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Abstract—Security is paramount in all mission-critical do-
mains, including the aerospace industry. Cyber-attacks are in-
creasing both in number and sophistication. Zero-trust is an
emerging initiative that has proven very effective for enterprise
systems in the Information Technology domain; however, re-
search is lacking on applicable zero-trust mechanisms and their
assurance for cyber-physical systems (CPS). We have already
identified various zero-trust mechanisms in our previous work. In
this paper, we present our zero-trust architecture design patterns
and provide a methodology for the assurance of these mecha-
nisms. Towards this objective, we have identified an initial set of
assurance patterns covering individual zero-trust components in a
system design. Our design and assurance patterns are made avail-
able to system engineers in pattern libraries. Engineers can model
system architectures and utilize one or more of these patterns to
provide design assurance based on individual zero-trust security
requirements to improve the overall system cyber-security. To
demonstrate our approach, we apply our assurance patterns to
an unmanned aerial vehicle surveillance application. We discuss
how our framework leverages the use of these patterns to develop
zero-trust-enabled systems with different security requirements.
Furthermore, our assurance patterns enable engineers to identify
any design flaws and correct them during the initial system design
phase, thus saving development time, effort, and cost. As a result,
the overall approach can be utilized to design system models with
specific zero-trust security requirements to improve the security
posture of a CPS.

Keywords— Zero-trust, Cyber-physical systems, Design pat-
terns, Assurance patterns, Security, Cyber-attacks, Assurance
arguments, Assurance fragments.

I. INTRODUCTION

Security is becoming paramount in almost every domain.
It plays an even more important role in mission-critical sys-
tems such as aviation systems. Several incidents have been
reported recently that demonstrate the ever increasing number
of cyber attacks on high-assurance systems [1], [2], [3], [4].
These attacks are not only increasing in number but also in
sophistication. For example, a Boeing subsidiary that provides
flight planning and navigation tools reported a cyber-attack
mentioning flight disruptions [5]. A ransomware-based attack
affected the flight operations of the Spicejet airline, resulting
in severe flight delays [6]. A similar ransomware attack was
reported by a Canadian military contractor where a third-
party gained access to their computer network that disrupted
their operations [7]. Such scenarios can result in catastrophic
consequences and require the need for incorporating security
as part of the design considerations for such systems.

Zero-trust is an emerging initiative that has proven very
effective in improving the security posture of systems in

various domains. We have demonstrated an approach to sup-
port this claim in [8]. There are two aspects in addressing
this challenge. First, we need the tools and technologies to
ensure that engineers have the ability to design systems with
zero-trust security considerations in mind. Second, once these
systems are implemented, engineers should be confident that
the realized system is in fact secure. As a result, providing
assurance of the system design is a very critical aspect. More-
over, assurance for zero-trust enabled systems is a challenge
in itself as it is currently unexplored. Such assurance can also
help streamline the certification effort, thereby reducing the
time and cost involved. In order to achieve this, assurance
patterns can be leveraged to automatically construct assurance
arguments based on a system’s security specification.

Several researchers have demonstrated the use of assurance
patterns for both safety and security. Work published in [9]
describes a new approach to construct safety arguments where
one argument represents the confidence of another. Authors
in [10] focus on categorizing safety patterns and reusing them
appropriately as manual construction of safety arguments can
be very time consuming. Researchers in [11] discuss a modular
approach in the construction of argument patterns and argue
their benefits when dealing with large safety cases. In the past,
system assurance has proved their importance in traditional
CPS and as a result work is being done to identify their
application for assurance of systems equipped with newer
technologies such as the use of learning-enabled components.
Research published in [12] demonstrates a methodology for
the assurance of machine learning in autonomous systems
(AMLAS). The work describes the systematic integration
of safety assurance as part of machine learning component
development and generating required evidence to support the
argument.

Further, work discussed in [13] focuses on an approach that
documents an assurance case specifically for system security.
Other research published in [14] discuss argument patterns
and their use for both safety and security cases. The authors
have proposed an approach based on automated instantiation
of these patterns using a model-based instantiation process.
A recent work [15] discusses the role of design patterns in
providing solutions to common recurring design problems.
In addition, the authors discuss the importance of assurance
for the design patterns. However, none of the works discuss
assurance patterns targeted specifically to CPS zero-trust ar-
chitectures.



Considering the above technological gaps this paper pro-
vides the following contributions:

• We present an initial set of design patterns specifically
developed to support individual zero-trust components in
a system design.

• We have designed corresponding assurance patterns for
the individual zero-trust design patterns, enabling the
linking of a system model and its assurance together. The
mechanism provides guidance to engineers if the design
violates any of the zero-trust requirements.

• The assurance patterns are implemented as individual
fragments that are made available in a pattern library
to system engineers. Engineers can model systems in a
modeling language such as AADL and utilize one or more
of these patterns to provide design assurance based on
individual zero-trust requirements to improve the overall
system security.

• To demonstrate our approach, we apply our assurance pat-
terns to an unmanned aerial vehicle (UAV) surveillance
application. We discuss how our framework leverages the
use of these assurance patterns from a pattern library to
develop zero-trust enabled systems with different security
requirements. Furthermore, our assurance patterns enable
engineers to identify design flaws and correct them during
the initial system design phase, thus saving development
time, effort, and cost.

The rest of the paper is organized as follows. First, in
Section II, we provide a background on the concepts that
are discussed in the paper, including the zero trust principle,
system architecture modeling in AADL, assurance patterns and
arguments, and their representations. Next, in Section III, we
discuss zero-trust design and associated assurance patterns. We
provide an example of our approach using an experimental
UAV model in Section IV. Finally, in Section V, we provide
conclusions and discuss future work.

II. BACKGROUND

Before we dive into our zero-trust approach, it is important
to describe some of the terms and concepts we will be using
in this paper. In this section, we first discuss the concept of
zero-trust and its tenets. Next, we discuss assurance arguments
and patterns, along with their notations. We then discuss
the architecture modeling language used for system design.
Finally, we provide an overview of our assurance tool for
evaluating system models against assurance goals.

A. Zero Trust:

Zero trust is an emerging initiative which is collaboratively
explored by joint efforts between the National Security Agency
(NSA), DoD CIO, US Cyber Command (USCYBERCOM),
and DISA. According to [16], “Zero trust is a cybersecurity
paradigm focused on resource protection and the premise
that trust is never granted implicitly but must be continually
evaluated”. Zero trust focuses on moving from a traditional
perimeter based infrastructure to a perimeter-less design. To
achieve this, zero trust relies on basic core tenets, namely:

• Presume a breach. The presence of an adversary is
assumed within the operational environment at all times.

• Never trust, always verify. Any access to a resource
is only granted after explicitly authenticating the de-
vices/requests and the access decision is valid only for
a specific request.

• Assume a hostile environment. Every entity, such as
devices and networks, that constitutes the operational
environment is considered untrusted.

• Apply unified analytics. Utilize state-of-the-art ana-
lytical capabilities such as machine learning and deep
learning algorithms to support and improve access control
policies.

• Scrutinize explicitly. Access to resources is always con-
ditional and the policies associated with access decisions
are dynamic in nature. These policies depend on the
confidence level and actions of the requester. Whenever
user action results in a change in the confidence level,
the access policies should be changed dynamically.

These tenets are described in detail in [16] and [17].
Figure 1 demonstrates the concept of a simple zero trust

architecture. The subjects (for instance, devices) are on the
left hand side and a resource (for instance, a database) is on
the right. A policy decision point/policy enforcement point
(PDP/PEP) sits between the two in the middle. The zone to the
left of PDP/PEP is implicitly considered untrusted while the
zone to its right is a trusted zone. Whenever a subject requests
access to a resource, the PDP/PEP evaluates the request and
grants access to the resource only if the trust between the
PDP/PEP and the subject is validated. The PEP/PDP has
the ability to use information from various systems such as
Security Information and Event Management (SIEM), Data
Rights Management (DRM), etc., to further employ more
rigorous policy checks that can then be utilized for access
decisions.

Policy Decision Point/Policy 
Enforcement Point

Resource

Untrusted zone Trusted zone

Devices

Subject
PDP/PEP

Fig. 1. Zero trust architecture concept.

B. Assurance Arguments and Assurance Patterns:

Assurance arguments are defined as a compelling argument
satisfying a property which is supported using a body of
evidence. Assurance patterns on the other hand are defined
as reusable generic arguments (preferably defined through
consensus by subject matter experts) that can be instantiated
with a system instance to produce a concrete assurance argu-
ment. Both assurance patterns and assurance arguments can be
represented using various notations such as Claims, Arguments



and Evidence (CAE) [18], Justification Diagrams [19], and
Goal Structuring Notation (GSN) [20]. In this paper, we utilize
GSN to represent our assurance patterns. We demonstrate the
use of our assurance patterns for generating concrete assurance
arguments in Section IV. Here, we describe GSN in a bit
more detail for the sake of clarity. GSN is a means for
representing an argument (typically a dependability argument)
in a structured manner. It uses several basic elements to
construct the assurance argument. These elements are shown
in Figure 2. The key elements we use are defined as follows:

• Goal: A goal represents a claim that forms the assurance
argument. It is symbolized by a rectangle.

• Solution: A solution represents the evidence that supports
a goal. It is symbolized by a circle.

• Strategy: A strategy represents the reasoning steps as to
how a goal is supported by sub-goals or solutions. It is
symbolized by a parallelogram.

• Context: Describes the context in which a goal or strat-
egy should be interpreted. It is symbolized by a rectangle
with rounded corners.

• Assumption: Describes the assumptions associated with
a goal or strategy and is symbolized by an oval with the
letter ‘A’.

• Justification: This element describes the justification for
using a specific goal or strategy. It is symbolized by an
oval with the letter ‘J’.

• Undeveloped: An undeveloped element when connected
to a goal or strategy indicates that the remainder of
the argument is not yet specified. It is symbolized by
a diamond.

• Uninstantiated: An uninstantiated element when con-
nected to a GSN element indicates the attached element
has not yet been instantiated with a system context. It is
symbolized by a triangle.

Goal Strategy

Solution

Context Justification

Assumption

J

A

Un-
developed

Un-
instantiated

Fig. 2. GSN elements.

The above elements are connected together to form assur-
ance patterns/arguments for covering a variety of dependability
properties. GSN is described in further detail in [20].

C. Architecture Analysis and Design Language (AADL):

AADL is an architecture language used for modeling real-
time distributed embedded systems [21]. It enables the user to
capture important and realistic design concepts and hence it is

very well suited to design models for the aerospace industry.
Another aspect of the AADL language is that it provides the
ability to hierarchically capture both software and hardware
related details. Some of the hardware components represented
in the AADL language include buses, devices, processors,
and memory. Software components include threads, processes,
and data. AADL also provides users the capability to specify
connections, interfaces, properties, and data flows. In addition,
AADL suits perfectly for designing systems whose models are
created incrementally and refined over time, thereby providing
a high degree of design flexibility. One of the more useful
features of AADL compared with other modeling languages is
that it includes an annex mechanism that enables the language
to be extended with domain-specific features. AADL provides
a reference framework called the Open Source AADL Tool
Environment (OSATE) [22].

AADL provides the following key modeling constructs:
• AADL components: Figure 3 represents the AADL

components that are utilized in this paper as part of
our design patterns and also the modeling in our UAV
use case. Figure 3 illustrates the modeling language
component hierarchy. A system in AADL is represented
using the rounded rectangle. A system represents the
outermost abstraction of a model. A system can contain
one or more components, including other systems. A
process component, represented using the parallelogram,
is used as an address space in the model whereas a
thread, shown by the dashed parallelogram, denotes a
schedulable execution flow. A process must contain at
least one thread. A process (or thread) can be bound to
a processor, which is represented using a 3D parallelo-
gram. To represent data storage or memory, a cylinder is
utilized. A device represents a black box system. Finally,
connections between components are modeled using solid
arrows that indicate directionality of data flow. There are
other elements that are part of the AADL language but
they are not referenced in this paper.

System Process

Thread

Processor

Device
Memory Bus

Virtual
Processor

Fig. 3. AADL components types.

• AADL properties: We have utilized AADL properties
as part of our modeling process. A property in AADL
is a typed attribute that can be associated with one or
more components. It follows a specific syntax and is
assigned as a property association. Some of the allowed



types of properties in AADL are aadlboolean, aadlinteger,
aadlreal, aadlstring, enumeration, classifier, reference, and
list. A property can be inherited by a subcomponent of a
parent component.

• AADL Component Connections: A component con-
nection in an AADL model defines the interactions,
control flow and data flow between various components
in the model. Each component contains details of their
internal connections. A feature represents the interface
of a component. It has a feature name, a category,
and a direction. A feature category specifies the type
of component interaction with other model components.
These categories can be defined using different types of
ports such as event port, data port, and event data port.
The port direction can be defined as part of the feature
direction definition (input, output or both).

We used AADL to model our design patterns and example
models. These elements and other details about the AADL
language are described in detail in [21].

D. Resolute:

Resolute [23] is an assurance case language and tool created
as an annex in AADL. It is well suited for defining assurance
patterns since it provides the ability to link both a system archi-
tecture and its assurance together. Users can create claims and
rules to satisfy these claims. Each of these claims and rules can
be parameterized by elements from the model. Furthermore,
the rules and claims are parameterized by specific types as
defined in the model. When Resolute uses a specific system
model to generate a concrete assurance case from an assurance
pattern, this process is referred to as instantiation. Resolute
provides various built-in functions to query the model for
determining whether the architecture supports specific claims.
It also allows the ability to query external artifacts for any
evidence that is needed to support these claims by calling
user-defined analysis plugins and function libraries. Resolute
follows the GSN standard to allow users to construct assurance
patterns compatible with the GSN format.

Figure 4 represents an example assurance pattern fragment
demonstrating the mapping between Resolute and GSN ele-
ments. On the left-hand side is the representation of an assur-
ance pattern in Resolute following the GSN notation and on
the right-hand side are the actual GSN element representations.
Each of the GSN elements utilized in our assurance pattern
is color coded with respect to its corresponding representation
in Resolute.

Figure 5 shows the system assurance process using our
Resolute framework. The input to this framework is a system
model developed in AADL. Resolute provides an editor to
define assurance patterns following the GSN standard as de-
scribed above. The patterns can then be stored in an assurance
pattern library. Pre-existing patterns can be directly utilized
within the Resolute environment for use in providing assurance
for various systems. Resolute is capable of querying the AADL
system model, which is needed during the assurance evalua-
tion phase. Whenever the user wants to check the assurance

goal G1(d : data) <=

  ** “All identified hazards have been eliminated or sufficiently mitigated” **

  S1(d)

strategy S1(d : data) <=

  ** “Argument over each identified hazard” **

  context ctx1 : d.hazard_list;

  assumption a1 : “All hazards identified”;

  G3(get_element(d.hazard_list, 1)) and 

  G4(get_element(d.hazard_list, 2)

goal G3(H1 : data) <=

  ** “Hazard H1 has been mitigated” **

  undeveloped

goal G4(H2 : data) <=

  ** “Probability of hazard H2 occurring < 1 x 10-9” **

  justification j1 : “In compliance with industry safety guidelines”;

  solution sln1 : H2.hazard_analysis

{Goal Identifier}
<Goal Statement>

{Strategy Identifier}
<Strategy Statement>

{Solution 
Identifier}
<Solution 

Statement>

{Context Identifier}
<Context Statement>

{Justification 
Identifier}

<Justification 
Statement> J

{Assumption     
Identifier}

<Assumption 
Statement>

A

Fig. 4. Example assurance pattern representation in Resolute following the
GSN standard.

corresponding to a specific system model, the Resolute engine
triggers the Resolute evaluator to perform the task. The input
to the Resolute evaluator is a specific assurance pattern and the
system context (i.e., the AADL system or subsystem model).
This process is referred to as assurance pattern instantiation
in our paper.

Resolute then evaluates the entire pattern using the rules
specified within each goal that describe the evidence needed to
satisfy them. As a result, an assurance case is generated as an
output of this process. This assurance case can be a passing or
a failing argument depending upon the analysis performed by
Resolute. If all the required evidence is successfully collected,
then it results in a passing assurance case, otherwise Resolute
will generate a failing assurance case and highlight the goals
that are missing evidence for substantiation. Please note that
we have demonstrated our approach of generating assurance
cases by leveraging our Resolute framework, but the patterns
defined in the following section are not framework dependent
but are rather generic patterns.

III. ZERO-TRUST DESIGN AND ASSURANCE PATTERNS

In this section, next, we present each of our zero-trust design
patterns along with their corresponding assurance pattern.

Zero trust design patterns provide engineers with templates
to model systems with built-in zero-trust security mechanisms
for improving overall system security. These design patterns
can be utilized in system architecture models based on various
factors such as the number of critical resources that need to
be protected, level of security that the system requires, main-
tenance cost of the system, and the overall budget available
to protect the system. In addition, once the architecture model
includes these design patterns, it is necessary to ensure that
the system is in fact zero-trust enabled per the requirements.
This can be achieved by leveraging a corresponding assurance
pattern for each zero-trust design pattern. Each of our design
patterns satisfy one or more of the zero-trust tenets listed in
Section II (however, this work does not address the unified
analytics tenet).
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Fig. 5. Assurance using Resolute.

A. Secure Data Load

Secure data load consists of two components, encryption
and decryption. It ensures that the integrity and authenticity
of system data is maintained while in transit and at rest.

1) Encryption: Encryption [24], [25] ensures data integrity
and authenticity by encrypting data at the source. The en-
cryption mechanism is shown in Figure 6. It consists of an
Encryption Manager and an Encryption Policy component.
The rules for encrypting the data are defined in the Encryp-
tion Policy component as the security policy. Whenever input
data is received at its port, the Encryption Policy causes the
Encryption Manager to encrypt the data by utilizing the Cryp-
tographic Algorithm and Cryptographic Keys. It then sends
the encrypted data back to the Encryption Policy component,
which passes it as an output.

Fig. 6. Architecture for encryption.

Next, we provide the design assurance of the encryption
mechanism to ensure that the pattern is applied correctly.
Figure 7 shows the assurance pattern fragment for the Encryp-
tion mechanism. The top level claim ‘encryptionCompliance’
argues that encryption is supported for the given system. It is
associated with a strategy ‘encryptionComplianceAddressed’
that is supported by three sub-goals. Each of the sub-goals is
discussed further in detail:

• existsEncryption: This claims the Encryption mecha-
nism exists in the system model. Specifically, this goal
ensures that each communication bus enforces an en-
cryption protocol, making sure that all messages pass-
ing between components are encrypted. Intuitively, the

overall claim ensures if any physical bus is not bound
to an encryption bus then it clearly violates our objective
of ensuring data/message encryption within the zero-trust
enabled system. In our assurance pattern, this goal is sup-
ported by the solution ‘chkEncryption’, which describes
the required encryption protocol binding.

• encryptionImplementationCorrectness: This goal en-
sures that the implementation of the encryption mecha-
nism is correct. In our approach, this type of goal can be
supported using test results for verifing the implementa-
tion. In our pattern, this claim is supported by the solution
node ‘chkEncImpCorrectness’.

• dataPortBounded: This claim ensures that message
ports of all the drivers within the zero-trust system model
are bounded to an encryption bus. Although we have
already ensured that individual physical buses are bound
to the encryption buses, this claim further ensures that
each data port that requires encryption is properly bound
to the correct encryption bus. In our pattern, this claim is
supported by the solution node ‘chkPortBounded’, which
specifies the necessary bindings for the bus architecture.

Goal: encryptionRequirement

Encryption requirement is satisfied for the given {System}

Strategy: encryptionRequirementAddressed

Argue over system architecture model

Goal: existsEncryption

Encryption mechanism exists for the given 

{System}

Goal: encryptionImplementationCorrectness

Implementation of the encryption mechanism is 

correct

Goal: dataPortBounded

Data/message ports are appropriately 

bound in the model 

Sln: 

chkEncryption

Mechanism 

verification

Sln: 

chkPortBounde

d

Implementation 

verification

Sln: 

chkEncImpCor

rectness

Ports bounded 

verification

Ctx: System
System under 
development

Fig. 7. Assurance pattern for encryption.

2) Decryption: The decryption mechanism [25], [26] is
represented in Figure 8. Decryption securely decrypts the data
from its original source at its destination. The architecture
of decryption is very similar to the encryption mechanism.
The only difference is that instead of Encryption Manager



and Encryption Policy components it consists of a Decryp-
tion Manager and a Decryption Policy component. When-
ever encrypted data appears at the input port of the de-
cryption mechanism, the data is decrypted using Crypto-
graphic Algorithm and Cryptographic Keys present within the
Decryption Manager. The decrypted data is then passed to its
output port via the Decryption Policy component.

Fig. 8. Architecture of the decryption mechanism.

The design assurance for decryption is similar to encryption
and hence it is not discussed here.

B. Attestation

Figure 9 represents the architecture pattern for the at-
testation component. Attestation [27], [28] ensures software
authenticity and integrity. The pattern consists of two sub-
components, Measured Boot and Secure Boot, to perform
attestation. The Attestation Policy defines the rule for suc-
cessful attestation. The input to both Secure Boot and Mea-
sured Boot is a root of trust. Both these mechanisms utilize
the root of trust to generate individual data structures such as
quote and validation. The validation represents information
regarding software integrity whereas quote contains detailed
information about the software such as its version, configura-
tion details, etc. The validation and quote messages are further
utilized by the Attestation Policy component to provide the
attestation decision.

Fig. 9. Architecture of the attestation mechanism.

Next, we provide the design assurance of the attestation
mechanism to ensure that the desgin pattern is applied cor-
rectly. Figure 10 shows the assurance pattern fragment for the
Attestation mechanism. The top-level goal ‘attestationRequire-
ment’ ensures that the compliance for attestation is achieved
for the given system. We substantiate the claim using strategy
‘attestationRequirementAddressed’ in which we argue over the
system architecture model. This strategy is further supported

by three sub-goals. Each of these are discussed further in
detail:

• existsAttestation: This goal identifies the presence of the
Attestation mechanism in the system model. In addition,
the goal ensures that its connections are connected appro-
priately to other components in the system. Please note
that the component to which the attestation component
needs to be connected is passed as an input to this goal.
The goal is supported by the solution node ‘chkCompo-
nentExists’, which specifies the component instances the
model must contain for compliance.

• attestationImplementationCorrectness: This claim en-
sures that the implementation of the attestation mech-
anism is correct. It is supported by the solution node
‘chkAttestImpCorrectness’ in our assurance pattern. This
goal is supported by a solution that specifies the im-
plementation correctness evidence such as verification
results.

• attestationNotBypassed: By bypassing, we mean spe-
cific connection(s) of a component are not receiving
information from a source component without passing
through the required attestation components first. This
goal guarantees that specific ports of the attestation mech-
anism are not bypassed. If the attestation is bypassed it
could result in severe security vulnerabilities. Hence, it is
important to capture such design flaws that could violate
the requirement. The ports of interest can be specified
as input to this goal during pattern instantiation. In our
pattern, we focus on the ‘attestation info’ port to ensure
it is not bypassed. Attestation info’ carries critical infor-
mation that is utilized by components such as the policy
enforcement point (see below) to make a trust validation
decision for access to a resource. Therefore, this goal is
supported by the solution node ‘chkAttestationBypass’ in
our assurance pattern. The solution specifies evidence that
the required connections are not bypassed in the zero-trust
system design.

Goal: attestationRequirement

Attestation mechanism requirement is satisfied for the given {System}

Strategy: attestationRequirementAddressed

Argue over system architecture model

Goal: existsAttestation

Attestation mechanism exist for the given 

{System}

Goal: attestationImplementationCorrectness

Implementation of the attestation mechanism is 

correct

Goal: attestationNotBypassed

Attestation mechanism cannot be 

bypassed

Sln: 

chkComponent

Exists

Mechanism 

verification

Sln: 

chkAttestImpCo

rrectness

Implementation 

verification

Sln: 

chkAttestationB

ypass

Mechanism 

bypass 

verification

Ctx: System
System under 
development

Fig. 10. Assurance pattern for attestation.

C. Policy Enforcement Point
The policy enforcement point (PEP) [29] is represented in

Figure 11. The primary function of a PEP is to provide secure



access to resources after explicitly validating trust. A PEP con-
sists of a Policy Decision Point (PDP) and a PEP Manager.
Once an access request is made on the PEP’s input, the
PEP Manager forwards it to the PDP. The communication
interface between the PEP Manager and the PDP is pro-
vided by the Policy Administrator. Policy Engine evaluates
this request by validating trust using the rules specified within
the Policy Enforcement Point Policy. Additional information
available on the additional info port can also be utilized to
validate trust. This port can contain analytical information,
specific device-related information, and other platform infor-
mation. Upon successful validation of trust, the PEP provides
access to the requested resource; otherwise access is denied.

Fig. 11. Architecture of the policy enforcement point mechanism.

Next, we provide the design assurance for the policy en-
forcement point to ensure that the pattern created is applied
correctly. Figure 12 shows the assurance pattern fragment for
the Policy Enforcement Point mechanism. The top-level goal
‘pepRequirement’ ensures that the policy enforcement point
compliance is achieved for the given system. We substantiate
the claim with the strategy ‘pepRequirementAddressed’ in
which we argue over the system architecture model. The
strategy is supported by four sub-goals. Each of these sub-
goals are discussed further in detail:

• existsPep: This goal specifies that the Policy Enforcement
Point mechanism exists in the system model. The goal
is supported by the solution node ‘chkComponentExists’,
which verifies the existence of the given policy enforce-
ment point in the model.

• pepImplCorrectness: This goal ensures that the imple-
mentation of the PEP mechanism is correct. If the imple-
mentation of the PEP is incorrect then the entire zero-trust
system requirement can be violated as the correctness
of the decision made by the PEP cannot be verified. In
our pattern, the solution node ‘chkPepImpCorrectness’
ensures this by collecting the required evidence.

• pepInfoPortConnected: This goal guarantees: 1) the in-
formation port of the given PEP mechanism is connected,
and 2) it is connected to the correct component(s) in the
system model. If this port is not appropriately connected,
the PEP will not be able to make correct access decisions

due to a lack of necessary information. This again will
result in a system with security vulnerabilities, which
attackers can easily take advantage of. The component
to which the information port is connected can be passed
as an input to this pattern during instantiation. In most
cases this port is connected to the attestation mechanism
but it can also be connected to any other component that
can provide input to the PEP to perform trust validation
decisions. In our assurance pattern for the PEP, we further
validate this connection by ensuring its association with
the appropriate component in the model using solution
node ‘chkInfoPort’.

• pepInputNotBypassed: This goal ensures that the input
ports of the PEP are not bypassed. If the input ports
are bypassed then it violates the zero-trust principles
mentioned above in Section II, meaning the information
from the subject to resources can flow without any
mediation. In a zero-trust model this situation can violate
the system security requirements. In order to prevent such
vulnerabilities due to design flaws, it is necessary to
verify the architecture of our system. Hence, in our as-
surance pattern, the solution node ‘chkPepInpPortBypass’
specifies evidence needed to support the goal to prevent
such vulnerabilities.

Goal: pepRequirement

Policy enforcement point requirement is satisfied for the given {System}

Strategy: pepRequirementAddressed

Argue over system architecture model

Goal: existsPep

Policy enforcement point 

mechanism exist for the given 

{System}

Goal: pepInfoPortConnected

Info port is connected in the 

model if it exists 

Goal: pepInputNotBypassed

No inputs to the policy 

enforcement point can be 

bypassed

Sln: 

chkCompone

ntExists

Mechanism 

verification

Sln: 

chkInfoPort

Port 

connection 

verification

Sln: 

chkPepInpPor

tBypass

Input bypass 

verification

Goal: pepImplCorrectness

Implementation of the policy 

enforcement point is correct
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Implementatio

n verification

Ctx: System
System under 
development

Fig. 12. Assurance pattern for the policy enforcement point.

D. Run-Time Integrity Monitor

The architecture of the run-time integrity monitor [30] is
shown in Figure 13. The purpose of the run-time integrity
monitor is to identify and flag any abnormal system behavior.
The input to the monitor is an observation signal, which could
be raw data from a sensor or it could be data from another
component. The observation signal can be further processed by
a Signal Processing Algorithm within the monitor. The secu-
rity policy contained within the Monitor Policy is then utilized
to compare the observation signal with a reference value ref.
The monitor generates an alert if the observation value deviates
by more than an acceptable threshold value; otherwise no alert
is generated, meaning the system is operating normally. Note
that the reference can be passed as an external input to the
monitor rather than defined within the monitor itself.



Fig. 13. Architecture of the run-time integrity monitor mechanism.

Next, we provide the design assurance for the run-time
integrity monitor to ensure that the design pattern is correctly
applied. Figure 14 shows the assurance pattern for the Run-
Time Integrity Monitor. The top-level goal ‘runtimeMonitor-
Requirement’ ensures that the system satisfies the zero-trust
requirements of this mechanism. It is supported by a strategy
’runtimeMonitorRequirementAddressed’ for arguing over the
system architecture model. This strategy is further supported
by four sub-goals. Next, we discuss each of these sub-goals
in detail:

• rtmExists: This goal verifies that the given run-time
integrity monitor mechanism exists in the system model.
Absence of this mechanism can violate the security
requirements for the system. This is supported by the so-
lution node ‘chkCompExist’ in Figure 14, which specifies
the existence of the run-time monitor component within
the system architecture model.

• rtmImplCorrectness: This goal ensures that the imple-
mentation of the run-time integrity monitor mechanism is
correct by collecting the evidence specified in the solution
node ‘chkRtmImpCorrectness’, as shown in Figure 14.

• rtmNotBypassed: Bypassing the run-time monitor will
defeat the purpose of including it in the system design.
Hence, it is necessary to ensure that the system design
is free from such flaws. This goal specifies that the run-
time integrity monitor’s ports cannot be bypassed. In our
assurance pattern, we focus on the ‘Alert’ port of the
run-time monitor since bypassing this port will result in
security vulnerabilities and prevent appropriate actions in
case of faults resulting in system failure. Moreover, there
could be other ports that could carry useful information
depending on the design of the monitor. These ports
would again need to be verified to ensure that they are
not bypassed. This sub-goal is supported by the solution
node ‘chkRtmBypass’.

• rtmAlertPortConnected: Another situation could arise
where the alert port is not connected, which could make
the presence of run-time monitors useless in a system
design. Therefore, this goal specifies that the alert port
for the run-time monitor is connected. Moreover, merely
connecting the alert port doesn’t guarantee the correct
system design. It is necessary to ensure that the monitor is
connected to the appropriate component in the model that
utilizes the input from the monitor. Hence, our assurance
pattern further verifies this connection by ensuring its

association with the respective component in the model.
Solution node ‘chkAlertPort’ is utilized to collect this
information as evidence and support the goal.

Goal: runtimeMonitorRequirement

Run-time monitor requirement is satisfied for the given {System}

Strategy: runtimeMonitorRequirementAddressed

Argue over system architecture model

Goal: rtmExists

Run-time monitor mechanism 

exist for the given {System}

Goal: rtmAlertPortConnected
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Mechanism 

verification
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chkAlertPort

Alert port 
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Mechanism 

bypass 
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Goal: rtmImplCorrectness

Implementation of the run-time 

monitor mechanism is correct
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Fig. 14. Assurance pattern for the run-time integrity monitor mechanism.

E. Trusted Data Load

Trusted data load [31] consists of two components, a Trusted
Data Load Verification process and a Trusted Data Load Sign-
ing process, ensuring that data load integrity and authenticity
is maintained. We describe both of these components in detail.

1) Trusted Data Load Verification: The Trusted Data
Load Verification process is shown in Figure 15. Signed
software or data is the input to Verification Process
that needs to be transferred to the target system. The
Data Load Verif Manager uses this information and utilizes
the Signing Certificate and the Private Public Keys along
with the Verification Process algorithm to determine if the
information is genuine and originated from a valid entity. To
achieve this, trusted data load verification uses the policies set
in the Data Load Verification Policy and ensures the delivery
or installation of data or verified software to the target system.

Fig. 15. Architecture of the trusted data load verification mechanism.

Now, we provide the design assurance pattern for the trusted
data load verification mechanism to ensure that the design
pattern is correctly applied. Figure 16 shows the assurance
pattern for the trusted data load verification mechanism. The
top-level goal ‘tdlvRequirement’ ensures that the trusted data
load verification compliance is achieved for the given system.
It is associated with a strategy ‘tdlvRequirementAddressed’
for arguing over the system architecture model. This strategy



is supported by three sub-goals. Each of the sub-goals is
discussed further in detail:

• tdlvExists: This goal verifies: 1) the existence of the
trusted data load verification mechanism in the model.
As absence of this mechanism can violate the security
requirements for the system, and 2) the trusted data load
verification component is connected appropriately with
the rest of the system model. The absence of which
can again give rise to security vulnerabilities. Hence,
the design of our pattern supports collecting information
about the trusted data load component, which determines
the evidence for the above two criteria. In our assurance
pattern, this is achieved via the solution node ‘chkCom-
pExist’. Besides the existence of the mechanism it argues
that it is connected to the correct components such as a
PEP and software update module in the system design. In
addition, it argues that the source and destination ports are
connected appropriately in the architecture model. The
required information is passed as in input to the pattern
itself during instantiation.

• tdlvImplementationCorrectness: This goal argues that
the trusted data load verification mechanism is imple-
mented correctly. This claim is supported using the solu-
tion node ‘chkTdlvImpCorrectness’.

• tdlvNotBypassed: If the output from the trusted data load
verification component is bypassed then the purpose of
the trusted data load verification component is defeated.
Hence, it is necessary to ensure such violations are
avoided during design time. This goal guarantees that
the trusted data load verification mechanism output port
cannot be bypassed. It is supported using the solution
node ‘chkTdlvBypass’ in the assurance pattern.

2) Trusted Data Load Signing: The architecture for the
Trusted Data Load Signing component is shown in Fig-
ure 17. It is used to sign the software or data that
needs to be transported. Trusted Data Load Signing en-
sures that the integrity and authenticity of the software
or data is maintained at the source of origination. It is
similar to the Trusted Data Load Verification process; the
only difference is that instead of a Verification Process al-

Goal: tdlvRequirement

Trusted data load verification requirement is satisfied for the given {System}

Strategy: tdlvRequirementAddressed

Argue over system architecture model

Goal: tdlvExists

Trusted data load verification mechanism exist 
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Goal: tdlvImplementationCorrectness

Implementation of the trusted data load  

verification mechanism is correct

Goal: tdlvNotBypassed

Trusted data load verification cannot be 
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Mechanism 

verification
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Implementation 

verification
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Mechanism 

bypass 

verification
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Fig. 16. Assurance pattern for trusted data load verification.

gorithm, it utilizes a Signing Process algorithm. Whenever
Unsigned Data becomes available at the Signing Process
component of the Data Load Sign Manager, it uses the same
Signing Certificate and the same Private Public Keys to gen-
erate a signed data, which ensures that the data or software
is signed by a trusted entity.

Fig. 17. Architecture of the trusted data load signing mechanism.

The design assurance of the trusted data load signing
mechanism is similar to the trusted data load verification
mechanism design assurance and hence it is not discussed
here.

F. Separation Kernel

The architecture for the separation kernel [32] is represented
in Figure 18. A separation kernel ensures integrity of the ap-
plications by enforcing space and time partitioning. It adheres

Fig. 18. Architecture of the separation kernel mechanism.

to several zero-trust mechanisms inherently and therefore it
is a unique mechanism in itself. The processor (Proc) hosts
an operating system that provides the separation guarantees
and each process (Process i) is bound to the processor. Each
process is bound to a specific address space in memory (Mem)
and contains a single thread representing partitioning in both
space and time. Whenever an application executes, it runs
within its own process in an isolated address space. Similarly,
multiple applications can execute simultaneously within their
own processes and memory space, ensuring time and space
partitioning thereby maintaining application integrity. Note
that although an ARINC 653 annex has been implemented for



AADL, we do not rely on it here in order to make this pattern
more generalizable to other architecture definition languages.

Now, we provide the design assurance of the separation
kernel mechanism to ensure that the design pattern is applied
correctly. Figure 19 shows the assurance pattern fragment for
the separation kernel mechanism. The top-level goal ‘skRe-
quirement’ ensures that the separation kernel requirements are
satisfied for the given system. It is associated with strategy
‘skRequirementAddressed’ for arguing over the system archi-
tecture model. This strategy is supported by two sub-goals.
Each of these sub-goals are discussed further in detail:

Goal: skRequirement

Separation kernel mechanism requirement is satisfied for the given {System}

Strategy: skRequirementAddressed

Argue over system architecture model

Goal: existsProcessThreadCompliance

Each process of the separation kernel has only one 

thread and is running on a separation kernel processor

Goal: skImplementationCorrectness

Implementation of the separation kernel is correct

Sln: 

chkProcessThre

adCompliance

Process thread 

verification

Sln: 

chkSkImpCorre

ctness

Implementation 

verification

Ctx: System
System under 
development

Fig. 19. Assurance pattern for the separation kernel.

• existsProcessThreadCompliance: This goal ensures the
existence of the separation kernel mechanism in a system
model by verifying whether process-thread compliance
is met or not. For a system, process-thread compliance
simply means that all of its sub-components can have
only one thread per process; otherwise the requirement
is violated. It is important to capture this design require-
ment, violation of which could result in a system design
where applications do not adhere to running in its own
memory space. It is captured using the solution node
‘chkProcessThreadCompliance’.

• skImplementationCorrectness: This claim ensures that
the separation kernel mechanism is implemented cor-
rectly. We capture this using our solution node ‘chkSkIm-
pCorrectness’.

G. Filter

The design pattern for the filter mechanism is shown in
Figure 20. A filter component allows only zero-trust compli-
ant inputs to pass through. Compliance with respect to the
filter component is defined as a security policy inside the
Filter Policy component. When an input arrives on the input
port of the filter component, its compliance is verified using
the Filter Policy. This compliance check is performed by a
Filter Algorithm in addition to the Filter Policy component.
If a successful compliance is achieved then the input data is
placed on its output port; otherwise the input data is dropped.

Next, we provide the design assurance for the filter mech-
anism to ensure that the design pattern is applied correctly.

Fig. 20. Architecture of the filter mechanism.

Figure 21 shows the assurance pattern for the filter. The
top-level goal ‘filterRequirement’ ensures that the filter re-
quirements are satisfied for the given system. It is supported
by strategy ‘filterRequirementAddressed’ that argues over the
system architecture model. This strategy is further supported
by three sub-goals. Each of these sub-goals are discussed
further in detail:

Goal: filterRequirement

Filter requirement is satisfied for the given {System}

Strategy: filterRequirementAddressed

Argue over system architecture model

Goal: filterExists

Filter exists for the given {System}

Goal: filterImplementationCorrectness

Implementation of the filter is correct

Goal: filterNotBypassed

Filter cannot be bypassed

Sln: 

chkComponent

Exists

Mechanism 

verification

Sln: 

chkFilterImpCor

rectness

Implementation 

verification

Sln: 

chkFilterBypass

Mechanism 

bypass 

verification

Ctx: System
System under 
development

Fig. 21. Assurance pattern for filter mechanism.

• filterExists: This goal argues that the filter mechanism
is actually present in the model. It utilizes the solution
node ‘chkComponentExists’ that specifies the required
evidence needed for satisfying the sub-goal.

• filterImplementationCorrectness: Incorrect implemen-
tation of a given filter component can cause the exis-
tence of the filter mechanism to be useless. Hence, it is
necessary to ensure that the implementation is correct.
This goal ensures implementation correctness by using
the solution node ‘chkFilterImpCorrectness’, as shown in
Figure 21.

• filterNotBypassed: If the above two sub-goals are satis-
fied and the filter mechanism is bypassed then the require-
ments of our secure filter design is violated, which would
further violate the overall zero-trust system requirement.
Hence, it is essential to identify such critical design is-
sues. Therefore, this goal argues that the filter mechanism
cannot be bypassed. For instance, it ensures that the
information carried by the input port cannot be bypassed
since this situation will violate the requirements of a



Fig. 22. UAV architecture model in AADL.

filter component and give rise to security vulnerabilities.
We have designed the pattern in a way where the user
can specify which compnent is responsible to provide
input to the filter mechanism. This provides the ability
for our assurance pattern to identify any design flaws.
The solution node ‘chkFilterBypass’ of our assurance
pattern as shown in Figure 21 captures this information
as evidence for supporting the sub-claim.

To ensure that the design is appropriately zero-trust, the
assurance pattern fragments are not only provided as part
of individual zero-trust mechanisms, these patterns are also
provided in an assurance pattern library. Engineers can easily
utilize them while designing system models depending on the
zero-trust system requirements. Please note that if there are
multiple zero-trust components of the same type present in a
model, the corresponding assurance pattern will be instantiated
for each one. For instance, if multiple attestation components
are present in a system model, to ensure that the design is
correct for each attestation mechanism, the above mentioned
sub-goals for the attestation mechanism are iterated over each
attestation mechanism in the model.

Please note that all of our design patterns are represented in
AADL, however these design patterns can be represented in
any architecture language (e.g., SysML) provided they follow

the correct representation.

IV. ZERO-TRUST ASSURANCE OF A UAV MODEL

In this section, we will consider an example UAV surveil-
lance application to demonstrate our zero-trust design and
assurance patterns. The UAV architecture is represented in
Figure 22. It consists of a flight controller (as shown in
green), mission computer (light orange), network buses for
data transfer (white and light purple), and a camera (orange).
The mission computer further consists of the hardware devices
such as radio, WiFi, etc., (as shown in gray). In addition,
it also hosts the software (light green) responsible for the
functionality and behavior of the UAV.

At the system level, we add encryption buses to the UAV
model as represented by purple color in Figure 22. The light
green element represents the higher-level representation of the
UAV mission computer software. Zero-trust components are
added to the software (not visible at this abstraction level).
Figure 23 shows the mission computer software architecture
model with the addition of the zero-trust elements (shown in
light purple). Here, an attestation mechanism is added to the
UART driver to attest the connected device, i.e., the flight
control computer in this case. Further, a PEP is attached to the
UART driver to enable a communication bridge between the



Fig. 23. Software module of the UAV model in AADL (light purple color represents the zero-trust mechanisms).

Fig. 24. Top-level assurance pattern in Resolute.

UART driver and other components such as the flight planner
only if the trust is established. Similarly, other mechanisms
are added at specific places in the model and are responsible
for performing desired functions as described in Section III.

Next, we construct our assurance case using the assurance
pattern fragments introduced in Section III. Figure 24 shows
the top-level goal that utilizes the individual zero-trust patterns
defined in Section III. Figure 25 represents the attestation
mechanism’s assurance pattern fragment and is defined in
OSATE using Resolute. As seen in Figure 25, the pattern
fragment follows the same definition as discussed in Sec-
tion III. Here we have shown the textual representation of the
assurance fragment to demonstrate the collection of evidence
from the system architecture, as seen on lines 122-123. The
functions defined in these lines are not shown here but they
are responsible for collecting evidence either directly from the
system architecture or via other external tools. These patterns
follow the GSN standard and can be easily exported to a

graphical tool as well.
In the subsections that follow, we describe the importance of

our approach from two perspectives: 1) we demonstrate how
the same zero-trust assurance patterns defined in Section III
and included in our assurance pattern library can be utilized
to verify different zero-trust system designs as per their
individual security requirements, and 2) we also showcase the
ability of our tool to capture any zero-trust transformation gaps
resulting in violations of model compliance with respect to the
zero-trust system design.

A. Zero-Trust Design Verification

In this scenario, the zero-trust system requirements consist
of all the zero-trust mechanisms described in Section III. The
top-level goal for assurance of each mechanism is also shown
in Figure 24 (lines 76-82). Using the zero-trust requirements
as the base, we have added the required zero-trust mechanisms
to the UAV model as shown in Figures 22 and 23. Next,



Fig. 25. Attestation requirement assurance pattern fragment in Resolute.

we utilize the assurance pattern fragments for individual zero
trust mechanisms and knit them together to support the top-
level goal for achieving overall zero-trust system compliance.
Finally, the assurance pattern is instantiated with the UAV
model and an assurance argument is generated using Resolute.
We further demonstrate two scenarios; a passing and a failing
assurance argument. The passing assurance argument confirms
the necessary evidence exists to support the top-level zero-
trust compliance goal, whereas a failing assurance argument
successfully demonstrates the ability of our tool to identify
design violations due to lack of evidence. We further discuss
each of these scenarios in a bit more detail:

1) Passing Assurance Argument: Figure 26 shows the pass-
ing assurance argument. This argument is generated by Reso-
lute, represented in a tree-like structure. Each node represents
a goal that is satisfied using some leaf-level evidence. The
green check marks imply that evidence was captured to support
the goal associated with it. In our assurance argument, the
supporting evidence is captured using the architecture model
of the UAV. Resolute provides the ability to capture this type of
evidence by walking over the AADL model. As shown in Fig-
ure 26, all the required evidence was captured and the top-level
assurance goal was successfully supported, thereby generating
a passing argument. This argument supports the claim that the
UAV model is zero-trust compliant after its transformation,
meaning the model satisfies its zero-trust requirements.

To further demonstrate how these patterns are utilized
together, we have also generated the graphical representation
of the assurance argument represented in Figure 26. The
graphical representation is shown in Figure 28. Because the
full assurance argument is quite large, it is not legible in this

format, but the figure is labeled with individual assurance
fragments to describe each argument branch for ease of
understanding. Depending upon the requirements of the zero-
trust model, respective assurance pattern fragments such as
attestation, encryption, etc., as discussed in Section III are
knit together to support the top-level goal. Each of these
assurance arguments are instantiated with a specific system
context to collect the required evidence. Furthermore, the
collected evidence represented as green circles for individual
pattern fragments are used to support the overall goal. These
fragments are reusable and can be utilized in various config-
urations depending on the system’s zero-trust requirements to
satisfy the top-level claim.

2) Failing Assurance Argument: In this scenario, we have
modified the UAV model to violate the design assurance for
the filter mechanism. Specifically, we added a connection that
bypasses the filter input. This is one of the design assurance
sub-goals discussed in Section III. Due to this change the
UAV model no longer satisfies the zero-trust architecture
requirements. As a result, when we utilize our assurance
pattern from the pattern library and generate an assurance
argument to evaluate our design, Resolute is able to capture
this assurance violation and notify the user. Figure 27 shows
the resulting assurance argument. As seen in the assurance
tree represented by Resolute, the filter bypass property is
violated (shown by red exclamation marks in the figure). This
propagates up the assurance argument tree and results in an
invalid assurance argument overall. Similarly, any other design
assurance violations can be captured by Resolute and appro-
priate measures can be taken to ensure system requirements
are satisfied.



Fig. 26. Passing assurance argument demonstrating evidence for zero-trust
requirement satisfaction in the UAV model.

B. Zero-Trust Design Verification With No Monitoring Re-
quirement

In this scenario, the zero-trust system requirements consist
of all the zero-trust mechanisms described in Section III other
than the run-time monitor. Therefore, we have added all the
zero-trust mechanisms to the UAV model and eliminated the
monitoring element due to the new requirement. The top-level
assurance goal for this scenario will be similar to the one
described in Figure 24, but line 80 will not be part of this
revised goal due to the elimination of the monitor element
from the design requirement. This means that we will not be
evaluating the assurance fragment associated with the monitor
element.

The top-level goal references the assurance pattern frag-
ments for the individual zero-trust mechanisms and knits
them together to support the top-level argument pattern that
focuses on achieving an overall zero-trust compliant system.
The assurance pattern was instantiated using the UAV model
as the context and an assurance argument was generated. Since
there is no requirement violation, our passing assurance case

Fig. 27. Failing assurance argument demonstrating missing evidence for zero-
trust requirements in the UAV model.

looks similar to Figure 26. The only difference is that it will
not contain an argument that the system is properly monitored.
To demonstrate this appropriately, we generated the graphical
representation of the assurance argument. Figure 29 shows the
graphical representation of the passing assurance argument for
the resulting zero-trust system design as per the new zero-
trust security requirements. As seen from Figure 29, there
is no assurance fragment for the monitor element. However,
the system is successfully verified as all the other security
requirements are met. Any design violations in any of the
other zero-trust requirements will be identified in a similar
way as described in the above failing assurance scenario.

The above scenarios clearly demonstrate the use of our
zero-trust assurance pattern library in composing and verifying
a zero-trust compliant system design based on individual
requirements and capturing any design flaws such that they
can be handled appropriately early in the design phase.

V. CONCLUSIONS AND FUTURE WORK

Security is becoming a challenge in aerospace and other
mission-critical domains. In order to address this challenge,
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Fig. 28. Graphical representation of a passing assurance argument for zero-trust compliance in the UAV model.

new initiatives such as zero-trust are being researched. Zero-
trust has proved successful in the Information Technology
domain; however, lack of zero-trust mechanisms geared specif-
ically towards CPS have delayed adoption of zero-trust prin-
ciples in these domains. Moreover, modeling and analysis
mechanisms in addition to tools that can support assurance
for the resulting system design are presently non-existent
for zero-trust. We have identified an initial set of zero-trust
design and assurance patterns that can be utilized to build
systems based on the concepts that reflect the core tenets of
zero-trust. Additionally, to ensure a zero-trust enabled system
design, it is useful to link a system design model with an
assurance analysis framework. We have developed our zero-
trust assurance patterns in the Resolute language and leverage
the BriefCASE framework [33], which utilizes the system
architecture modeling environment to evaluate assurance. The
resulting analysis artifacts can report any design violations to
engineers when needed.

To make the overall process easier, we have provided
these design patterns and their assurance pattern fragments as
individual libraries that can be easily utilized by engineers.
Engineers can employ one or more patterns and evaluate
the system-level assurance based on the overall zero-trust
requirements of a given system. Finally, we have demonstrated
the feasibility of our approach using a UAV surveillance
application. We discussed how our assurance patterns can be
utilized in combination to provide assurance based on different
zero-trust requirements. In addition, we also demonstrated

the usefulness of this approach in empowering engineers
to identify system design flaws and correct them to save
significant amount of development time, effort, and cost. We
have also pointed out the use of our approach to support the
certification process, if necessary.

As part of future work, we will further develop our initial
zero-trust assurance patterns and provide automation for the
overall process. To elaborate further, our vision is to create
a tool which takes zero-trust system requirements as input
from the user and automatically inserts appropriate zero-trust
mechanisms into an untrusted system model, thus generating a
zero-trust enabled system. Further, we would like to automati-
cally invoke specific zero-trust assurance pattern fragments to
validate design requirements. To achieve this, we will develop
injection rules that will be utilized by our tool to auto-insert
specific zero-trust mechanisms into the model. In addition,
these rules will leverage the tags or annotations that will
be required as part of the entire automation framework. We
believe that such a tool will be very useful in designing
more secure zero-trust enabled systems while providing the
necessary design assurance.
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