
Pre-print for the following paper published by the SAE:

Hasan, S., Amundson, I., and Hardin, D., “Zero Trust Architecture Patterns for Cyber-Physical Systems,” SAE Technical Paper

2023-01-1001, 2023, doi:10.4271/2023-01-1001.

Page 1 of 12

Zero Trust Architecture Patterns for Cyber-Physical Systems

Saqib Hasan, Isaac Amundson, David Hardin
Collins Aerospace, Applied Research and Technology

Abstract

Zero trust (ZT) is an emerging initiative that focuses on securely

providing access to resources based on defined policies. The core

tenet of ZT is “never trust, always verify”, meaning that even within

trusted zones of operation, resource access must be explicitly granted.

ZT has proven effective in improving the security posture in domains

such as information technology infrastructure; however,

additional research and development is needed to define and apply

zero trust principles to cyber-physical system domains. To work

toward this objective, we have identified an initial set of ZT

architectural patterns targeted specifically at cyber-physical systems.

We created ZT architecture patterns in the Architecture Analysis and

Design Language (AADL), a modeling language that enables

engineers to describe the key elements of embedded system

architectures using a well-defined semantics. The patterns are

implemented as a library of ZT components that can be made

available to system engineers. Utilizing AADL capabilities,

engineers can model a system in AADL and apply one or more of

these ZT patterns to improve the system security posture based on

specific system requirements. To demonstrate our approach, we apply

the ZT patterns to an unmanned aerial vehicle surveillance

application. The resulting design provides inherent protection from a

variety of attacks affecting system confidentiality, integrity, and

availability.

Introduction

Cyber-physical systems (CPS) are complex systems comprised of

various hardware and software components. These components

communicate to provide the overall behavior that satisfies system

requirements. However, the scale and complexity of these systems

can give rise to various cyber vulnerabilities. Adversaries can exploit

such vulnerabilities and cause catastrophic consequences resulting in

system damage, loss of infrastructure, failure of critical missions,

financial impact, etc. For instance, in 2015, security researchers

demonstrated gaining control of a Jeep remotely and shutting it down

while being driven on the highway. Another recent incident suggests

a group of attackers were able to steal several vehicles by gaining

access to the keyless entry and start system [1]. Aircraft, being a class

of CPS, are not immune to such cyber vulnerabilities; a recent report

suggests that the aviation industry is facing a growing wave of cyber-

attacks [2]. Hence, it becomes paramount to develop tools and

technologies that improve CPS security.

Zero Trust (ZT) is an emerging initiative that focuses on securely

providing access to resources based on defined policies. The core

tenet of ZT is “never trust, always verify”, meaning that even within

trusted zones of operation, resource access must be explicitly granted.

ZT has proven effective in improving the security posture in domains

such as information technology (IT) infrastructure, however,

additional research and development is needed to define and apply

zero trust principles to cyber-physical system domains such as

aerospace.

A reference architecture for zero trust is provided in [3]. The work

presented in [4] also provides a detailed description of zero trust

architecture. It describes the core ZT tenets, variations in ZT

architectures, and their applicability from the perspective of IT

infrastructure. Authors in [5] discusses the importance of cyber

security in various domains and the need for better technologies to

address it. As per their research, zero trust is a key emerging

technology that changes the cybersecurity approach; however, more

work is needed to apply ZT to specific domains. Work presented in

[6] provides a new zero trust model for embedded systems. In this

work, the author discusses the importance of a separation

environment using ZT principles to provide improved security.

Additional research presented in [7] provides a security and safety

risk analysis method based on zero trust. This work discusses the

importance of safety and security design weakness identification at

an early stage. This research provides a framework called the

Multidisciplinary Early Design Risk Assessment Framework

(MEDRAF) for performing early risk assessment including both

safety and security aspects.

Based on our research, no tools or methods currently provide a means

to model system architectures using ZT patterns. Specifically, we

lack consensus on a definition of ZT that is applicable to CPS. In

addition, once defined, how does the resulting approach become

useful for the CPS domain? To work toward these objectives, the

paper provides the following contributions:

1. We have identified an initial set of ZT mechanisms targeted

specifically for cyber-physical systems.

2. We created corresponding ZT architecture patterns in the

Architecture Analysis and Design Language (AADL), a

Page 2 of 12

modeling language that enables engineers to describe the key

elements of embedded system architectures using a well-defined

semantics [8].

3. The patterns can be implemented as a library of ZT components

that can be made available to system engineers. Utilizing AADL

capabilities, engineers can model systems in AADL and apply

one or more of these ZT patterns during the system design phase

to improve the overall system security posture based on specific

system requirements.

4. To demonstrate our approach, we apply the ZT patterns to an

unmanned aerial vehicle (UAV) surveillance application and

discuss how the inclusion of our ZT mechanisms can prevent

cyber-attacks from affecting the security of the overall system.

We have utilized AADL as the design language to achieve our

objective of implementing identified ZT patterns. AADL is an

architecture language that enables modeling of real-time distributed

embedded systems while capturing important design concepts [9].

Therefore, it is well suited to model avionics system models, for

example. AADL provides the ability to capture both hardware and

software architecture details hierarchically. Hardware components

include memory, buses, processors, and devices whereas software

components include processes, threads, subprograms, and data. In

addition, the language provides the ability to define data flows,

connections, interfaces, and properties. AADL provides a high degree

of flexibility that enables incremental model-based development such

that the architectures and the components can be refined over time.

The Open Source AADL Tool Environment (OSATE) [10] is the

reference framework for AADL, which we use to build our UAV

surveillance system and represent our library of ZT patterns.

Although our ZT pattern library can be used as a collection of

reference models for the manual composition of cyber-resilient

architectures, we envision the library being integrated with a

cybersecurity-focused development toolchain such as BriefCASE

[11]. BriefCASE includes tools for analyzing an architecture model

for cyber vulnerabilities, mitigating the vulnerabilities by applying

automated model transformations, synthesizing provably correct

code, and automatically generating a cybersecurity assurance case

using elements found within the model as supporting evidence. With

BriefCASE, if a new requirement specifies the need for an additional

ZT protection, the tool can automatically modify the architecture

model with the corresponding ZT pattern. BriefCASE will then

produce design assurance that each ZT mechanism in the model has

been inserted correctly (e.g., the ZT component cannot be bypassed)

using the Resolute assurance tool [13]. This novel approach to

designing inherently cyber-resilient CPS was developed on the

DARPA CASE program with the goal of equipping systems

engineers with new tools and methods to reason about cybersecurity

concerns in high-assurance systems.

The paper is organized as follows. First, we provide a brief

background on ZT. Next, we discuss the identified ZT mechanisms in

detail, and propose a corresponding AADL pattern for each. We next

provide details of our approach using an experimental UAV model.

Finally, we provide a conclusion and discuss future work.

Zero Trust Background

Zero Trust is a “cybersecurity strategy developing an architecture that

requires authentication or verification before granting access to

sensitive data or protected resources at a financial cost by reducing

data loss and preventing data breaches” [3]. Zero trust relies on

several core tenets such as: assume a hostile environment (all devices

and networks are considered untrusted); presume breach (presence of

an adversary is considered within the operational environment and

proactive scrutiny is performed for access and authorization); never

trust, always verify (access is only provided to a resource after

explicitly authenticating the device); scrutinize explicitly (change

access policies of resources dynamically based on confidence levels

and actions); and apply unified analytics (use analytics to improve

and support access policies). These are discussed in [3], an emerging

initiative that is being explored by a collaborative effort between

DOD CIO, National Security Agency (NSA), DISA, and US Cyber

Command (USCYBERCOM).

Figure 1. Zero trust architecture concept.

Figure 1 represents the basic structure of a zero-trust architecture.

Here, an untrusted entity requires access to a resource. The policy

decision and enforcement point (PD/PEP) receives the access request

and provides a decision whether to allow or deny access to the

requested resource. This decision is based on authentication and

authorization policies. In addition, the PD/PEP also receives

information from the environment and other systems that can be

utilized in augmenting the decision process. For instance, in order to

identify if the requester is a legitimate entity, the PD/PEP can collect

device information and match it with the existing device identities in

its database.

Identified ZT Mechanisms

Zero trust mechanisms provide a means of improving the security of

the overall system. When included in an architecture model they can

result in a more cyber-resilient system. In addition, their usage in the

model depends on several factors such as level of security needed to

be achieved, the number of critical resources to be protected,

available budget to deploy in order to protect resources from security

threats, infrastructure maintenance cost, etc. In this section, we

describe the ZT mechanisms that support our approach, as well as

document their representation in AADL.

Secure Data Load

Secure data load ensures that data load authenticity and integrity is

maintained. This consists of two components, encryption and

decryption. Both components maintain data authenticity and integrity

during individual phases of the data load process. We describe each

of these components in detail as follows:

Encryption

The purpose of an encryption mechanism is to ensure data

authenticity and integrity by encrypting data at the point of

origination. Figure 2 shows the encryption mechanism, which

consists of an Encryption_Manager and an

Encryption_Policy component. Rules for encryption are

defined as a security policy in the Encryption_Policy

component. Based on these rules, when data is received at its input

Page 3 of 12

port, the Encryption_Policy triggers the

Encryption_Manager to perform encryption. The

Encryption_Manager utilizes the Cryptographic_Keys

and Cryptographic_Algorithm to encrypt the data and sends

it back to the Encryption_Policy component, which then

passes the encrypted data as output.

Figure 2. Encryption mechanism architecture.

Figure 3 shows the AADL textual representation of the encryption

mechanism. In AADL, there is no agreed-upon way to model the

communication protocol details. AADL provides a bus element for

modeling physical buses. These buses are utilized to represent the

connections and information flow between different components in

the system model. However, implementation details (e.g., whether

the bus provides secure data transfer) cannot natively be specified on

buses without applying a custom property association. Moreover,

elements that could represent details (such as layers of the

communication stack) are not defined in a standard way. From the

communication protocols standpoint, we know that the application

layer of the TCP/IP protocol is responsible for performing the

encryption/decryption mechanisms on the messages that are being

transferred. We have modeled such mechanism using virtual buses in

AADL (lines 36-39). First, we bound these buses to individual

physical buses (lines 57-59) to represent the application layer in the

communication protocol that is responsible for data security. Next,

the connections that are supposed to carry encrypted messages within

the system are bounded to these virtual buses, meaning only the

connections which are bound to the virtual buses can carry encrypted

information in order to support the functionality of application layer

protocols such as SSL/TLS (lines 60-62). The connections which are

directly bound to physical buses, or any other buses cannot be

considered secure. Although, it is possible to model a complete

network stack in AADL we have decided to keep our implementation

simple and used AADL property associations to capture the

necessary aspects of encryption.

Figure 3. AADL representation of the encryption mechanism.

Decryption

Figure 4 represents the decryption mechanism architecture. The

purpose of decryption is to securely decrypt data at its destination

into its original form. The architecture of the decryption mechanism

is similar to encryption, however, instead of
Encryption_Policy and Encryption_Manager

components, it utilizes a Decryption_Policy and a

Decryption_Manager to perform the necessary operations.

Once, encrypted data appears at the input port of the decryption

mechanism, it decrypts the encrypted data using the
Cryptographic_Keys and Cryptographic_Algorithm

contained in the Decryption_Manager component. The

decrypted data is then passed as an output via the

Decryption_Policy component of the decryption mechanism.

Figure 4. Decryption mechanism architecture.

The AADL textual representation of the decryption mechanism is

similar to the encryption mechanism and therefore is not shown here.

Attestation

An attestation component ensures software authenticity and integrity.

Figure 5 shows the attestation mechanism. It utilizes two sub-

components, Secure_Boot and Measured_Boot, to perform

attestation. The rule for a successful attestation is defined by the

Attestation_Policy. root_of_trust is used as an input

for both secure and measured boot. These processes generate

individual data structures such as validation and quote. The

validation message contains information regarding software

integrity. This could represent binary information that corresponds to

software authenticity and integrity. quote is a data structure that

contains detailed information about this software. For instance, it

could contain information such as software version. Both are further

utilized by the Attestation_Policy to make an attestation

decision.

Figure 5. Attestation architecture pattern.

Figure 6 shows the textual AADL representation of the attestation

mechanism. In AADL each mechanism has two parts, namely a

component type and its implementation. The component type

specifies the component interface, properties, flows, inheritance, etc.

The implementation describes specific subcomponents and how they

are connected. A component can be implemented in different ways;

Page 4 of 12

thus, an AADL model could contain multiple component

implementations for the same component type, each implementation

having different subcomponents, connections, properties, etc. First,

we define the component type (lines 33-39) of the attestation

mechanism. The mechanism consists of various features (lines 35-36)

which represent the input/output ports of the component. Next, we

define the implementation of the attestation mechanism. This

describes the details of its sub-components and their connections

(lines 42-51). Each of the sub-components are defined as another

AADL element referred to as a thread. In order to identify the

attestation component in the model we have set a property as defined

in line 38. This property will be useful for specific analyses

performed on system models containing attestation components.

Figure 7 shows the AADL representation of the attestation sub-

components. Sub-components such as Secure_Boot,

Measured_Boot, and Attestation_Policy are defined as

threads in our implementation with their own component types and

implementations. All these components consist of features that align

with the design discussed above. Note that these components could

also be implemented using different AADL components (such as

system or abstract components) depending upon user needs and

requirements and are not limited to the specific AADL types shown

in our implementation.

Figure 6. AADL textual representation for attestation.

Figure 7. AADL textual representation of the attestation sub-components.

Policy Enforcement Point (PEP)

Figure 8 represents the architecture diagram for the policy

enforcement point mechanism. The main role of the PEP is to provide

secure access to resources by validating trust. It consists of two main

components, the Policy_Decision_Point (PDP) and the

PEP_Manager. Whenever an access request appears at the PEP

input, it is forwarded to the PDP via the PEP_Manager. The

Policy_Administrator provides the interface between the

PDP and PEP_Manager. This request is then evaluated by the

Policy_Engine to validate trust using the rules defined by the

Policy_Enforcement_Point_Policy. If necessary, the

Policy_Engine further utilizes external information (labeled as

additional_info in the figure) to validate trust. This can

represent information such as analytics, decisions from other

software tools, specific device-related information, etc. If the trust is

validated, the PEP provides access to the requested resource;

otherwise, the request is denied.

Figure 8. Architecture for the policy enforcement point mechanism.

Figure 9 shows the textual AADL representation of the PEP

mechanism. First, we define the component type for the PEP. This

consists of several features (lines 75-78) that represent various

input/output ports. For the specification of the PEP in AADL, each

PEP mechanism will consist of a pep_info port, which will contain

the necessary information needed to validate trust. This information

could come from another ZT mechanism, such as attestation or from

any other valid source. Additional ports function as normal

input/output ports connected internally by a switch mechanism such

that information flowing into the component is only permitted to pass

after trust is established. Because any additional ports only act as

information flow ports, they are omitted from this PEP representation

for the sake of clarity, however they do appear in the UAV example

in Figure 26. Next, we define the PEP implementation that represents

the sub-components (lines 85-86). Each of these sub-components are

further defined in AADL.

In order to identify the PEP component in the model we have set a

property as defined in line 80. This property will be useful during

specific analyses that are performed on system models containing

PEP components.

Page 5 of 12

Figure 9. AADL textual representation of the PEP mechanism.

Figure 10 shows the Policy_Decision_Point and

PEP_Manager sub-components of the PEP mechanism in AADL.

Each of these components is defined using the component type (lines

36-42, and lines 57-63) and its implementation (lines 44-55, and lines

65-71). The overall design consists of the same elements that are

described in Figure 8.

Figure 10. AADL textual representation of the PEP sub-components.

Figure 11 further represents the sub-components of the

Policy_Decision_Point (lines 46-47) and PEP_Manager

(line 67) components shown in Figure 10. Each of the sub-

components represent their own component types and

implementations that align with the architecture model of the PEP

shown in Figure 8.

Run Time Integrity Monitor

Figure 12 represents a run-time integrity monitor mechanism. The

role of this mechanism is to ensure that any abnormal system

behavior is identified and flagged. The monitor observes a signal,

which could be raw data from a sensor, or the contents of a data

stream from another component. The monitor may contain a
Signal_Processing_Algorithm to further process the

observation signal. The Monitor_Policy then compares the

observation with a reference value (ref) and will generate an alert if

the observation

Figure 11. AADL textual representation of the PEP sub-components.

deviates by more than an acceptable threshold value. Otherwise, no

alert is generated, indicating that the system is performing normally.

Note that in this representation the reference is defined within the

monitor, but it could just as well be another input to the component.

Figure 12. Architecture for run-time monitors.

Figure 13 shows the textual AADL representation of the run-time

monitor mechanism. First, we define the component type of the run-

time monitor element. It consists of various features (lines 30-31)

representing the various input/output ports of the mechanism. The

alert port (line 31) is defined to carry the system functionality

information, i.e., normal or abnormal as a binary value. This

information is computed based on the input present at the monitor’s

observation input port and compared against a pre-defined threshold

value. Next, we define the implementation of the run-time monitor

mechanism (lines 36-46). The sub-components of the run-time

monitor are shown in lines 37-40, while their connections are

represented using lines 42-45. The sub-components for the run-time

monitor are defined in detail as threads (lines 4-26). In order to

identify the run-time monitor component in the model we have set a

property as defined on line 33. This property will be useful during

specific analysis that can be performed on the system model

containing the run-time monitor component.

Page 6 of 12

Figure 13. AADL textual representation of the run-time monitor.

Trusted Data Load

Trusted data load ensures that data load integrity and authenticity is

maintained. This consists of two components, a Trusted Data Load

Verification process and a Trusted Data Load Signing process. Both

components maintain data authenticity and integrity during their

individual phase of the process. We describe each of these

components in detail below.

Trusted Data Load Verification

Figure 14 shows the Data_Load_Verification process of the

trusted data load mechanism. Input to the

Verification_Process is signed software or data that needs to

be transported to the target system. This information is passed to the

Data_Load_Verif_Manager, which utilizes the

Signing_Certificate and the Private_Public_Keys

along with the Verification_Process algorithm to determine

if the information is genuine and originated from a valid entity (i.e.,

an organization that owns the software). In order to achieve this, it

uses the security policies set in the
Data_Load_Verification_Policy, which ensure the

delivery or installation of verified software or data to the target

system.

The textual AADL representation of the trusted data load verification

mechanism is shown in Figure 15. First, we define the component

type of the trusted data load verification mechanism (lines 61-67).

This consists of features representing the input/output ports of the

mechanism. The input port receives a signed data load, and the output

port delivers the data load once verification is successful. Next, we

Figure 14. Trusted data load verification mechanism.

define the implementation of the trusted data load verification

mechanism (lines 69-78). It represents the sub-components of the

trusted data load verification mechanism (lines 70-72) and their

connections (lines 73-77). In order to identify the trusted data load

verification component in the model we have set a property as

defined in line 66. This property will be useful during specific

analyses that can be performed on the system model containing

trusted data load verification components.

Figure 15 shows a representation of the

Data_Load_Verification_Manager component type and its

implementation. Other sub-components including sub-components of

the Data_Load_Verification_Manager and their

implementation is represented in Figure 16.

Figure 15. AADL textual representation of the trusted data load verification

mechanism.

Trusted Data Load Signing

Figure 17 represents the architecture diagram for a

Data_Load_Signing component. It is used to sign the software

or data that needs to be delivered. This process maintains the data

authenticity and integrity during its creation. It is similar to the

Data_Load_Verification component. However, the only

difference is that it uses a Signing_Process algorithm instead of

a Verification_Process algorithm for data load. Once

unsigned_data is available at the Signing_Process

component of the Data_Load_Sign_Manager, it utilizes the

same Private_Public_Keys and Signing_Certificate

Page 7 of 12

to produce a signed_data ensuring it is signed by the trusted

entity prior to its delivery.

Figure 16. AADL textual representation of trusted data load verification sub-

components.

Figure 17. Trusted data load signing mechanism.

The textual AADL representation of the trusted data load signing

component is same as the representation shown in Figure 15 and

Figure 16. However, the only difference will be the representation of

specific components that constitute the trusted data load signing

component.

Separation Kernel

Figure 18 represents the design for a separation kernel mechanism. It

ensures time and space partitioning while maintaining the integrity of

applications. The separation kernel is a unique mechanism as it

adheres to several ZTA tenets inherently [12]. Each process

(Process_i) is bound to a processor (Proc) which hosts an

operating system that provides separation guarantees. Processes

contain a single thread, representing partitioning in both time and

space. Further, each process is bound to a specific address space in

the memory (Mem). Components communicate with each other over a

hardware bus (Bus_HW). Additional bus bindings have been hidden

for clarity. When an application is executed, it runs within its own

process in an isolated address space. Simultaneous applications

execute within their individual processes and memory space without

interfering with other applications. This ensures time and space

partitioning while maintaining application integrity.

Figure 18. Architecture for the separation kernel mechanism.

Figure 19. AADL textual representation of the separation kernel mechanism

Figure 19 shows the textual representation of the separation kernel

pattern in AADL. The system implementation is represented in lines

121-129, along with its sub-components (lines 122-128), their

connections (lines 129-131), and associated properties (lines 131-

138). The sub-components are defined with their component types

and their respective implementations in Figure 19 and Figure 20.

Figure 19 represents the memory type and its implementation (lines

Page 8 of 12

106-116) whereas Figure 20 shows the bus, process, and processor

component types and implementations (lines 60-92). Note that only

one component type and implementation of each component is shown

in Figure 20 for the sake of brevity. The processor and memory

bindings are represented in Figure 19 (lines 134-138). Line 134

defines the processor binding to each of the process. Further, lines

135-137 shows the binding between each process with individual

memory space within the memory (Mem). Line 138 shows the binding

between the processor (Proc) and the memory (Mem). In addition, to

identify the separation kernel component in the model, we have set a

property as defined in line 133. This property will be useful during

specific analysis that can be performed on the system model

containing separation kernel component.

Figure 20. AADL textual representation of separation kernel mechanism sub-

components.

Filter

Figure 21 shows the architecture diagram for the filter mechanism.

The purpose of a filter component is to allow only ZTA-compliant

inputs to propagate. The definition of compliance can be defined as a
security policy inside the Filter_Policy component. Whenever

an input arrives at its ports, compliance is checked using the defined

rules. The Filter_Algorithm, along with the

Filter_Policy, perform this compliance check. Input data is

then allowed to be placed on its output port if a successful

compliance is achieved; otherwise, the input is dropped. Filter

policies can easily be customized depending upon the type of input.

Figure 21. Architecture for the filter mechanism.

Figure 22 shows the textual AADL representation of the filter

mechanism that follows the design discussed above. First, we define

the component type of the filter mechanism in AADL (lines 25-31).

This consists of various input/output ports (lines 27-28). Next, we

define the implementation of the filter mechanism (lines 33-42). This
consists of Filter_Algorithm and Filter_Policy sub-

components (line 34-36) and the connections associated with them

(lines 37-41). The Filter_Algorithm and Filter_Policy

threads are defined using their own component type and

implementation (lines 5-23). In order to identify the filter component

in the model, we have set a property as defined in line 30. This

property will be useful during specific analysis that can be performed

on the system model containing filter component.

Figure 22. AADL textual representation of the filter.

Page 9 of 12

Experimental Model and ZT Application

In this section, we will first describe our use case experimental

model. Next, we will demostrate the application of the ZT

mechanisms defined in the previous section to the use case model. In

addition, we will discuss the advantages of the applied ZT

mechanisms in terms of improving the system security posture.

Initial UAV Architecture with no ZT Mechanisms

We have considered a UAV system for our case study. The function

of this UAV is to carry out automated surveillance missions within

some pre-determined geographical area. Figure 23 shows the UAV

architecture in AADL. The model consists of a mission computer,

flight controller, camera, and physical buses for data/message

exchange. Further, the mission computer consists of the hardware

devices associated with the UAV, i.e., radio, WiFi, camera hardware,

etc. It also consists of the software module responsible for the

behavior and functionality of the UAV system. The flight controller

consists of the GPS device for navigation purposes and to capture the

UAV’s position. In addition, the model also consists of AADL

elements for the system processor and memory. This initial model

does not contain any ZT mechanism discussed above, and hence the

system remains vulnerable to a variety of cyber threats. For instance,

the UAV may need to communicate with a ground station to receive

updates on its mission plans. However, since there is no mechanism

to validate the integrity of the software running on the ground station,

a cyber vulnerability exists that an attacker can exploit. An adversary

can easily ingest malicious software into the ground station code base

and start communicating with the UAV. Once communication is

established, the adversary could then pose a severe threat to the

health of the UAV and the succes of the overall mission, (for

example, by supplying false mission plans that lead the UAV to crash

or get captured). Other cyber vulnerabilities can result in similar

critical mission failures.

Initial UAV Software Architecture with no ZT

Mechanisms

Figure 24 represents the UAV software architecture. The software

resides on the mission computer of the UAV. It consists of various

device drivers such as radio, WiFi, UART, etc. Further, it also

consists of the sub-components that are responsible for capturing the

application logic such as the waypoint manager, flight planner,

camera manager, and no fly zone database. Since this design of the

UAV software architecture does not contain any ZT mechanisms, it

remains vulnerable to various cyber threats. For instance, when the

UAV receives a mission command over the radio from the ground

station, the message is directed to the flight planner component

(FLPN) by the radio driver. The flight planner will use this

information to generate a new flight plan, and send the updates to

other modules such as camera manager (CM) and waypoint manager

(WPM), which will perform their own computations to assist the UAV

in executing the mission. However, several security threats can result

from this design. For example, in the absence of an attestation

mechanism, the UAV could be communicating with a legitimate

ground station running corrupt software, and thus potentially receive

false mission commands. The possibility also exists that the mission

command received by the UAV is malformed even though the UAV

is communicating with a legitimate ground station running authentic

software. Both of these scenarios can easily result in mission failure

and ultimately lead to catastrophic consequences.

 Figure 23. Initial UAV model in AADL with no ZT mechanisms.

Page 10 of 12

Hardened UAV Architecture with ZT Mechanisms

To improve the security posture of the UAV model we have applied

the ZT mechanisms discussed above. Figure 25 shows the hardened

UAV model with the applied ZT mechanisms. The UAV consists of

the same ZT components as discussed above. We modeled the

encryption mechanism at this layer of the model because all messages

are directed to and from this level to their respective destinations. By

employing the encrytion mechanism, we can argue that the messages

flowing on the associated connections will remain secure and

encrypted, thereby avoiding the possibility of eavesdropping by

adversarial entities. Other ZT mechanisms are applied at the software

component level of the UAV model, described next.

Hardened UAV Software Architecture with ZT

Mechanisms

Figure 26 represnts the UAV software architecture with the

application of ZT mechanisms. In addition to the applied ZT

mechanisms, it contains all the components from the initial model. As

can be seen in the zoomed inset of the figure, the updated software

consists of ZT mechanisms such as attestation, policy enforcement

point, filter, and trusted data load. Now, we consider the same

scenario as discussed in the initial software component with no ZT

mechanisms. If there is a radio signal received by the UAV and it is

present at the radio device driver (Radio), it will not allow this

signal to pass through until it checks the integrity of the source, i.e.,

ground station software. To achieve this, the capabilities of the

attestation mechanism are utilized. First, the attestation mechanism

initiates an attestation request, and receives a response that consists

of the necessary information to perform attestation. Using this

information, attestation performs the software integrity evaluation of

the ground station and produces the necessary information at its
Policy_Info port. Next, this information is utilized by the PEP to

determine whether to allow communication between the Radio

driver and other components in the system. The critical outputs of the

Radio driver are only allowed to become available at the respective

components in the system only if the PEP establishes the necessary

trust. This process validates the integrity of the ground station

software and eliminates the cyber threats resulting from lack of

attestation. In addition, we have inserted a filter mechanism between

the PEP and the Flight Planner component. Once the PEP

passes the mission command to the filter mechanism, it checks to

determine whether the command is malformed. This prevents the

UAV from performing any illegal mission operations based on

malformed commands, which could result in damage to the UAV and

failure of the mission.

As another example, let us consider the scenario for a software

update over the radio for the UAV, assuming that the software

integrity of the source is already established by the attestation

mechanism and the PEP has established the trust between the Radio

driver and the Trusted_Data_Load components. Upon receiving

the updates from the PEP, the Trusted_Data_Load will validate

the authenticity and integrity of the software based on the mechanism

described in above. It will only allow the updates to reach the

Software_Updater module if it determines that the software

originated from a valid entity and the integrity of the software is
maintained. The Software_Updater will then perform the

updates. If such a mecahnism is not present, any arbitrary software

update can be performed, which could result in severe consequences.

Utilizing the defined ZT mecahnisms will therefore result in an

improved system security posture while minimizing various cyber

vulnerabilities.

Conclusions and Future Work

Security for CPS is becoming an important challenge. Zero trust is an

emerging technology that has proven very effective in addressing

security in the IT infrastructure domain. We have identified ZT

architecture patterns targeted specifically to CPS. We defined these

patterns in AADL and made them available to engineers as a library

of ZT components. With appropriate tool automation, these

components can be inserted into an existing AADL model in order to

provide the security enhancements associated with the ZT

components. We have demonstrated our approach using a UAV

surveillance system and discussed the use of our ZT patterns to

improve overall system security.

In future work, we will further develop our approach to build a tool

that provides the ability to leverage ZT architecture patterns and build

ZT compliant CPS systems while providing design-time assurance

that the system design is indeed ZT compliant. Engineers can easily

use the design assurance capability to build ZT compliant systems

while supporting their overall system design requirements. In

addition, this process will identify vulnerabilities early in design and

will enable engineers to take appropriate action to mitigate them.

Figure 24. Initial UAV software architecture in AADL with no ZT mechanisms.

Page 11 of 12

Figure 25. Hardened UAV model in AADL with added ZT mechanisms.

Figure 26. Hardened software architecture of the UAV model in AADL with ZT mechanisms.

Page 12 of 12

References

1. "Cars face cyber threats too,” The Washington Post, accessed

November 8, 2022,

https://www.washingtonpost.com/politics/2022/10/18/cars-face-

cyber-threats-too/.

2. “Aviation is facing a rising wave of cyber-attacks in the wake of

COVID,” Stephenson Harwood, accessed November 8, 2022,

https://www.shlegal.com/insights/aviation-is-facing-a-rising-

wave-of-cyber-attacks-in-the-wake-of-covid.

3. Freter, R., “Department of Defense (DOD) Zero Trust Reference

Architecture,” accessed November 12, 2022,

https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_

RA_v2.0(U)_Sep22.pdf.

4. Kerman, A., Olive, B., Scott, R., and Allen, T., "Implementing a

zero trust architecture," National Institute of Standards and

Technology 2020 (2020): 17-17.

5. Walker-Roberts, S., Mohammad, H., Omar, A., Mehmet, A., and

Ali, D., "Threats on the horizon: Understanding security threats

in the era of cyber-physical systems," The Journal of

Supercomputing 76, no. 4 (2020): 2643-2664.

6. Conlon, C., and Cesare, G., "A New Zero-Trust Model for

Securing Embedded Systems," In Proceedings of the Embedded

World Conference, Nuremberg, Germany. 2019.

7. Papakonstantinou, N., Douglas, L., Joona, L., et. al., "A zero

trust hybrid security and safety risk analysis method," Journal of

Computing and Information Science in Engineering 21, no. 5

(2021).

8. Feiler, P., David G., and John H., “The architecture analysis &

design language (AADL): An introduction,” Carnegie-Mellon

Univ Pittsburgh PA Software Engineering Inst, 2006.

9. Feiler, P., and David G., “Model-based engineering with AADL:

an introduction to the SAE architecture analysis & design

language,” Addison-Wesley, 2012.

10. SEI AADL Team, "OSATE: Plug-ins for front-end processing

of AADL models, 2008,"

http://la.sei.cmu.edu/aadl/currentsite/tool/osate. html.

11. Cofer, D., Amundson, I., Babar, J., Hardin, D., et. al. “Cyber

Assured Systems Engineering at Scale,” IEEE Security and

Privacy, May-June 2022.

12. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., et. al.

“seL4: formal verification of an OS kernel,” Proceedings of the

22nd ACM Symposium on Operating Systems Principles 2009

(SOSP 2009). Big Sky, Montana, USA., October 11-14, 2009. J.

N. Matthews and T. E. Anderson, Eds. ACM, 2009. pp. 207–

220.

13. Amundson, I., and Cofer, D., "Resolute assurance arguments for

cyber assured systems engineering." In Proceedings of the

Workshop on Design Automation for CPS and IoT, pp. 7-12.

2021.

Contact Information

Saqib Hasan is a Senior Research Engineer at Collins Aerospace. He

can be reached at saqib.hasan@collins.com.

Acknowledgement

The authors would like to thank the reviewers for providing

constructive feedback on the paper.

https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_v2.0(U)_Sep22.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_v2.0(U)_Sep22.pdf
mailto:saqib.hasan@collins.com

