
and non-linear constraints (due to the activation functions) on
the neuron values. The property is falsified if and only if there
exists an assignment of neuron values that satisfies all the
constraints. Marabou accepts properties that are encoded as

general linear constraints on both inputs and outputs. We used
Marabou2 (dated March 2024) for our evaluation.

Venus [5] formulates a NN verification problem as a mixed-
integer-linear-program (MILP). The property is falsified if and
only if the corresponding program is feasible. The MILP can
be transformed to a linear program that can be solved in
polynomial-time. Venus2 leverages the efficient, commercial-
off-the-shelf (COTS) linear program solver, Gurobi. It verifies
NNs that only use piecewise linear activation functions. We
used Venus2 (dated March 2024) for our evaluation.
Verification Process: Our verification process often consisted
of three main steps. First, we formulated a number of formal
properties, which were derived from performance or safety
requirements. Second, we manipulated the NN structure so
that we can express the properties in a format that can
be verified by the NN verifiers. For example, α-β-CROWN
does not support general linear constraints on NN inputs.
We added an extra output layer to connect the NN inputs
and outputs in parallel, using ONNX Concat operator. Third,
we tuned the tool executable parameters. Each tool has its
own parameters, which could have a major impact on the
verification performance for a specific instance. Tuning the
parameters is not a straightforward process; it often requires
knowledge of the underlying verification algorithm.

TABLE I: Verification Results

Property ABCROWN Marabou2 Venus2
ftoMaxfl UNSAT (7.3) UNSAT (493) UNSAT (69.2)
ftoMaxflsat SAT (3.0) SAT (20) Abort
ftoMinfl UNSAT (10.5) UNSAT (1808) UNSAT (30.3)
ftoMinflsat SAT (3.1) SAT (1448) UNSAT (28.5)
ftoaboveStr UNSAT (12.8) SAT (795) UNSAT (39.5)
ftoDown UNSAT (6.5) UNSAT (67) UNSAT (25.6)
ftoStr UNSAT (6.4) UNSAT (0) UNSAT (17.9)
ftoUp UNSAT (6.8) UNSAT (357) UNSAT (52.4)
ftobelowStr UNSAT (24.2) SAT (223) Abort
rclOut UNSAT (6.5) UNSAT (0) UNSAT (24.6)
rclMaxFuel SAT (1.8) SAT (0) SAT (1.0)
ropOrder UNSAT (7.0) Timeout -
ropRange SAT (2.4) Timeout -
ropMono SAT (0.5) - -
fqmAcc1 UNSAT (4) - -
fqmAcc2 UNSAT (12) - -

Verification Results: The verification results are summarized
in Table I. The first three letters of the property name indicate
the application (FTO, RCL, ROP, or FQM). A result of
UNSAT means the property is proved. And a result of SAT
means a counterexample was found. The runtime is in seconds.
The timeout is set to 2000 seconds. The verification was
executed on a Linux server with 128 AMD EPYC 7601 32-
Core Processors and 503GB memory. We ran Marabou2 with
Split and Conquer (SNC) mode and four parallel threads.
Since Venus2 does not support the tanh activation function
and Marabou2 does not support the ONNX operator concat,
they could not verify some instances, which are indicated by
the dashes in the table.

Overall, α-β-CROWN was the most efficient and produced
the correct results on all instances. Marabou2 generated incor-



rect results for two instances. And Venus2 generated incorrect
results for one instance and aborted for two instances. Our
preliminary investigation in the incorrect or aborting cases
indicates tool implementation issues.

Note that the VNNLIB parsers used by the tools do not
support general linear constraints (i.e., AX ≤ B). They sup-
port a limited subset of constraints defined by the VNNCOMP
benchmarks (e.g., variable compared to constant, comparing
two variables). We modified the VNNLIB parser of α-β-
CROWN to verify properties that are encoded as general linear
constraints.

IV. OUT-OF-DISTRIBUTION MONITORING

Deep Neural Networks (DNNs) have been instrumental in
driving significant progress in deriving actionable insights
from complex input data, such as videos or images. The
primary function of a DNN is to process input sets, exe-
cute iterative computations, and generate outputs aimed at
addressing real-world challenges, including classification, pre-
diction, and recommendation. However, a notable drawback of
these models is their susceptibility to unpredictable behavior
when presented with inputs markedly different from those
encountered during training. Out-of-distribution (OOD) input
for a DNN comprises data that diverges from the dataset
used in model training, stemming from varying temporal,
environmental, or conditional factors compared to the in-
distribution data.

Detecting OOD instances involves determining whether a
new sample aligns with the distribution of known data. There
are numerous methods and tools available for detecting OOD
inputs [6]–[9]. One such tool discussed and evaluated in
this paper is the Sketching Curvature for Out-of-Distribution
Detection (SCOD) tool [10]. This tool, jointly developed by
Stanford and MIT, computes an uncertainty metric, Unc(x),
which is designed to be low when queried on inputs drawn
using the probability distribution of the training data, but high
for inputs far from this data manifold. A critical component
for the OOD analysis using the SCOD tool is establishing a
threshold value for classifying inputs as OOD, which necessi-
tates knowledge of the probability distribution of the training
data or labeled OOD data.

Determining the threshold value for classifying inputs as
OOD can be accomplished through diverse methodologies.
One approach entails leveraging the probability density func-
tion (pdf) of the training data to generate inputs and compute
the uncertainty metric using the SCOD tool. However, in
practical scenarios, the pdf of the training data is frequently
unknown, posing a significant challenge. Another approach
entails acquiring labeled inputs from both within and outside
the distribution, then using receiver operating characteristic
(ROC) analysis to determine the threshold. However, obtaining
such labeled data can be challenging in certain scenarios. For
example, for the Collins DNN, obtaining these labeled inputs
would be impractical and costly. Therefore, to address this
challenge, we developed the following methodology. First,

we define the notion of data similarity and quantify it us-
ing generalization performance parameters (δ, ϵ). Second, we
compute the performance parameters for data points derived
from the training set along with the respective lines connecting
these data points. Third, we refine the performance parameter
values by utilizing the convex hull of a DNN training dataset.
This methodology is illustrated using the ROAAS DNN, and
a review of the SCOD tool is provided.

First, the OOD concept captures the notion that a DNN
exhibits high performance when presented with input data
similar to the training dataset. However, it may struggle to
make accurate decisions when encountering inputs signifi-
cantly divergent from the training data. Notably, the notion
of similarity and dissimilarity is not solely dependent on the
dataset but also on the model architecture. For instance, a data
point may be considered OOD for one model but within the
distribution for another model, even if trained on the same
dataset. Hence, it is crucial to formalize not only the notion
of proximity in terms of distance but also to capture the sensi-
tivity of the DNN model’s weight, as indicated by the SCOD
uncertainty metric Unc(x). Fig 1 shows two definitions that
capture these concepts. With these two definitions, it is feasible

Fig. 1: Basic definitions.

to mathematically represent that a test point, tp, is similar to a
training data if there exists a data point, dp, from the training
data such that dist(tp,dp) ≤ δ and dist(tp,dp) ≤ ϵ. The
imposition of these two inequalities is essential to prevent
scenarios where a test point with a low uncertainty metric is
erroneously classified as within the distribution, despite being
significantly distant from the training dataset. This rationale
motivates the following definition, shown in Fig 2. These def-

Fig. 2: OOD definition.

initions facilitate reframing the task of establishing a threshold
value for OOD into the task of determining the generalization
performance parameters, (δ, ϵ), for managing OOD instances.
The computation of these generalization performance param-
eters is conducted leveraging a DNN model, its associated
training dataset, and the SCOD uncertainty metric.

Second, we calculate (δ, ϵ) for data points from the training
set and their respective lines between training data points. The
computation of the performance parameters occurs through a
two-step process, involving the calculation of δ followed by
the computation of ϵ. Initially, δ is determined as follows:
First, for each data point within the training dataset, the closest
distance to another data point is computed. Next, δ is derived



(a) δ calculation (b) ϵ calculation

Fig. 3: (δ, ϵ) calculation

as the maximum value among all such closest distances, as
illustrated in Fig 3a. Next, ϵ is computed as follows: For
each data point within the training dataset, a line is generated
connecting it to its closest point. Then, for each generated
line, the maximum uncertainty difference metric among its
constituent points is calculated using the SCOD tool. This
process is depicted in Fig 3b. Ultimately, ϵ is determined as the
maximum uncertainty metric among all generated lines. These
generalization performance parameters capture the notion that
employing the DNN is deemed safe when a test point either
is a training data point (trivial case) or lies within a line
(reflecting some degree of generalization). However, it is worth
noting that the baseline performance parameters may err on
the side of caution.

Third, to further generalize the performance parameters
utilizing the δ parameter, it is necessary to employ a proce-
dure that systematically assesses a set of inputs to identify
a subset conducive to generalization. The concept entails
leveraging the Operational Design Domain (ODD) [11]–[13]
as the overarching set, within which a subset conducive to
generalization can be identified. The ODD within the DNN
framework draws inspiration from autonomous vehicles and
robotics. It delineates the specific conditions within which
a DNN is engineered and intended to function safely and
efficiently. The ODD factors in various considerations, en-
compassing environmental conditions, temporal aspects, safety
constraints, and characteristics of input data. In our pursuit
of enhancing the generalization of the performance parameter
δ, we will particularly concentrate on the input data charac-
teristics, which entail the distribution and range of features.
One methodological approach involves constructing a convex
hull within the feature space, represented by the inequality
A.x+ b ≤ 0. The convex hull constitutes the smallest convex
set that encompasses all the given points utilized for training.
This attribute is pivotal in defining a concise and fundamental
set wherein δ is augmented while maintaining ϵ. In practical
terms, we will verify whether the points within the convex
hull exhibit a performance parameter ϵ equivalent to the points
along a line, while possessing a larger δ.

We illustrate this methodology with the analysis of OOD
for the Runway Overrun Awareness and Alerting System
(ROAAS) specified in ED-250. Here, our primary objective is
to obtain the generalization performance parameters. ROAAS
is a flight deck alerting system providing crews with situational
awareness about the possibility of exceeding the end of the
runway during aircraft approach and landing. The ROAAS

(a) δ for ROAAS

(b) ϵ for ROAAS

Fig. 4: (δ, ϵ) for ROAAS

DNN model comprises ten inputs and three outputs. The
objective is to determine the performance parameters (δ, ϵ) to
aid in discerning whether a point is OOD. The computation
of these performance parameters unfolds in two steps: the
first step involves utilizing a line of the dataset, while the
second step entails employing the convex hull of datasets.
This phase involves the computation of δ defined as the
maximum of all minimum distances. Fig 4a posits the value of
δ for ROAAS training data. To exemplify this result, consider
the data points: p1 = [8000, 1, 40, 52095, 30, 0, 0, 0, 161, 0]
and p2 = [8000, 1, 40, 52095, 30, 0, 0, 0, 167, 0], where the
distance between them, denoted by dist(p1, p2), equals 0.037.
Subsequently, the calculation of the maximum uncertainty
difference metric is executed utilizing the SCOD tool. Fig 4b
posits the value of ϵ. To illustrate this result, contemplate the
line connecting the data points dp1 and dp2. Each point lying
within this line exhibits a performance parameter ϵ less than
200, as indicated in Fig 5. The baseline values δ = 0.05

Fig. 5: ϵ for points in a line

and ϵ = 200 reflect the concept that the model is deemed
reliable when the test point either aligns with a training data
point (trivial case) or falls within the line (indicating some
degree of generalization). A point is classified as OOD if
either its ϵ exceeds 200 or its δ surpasses 0.05. However, this
approach may err on the side of caution. To determine the
extent to which we can increase δ, we need a benchmark, and
the convex hull serves as our reference point. Our goal is to
increase δ based on the convex hull while ensuring ϵ ≤ 200.
The convex hull is defined by the equation A.x+b ≤ 0, where
A and b were computed using the ROAAS training dataset.
Through random testing, we have formulated a value for δ as
shown in Fig 6. Based on this analysis, it is determined that
for the ROAAS DNN, a point is considered OOD if either its
ϵ exceeds 200 or its δ surpasses 0.3.

Through the utilization of the SCOD tool for this analysis,
the observations suggest that it exhibits a notable degree of



Fig. 6: Convex hull

adaptability and customization, thereby making it well-suited
for a wide spectrum of DNN models. More specifically, it was
utilized to compute the Unc metric for three Collins models.
Its configurability facilitated the uploading of datasets and
DNN models, requiring only minor adjustments such as file
format conversions. For instance, public Python libraries were
leveraged to convert ONNX models to PyTorch. Although
employing ROC analysis to calculate the OOD threshold
proved impractical for Collins DNN models, an alternative
methodology was devised and implemented as outlined in this
paper. Thanks to SCOD’s flexibility, integrating the SCOD
tool with the Python implementation of this methodology
was straightforward, enabling the calculation of generalization
performance parameters.

V. MANIFOLD-BASED TEST GENERATION

Neural networks created and deployed in mission critical
domains must demonstrate high confidence in their predic-
tions. However, without appropriate training data, it is impossi-
ble to evaluate the accuracy of the model. In addition, without
considering edge cases and other special scenarios which may
or may not be infrequent, the neural networks cannot be
trained to handle such cases and make accurate predictions
when encountering such scenarios. In high-dimensional input
data applications such as image classification, required patterns
cannot be easily captured by the available training dataset,
which could result in these situations quite easily.

Manifold-based test generation [14]–[16] is a technique that
provides a means for capturing the necessary patterns such that
the NN can learn these patterns in a low-dimensional manifold
space. This is achieved by projecting the data points from
a high-dimensional input space to a low-dimensional space.
The approach uses a Conditional Variational Autoencoder
(CVAE) to capture the manifold space, which is then utilized
to generate novel fault-revealing test cases. Note that a unique
feature of this approach is that these test cases are generated
along with the labels. The resulting fault-revealing test cases
can be utilized in two ways: 1) to create a test suite that
can evaluate the performance of the neural network, 2) to
include the fault revealing test cases as part of the training
set such that the neural network performance and accuracy
can be improved.

Fig 7 shows the workflow of the manifold based test
generation tool. First, the NN is trained using the dataset as
shown in Fig 7 (step 1). The trained NN can be evaluated
for its performance using a separate testing dataset, which is
not shown in this workflow. Next, a trained VAE is generated
by using the same training dataset used for the NN (step 2).
Once the trained VAE model is developed, it can then be used
to train the Latent Space Classifier (LSC), as shown in Fig 7

Fig. 7: Manifold-based test generation workflow.

(step 4). Note that if needed, the the quality of the trained VAE
can be evaluated by measuring its Frechet Inception Distance
(FID) score (step 3). The closer the FID score to zero, the
better the trained VAE is assumed to be. Note that this step
can also be performed before training the LSC. The LSC is
responsible for learning the manifold space. Further, in order
to generate fault-revealing test cases from the manifold space,
the trained NN and the LSC are passed as an input to the
test generation algorithm (step 5). The algorithm then selects
the test cases from the manifold space, which includes the
label and evaluates it using the NN. If the NN mis-predicts
the output, the test case is regarded as a fault-revealing test.
The algorithm is able to generate the desired number of faulty
test cases, which can be utilized as part of the training data set
to re-train the original NN (step 6). Note that in the figure this
step is represented using a dashed line because this feature is
currently not provided by the tool.

A. Tool evaluation:

We evaluated the tool on the MNIST dataset and followed
the workflow as describe in Fig 7. Fault revealing test cases
can be generated by following various algorithms, but the
two utilized in our evaluation are the random test generation
and the search-based test generation algorithms. We show the
results for both of them below.

• Random Test Case Generation: Using this test generation
algorithm, the desired number of test cases are generated.
However, not all test cases may be fault-revealing. Fig 8
represents the generation of 50 random test cases. Out
of the 50 test cases, only five of these were identified as
fault-revealing. The test cases are shown with different
color boxes. From Fig 8, it is impossible to understand
the reasoning behind the selection of the fault-revealing
test cases, meaning one cannot tell whether the tool
identified the test cases correctly or not. Hence, a visual
representation can provide better insight. Therefore, we
have generated visual representations for each of the test
cases in Fig 8 as shown in Fig 9.

• Search-Based Test Case Generation: Using this test gen-
eration algorithm, all the generated test cases are fault-
revealing. Fig 10 represents generation of 15 search-based



Fig. 8: Randomly generated test cases.

Fig. 9: Visual representation of randomly generated test cases.

test cases. As shown in the figure, all of the 15 test cases
were fault-revealing and they are shown in different color
boxes for clarity. Fig 11 shows the visual representation
of each of these fault-revealing test cases.

Fig. 10: Search-based generated test cases.

B. Tool Limitations:

Based on our evaluation, the tool provides a unique mech-
anism for generating fault-revealing test cases for high-
dimensional datasets. However, the tool still has the following
limitations:

• The generated fault-revealing test cases require manual
inspection to be considered as part of the training test
suite to improve prediction accuracy. As seen from Fig-
ures 9 and 11), it is obvious that some of the predictions
and their visual representations do not match and hence
require a manual step to analyze the generated test
cases. This could become a significant bottleneck when
generating a large number of fault-revealing test cases.
An automated approach to address this issue would make
the tool significantly more useful.

• The tool was developed as a prototype to demonstrate
the proof of concept and still requires several updates to
completely become usable in this space. For instance, the

Fig. 11: Visual representation of search-based generated test
cases.

algorithm for search-based test generation was modified
slightly to capture only fault-revealing test cases.

• The tool is currently capable of working with MNIST,
CIFAR, FASHION, and EMNIST datasets. To use other
datasets as inputs, minor tool modifications are required.

• The approach works on high-dimensional datasets; how-
ever, for low-dimensional classification problems the tool
is unable to handle the datasets appropriately. We believe
the approach is sound and should be easily applicable to
low-dimensional classification problems. This could eas-
ily enable even the neural networks in other classification
problem domains to acquire better accuracy. However,
the tool is currently unable to handle low-dimensional
training datasets and therefore requires modification. The
extent of needed modifications was not evaluated as part
of our process.

VI. PROPERTY INFERENCE

The Prophecy tool developed by NASA [17], [18] derives
invariant properties of feed-forward neural networks, show-
casing the networks’ capacity to learn decision logic from
neuron activation patterns. The method involves identifying
decision patterns as network invariants connected to specific
outputs, achieved through extracting input invariants and layer
invariants. Formal verification utilizing decision procedures
like Reluplex [19], a predecessor of Marabou, ensures that
given invariants lead to desired outcomes, enhancing explain-
ability, robustness, and aiding in network simplification and
distillation. However, scalability issues, particularly with for-
mal verification, pose significant challenges, such as timeouts
when dealing with large-scale networks.

In evaluating the Prophecy formal verification approach,
we applied it to the Flight Trajectory Optimization (FTO)
application. FTO can be used to help aircraft navigate around
hazardous weather conditions. Challenges like scalability, lack
of modularity, and outdated documentation hindered progress.



An updated version of Prophecy [20] integrated Marabou for
the formal verification step, and a parallel execution algorithm
to enhance scalability, addressing some of the challenges
encountered. Initial tests on ACAS-Xu [21] showed promising
results, with Marabou successfully verifying some properties
in a significantly reduced timeframe compared to applying
Reluplex directly.

For example, Reluplex may need 12 hours while trying
to verify the Clear of Conflict (CoC) property over certain
domain invariants of large size. However, the tool successfully
verified the same ACAS-Xu CoC properties in approximately
3.5 hours using Marabou over similar invariants.

The most resource-intensive step in the formal verification
process involved refining initial convex hull guesses, aiming
to eliminate adversarial examples and ensure robust invariants.

We found that optimizing Prophecy’s performance is crucial
before deploying the algorithm for applications where the
complexity of the formal verification step increases substan-
tially compared to ACAS-Xu.

Techniques like using α-β-CROWN could enhance the
refinement step, albeit with limitations. Additionally, more
efforts are needed to resolve issues with corrupted invariants.

Future directions involve exploring transformer architecture,
such as GPT embedding models [22] and classifiers, to im-
prove the quality of the initial convex hull approximations and
reduce the need for redundant formal checks. If successful, this
approach could offer scalable solutions for larger datasets and
dimensions, enhancing the generalizability of formal verifica-
tion methods in NN analysis.

VII. CONCLUSION

Collins researchers and product engineers are exploring
many applications of machine learning. In some cases, the
goal is to implement new aircraft functionality using the
unique capabilities of ML. In other cases, the goal is to use
a neural network to create a more time- or memory-efficient
implementation of an existing function.

A variety of assurance technologies have been developed
and investigated on the DARPA Assured Autonomy program
and related efforts. These include new approaches for testing
and completeness metrics, formal analysis of neural networks,
input domain shift assessment, and run-time monitoring and
enforcement architectures. For each selected ML application,
we determined one or more AA technologies that can be used
to satisfy the relevant certification objectives. We evaluated the
effectiveness of the technologies and the evidence produced.

In general, we believe all the approaches covered in this
paper can play a role in assuring low-complexity, low-DAL
products. The manifold-based test generation and property
inference tools have not yet reached the necessary maturity
levels to be used on programs of record, but their underlying
methodologies show promise. We plan to share these findings
with certification authorities to obtain feedback.

REFERENCES

[1] D. Kirov and S. F. Rollini, “Benchmark: Remaining useful life predictor
for aircraft equipment.” Berlin, Heidelberg: Springer-Verlag, 2023, p.
299–304. [Online]. Available: https://doi.org/10.1007/978-3-031-46002-
9 18

[2] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel,
“Efficient neural network robustness certification with general
activation functions,” Advances in Neural Information Processing
Systems, vol. 31, pp. 4939–4948, 2018. [Online]. Available:
https://arxiv.org/pdf/1811.00866.pdf

[3] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim,
P. Shah, S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer,
and C. W. Barrett, “The marabou framework for verification and
analysis of deep neural networks,” in Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-
18, 2019, Proceedings, Part I, ser. Lecture Notes in Computer Science,
I. Dillig and S. Tasiran, Eds., vol. 11561. Springer, 2019, pp. 443–452.
[Online]. Available: https://doi.org/10.1007/978-3-030-25540-4 26

[4] H. Wu, O. Isac, A. Zeljić, T. Tagomori, M. Daggitt, W. Kokke, I. Refaeli,
G. Amir, K. Julian, S. Bassan, P. Huang, O. Lahav, M. Wu, M. Zhang,
E. Komendantskaya, G. Katz, and C. Barrett, “Marabou 2.0: A versatile
formal analyzer of neural networks,” 2024.

[5] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Misener,
“Efficient verification of relu-based neural networks via dependency
analysis,” in AAAI Conference on Artificial Intelligence, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:213299187

[6] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” arXiv preprint
arXiv:1610.02136, 2016.

[7] H. Ritter, A. Botev, and D. Barber, “A scalable laplace approximation for
neural networks,” in 6th international conference on learning represen-
tations, ICLR 2018-conference track proceedings, vol. 6. International
Conference on Representation Learning, 2018.

[8] V. Abdelzad, K. Czarnecki, R. Salay, T. Denounden, S. Vernekar, and
B. Phan, “Detecting out-of-distribution inputs in deep neural networks
using an early-layer output,” arXiv preprint arXiv:1910.10307, 2019.

[9] D. Madras, J. Atwood, and A. D’Amour, “Detecting underspecification
with local ensembles,” arXiv preprint arXiv:1910.09573, 2019.

[10] A. Sharma, N. Azizan, and M. Pavone, “Sketching curvature for efficient
out-of-distribution detection for deep neural networks,” in Uncertainty
in artificial intelligence. PMLR, 2021, pp. 1958–1967.

[11] Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles, SAE on Road Automated Driving
Committee SAE J3016.

[12] H. Torfah, C. Xie, S. Junges, M. Vazquez-Chanlatte, and S. A. Se-
shia, “Learning monitorable operational design domains for assured
autonomy,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2022, pp. 3–22.

[13] P. Irvine, X. Zhang, S. Khastgir, E. Schwalb, and P. Jennings, “A
two-level abstraction odd definition language: Part i,” in 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC).
IEEE, 2021, pp. 2614–2621.

[14] T. Byun and S. Rayadurgam, “Manifold-based test generation for
image classifiers,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, 2020, pp. 221–221.

[15] ——, “Manifold for machine learning assurance,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results, 2020, pp. 97–100.

[16] T. Byun, S. Rayadurgam, and M. P. Heimdahl, “Black-box testing of
deep neural networks,” in 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2021, pp. 309–320.

[17] D. Gopinath, A. Taly, H. Converse, and C. S. Păsăreanu, “Finding invari-
ants in deep neural networks,” ArXiv, vol. abs/1904.13215, 2019. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:140218354

[18] D. Gopinath, H. Converse, C. Pasareanu, and A. Taly, “Property infer-
ence for deep neural networks,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). Los Alamitos,
CA, USA: IEEE Computer Society, nov 2019, pp. 797–809. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/ASE.2019.00079

[19] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: a calculus for reasoning about deep neural networks,” Form.
Methods Syst. Des., vol. 60, no. 1, p. 87–116, jul 2021. [Online].
Available: https://doi.org/10.1007/s10703-021-00363-7



[20] Safe Deep Learning for Space Systems Group, NASA
Ames Research Center, “ACASX Prophecy parallel
experiments.” [Online]. Available: https://github.com/safednn-
nasa/Prophecy/blob/master/ACASX Prophecy parallel experiments.ipynb

[21] W. Feng, C.-C. Huang, A. Turrini, and Y. Li, “Modelling
and implementation of unmanned aircraft collision avoidance,” in
Dependable Software Engineering. Theories, Tools, and Applications:

6th International Symposium, SETTA 2020, Guangzhou, China,
November 24–27, 2020, Proceedings. Berlin, Heidelberg: Springer-
Verlag, 2020, p. 52–69. [Online]. Available: https://doi.org/10.1007/978-
3-030-62822-2 4

[22] OpenAI, “GPT-4 Technical Report,” 2023. [Online]. Available:
https://arxiv.org/pdf/2303.08774.pdf


