Verified Hardware/Software Co-Assurance:
Enhancing Safety and Security for Critical Systems

David S. Hardin
Trusted Systems Group
Collins Aerospace
Email: david.hardin@collins.com

Abstract—Experienced developers of safety-critical and
security-critical systems have long emphasized the importance
of applying the highest degree of scrutiny to a system’s I/0O
boundaries. From a safety perspective, input validation is a
traditional “best practice.”” For security-critical architecture and
design, identification of the attack surface has emerged as a
primary analysis technique. One of our current research focus
areas concerns the identification of and mitigation against attacks
along that surface, using mathematically-based tools. We are
motivated in these efforts by emerging application areas, such
as assured autonomy, that feature a high degree of network con-
nectivity, require sophisticated algorithms and data structures,
are subject to stringent accreditation/certification, and encourage
hardware/software co-design approaches. We have conducted
several experiments employing a state-of-the-art toolchain, due
to Russinoff and O’Leary, and originally designed for use in
floating-point hardware verification, to determine its suitability
for the creation of safety-critical/security-critical input filters.
We focus first on software implementation, but extending to
hardware as well as hardware/software co-designs. We have
implemented a high-assurance filter for JSON-formatted data
used in an Unmanned Aerial Vehicle (UAV) application. Our
JSON filter is built using a table-driven lexer/parser, supported
by mathematically-proven lexer and parser table generation
technology, as well as verified data structures. Filter behavior is
expressed in a subset of Algorithmic C, which defines a set of C++
header files providing support for hardware design, including
the peculiar bit widths utilized in that discipline, and enables
compilation to both hardware and software platforms. The
Russinoff-O’Leary Restricted Algorithmic C (RAC) toolchain
translates Algorithmic C source to the Common Lisp subset
supported by the ACL2 theorem prover; once in ACL2, filter
behavior can be mathematically verified. We describe how we
utilize RAC to translate our JSON filter to ACL2, present
proofs of correctness for its associated data types, and describe
validation and performance results obtained through the use of
concrete test vectors.

I. INTRODUCTION

Experienced safety-critical and security-critical system ar-
chitects have long emphasized the importance of applying
the highest degree of scrutiny to a system’s I/O boundaries.'
From a safety perspective, input validation has long been a
“best practice.” For security-critical architecture and design,
identification of the attack surface has emerged as an important
analysis technique. One of our current research focus areas
on the DARPA Cyber-Assured Systems Engineering (CASE)

IDISTRIBUTION STATEMENT A. Approved for public release.

program? concerns the identification of and mitigation against
attacks along that surface, using the highest-assurance tech-
niques and tools available.

The need for verification techniques for sophisticated engi-
neering artifacts developed using hardware/software co-design
methods is increasing, notably for autonomous and cyber-
resilient systems employing complex data structures. This
begs the question: Can these algorithms and data structures
be specified in a language that admits implementation in
both software and hardware, while also supporting formal
verification? In this paper, we explore a particular toolchain,
initially developed for verified floating-point hardware design,
to determine whether it can also be utilized for verified
hardware/software co-design in other application areas.

Cyber-physical system designers generally limit the space
and time allocations for any given function, and require that
algorithms deliver results within a finite time, or suffer a
watchdog timeout. Furthermore, high-assurance design rules,
such as mandated by RTCA DO-178C Level A [1] for flight-
critical systems, frown on dynamic memory allocation, prefer-
ring simple array-based data structure implementations. This
discipline is also a benefit to hardware/software co-design,
as array-based implementations are much easier to realize in
hardware than dynamic data structures, with their requirements
for malloc and free operations — not to mention the attendant
programming errors that can result from dynamic memory
management, e.g., use-after-free.

In order to provide efficient implementations of high-level
data structures and complex algorithms used in modern cyber-
physical systems with the high assurance needed for accred-
itation, we are developing a design-with-formal-verification
method that involves verified lowering of high-level design
specifications to array-based implementations [2].

II. APPLICATION: HIGH-ASSURANCE FILTERING OF
JSON-FORMATTED DATA

By way of a motivating example, consider the model of a
mission control system for an unmanned aerial vehicle (UAV)
shown in Fig. 1. This model, a simplification of the AADL
model used on CASE, is based on the UxAS UAV developed
at the U.S. Air Force Research Laboratory [3], and uses legacy

>The views expressed are those of the authors and do not reflect the
official policy or position of the Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government.

|GS \«—»] RADIO || FPLN |— WPM —»| FCC |

S R S

Fig. 1. Simplified model of a UAV mission controller.

components from that system. The two main components of
the system are a ground station (GS) and the UAV, which has
as subcomponents a radio (RADIO), a flight planner (FPLN),
a waypoint manager (WPM), and a flight control computer
(FCC). General mission parameters flow from GS to FPLN,
by way of the radio link. The flight planner generates the full
flight plan—a sequence of waypoints to follow—and sends it
to the waypoint manager. The WPM processes a fixed-size
window of the next few waypoints to be dealt with by the
flight control computer. The FCC is a separate computer which
is in charge of actually flying the vehicle, interpreting the
waypoints and incoming sensor data and sending directives
to adjust control surfaces, etc. As the FCC makes progress, it
tells the WPM to advance the window, and also sends back
various sensor data to the FPLN, WPM, and potentially the
GS via the RADIO.

A first step towards securing such a system is isolation:
when an untrusted legacy component is compromised or oth-
erwise malfunctions, it must not interfere with the correct exe-
cution of other components, or read privileged data from other
components through unintended channels. To achieve this, the
connections between the components that are explicitly present
in design diagrams such as Fig. 1 must be the only commu-
nication channels present in the running system. While such
isolation can be achieved by running each component on its
own physically isolated hardware, we enable miniaturization,
reduce cost, and gain flexibility by using the same general-
purpose hardware to run several distinct components. In order
to recover isolation in this setting, we host our components on
seL4 [4], a verified capability-based microkernel accompanied
by formal proof of isolation properties down to the binary
level.

While isolation defends against attacks through unintended
channels, it does nothing to guard against attacks through
the intended channels. For example, a compromised ground
station or radio driver could be used to feed malformed
messages that the legacy flight planner is not equipped to
handle. This could be exploited to induce crashes, privilege
escalation through buffer overflow, etc.

Our goal on the CASE program is that the system designer,
having identified the potential for such a vulnerability (our
CASE tools provide automated analysis to aid in the detec-
tion of such vulnerabilities), should have at her disposal a
toolbox of security-enhancing architectural transformations
for inserting countermeasures into the architecture. These
countermeasures should be non-intrusive, reusable and highly

trustworthy. They should not modify the (potentially brittle)
legacy components of the design — instead, they place se-
curity enhancements around them. They should also be easy
to configure and deploy for the needs of different systems.
When we introduce more components into a system, they
too potentially become part of the attack surface. Thus, each
component inserted by a transformation is accompanied by a
formal proof connecting the component’s intended behavior
with the behavior of its implementation down to the binary
level.

The concrete transformation we consider in this paper is
verified filter insertion [5], which is a pattern to prevent attacks
that rely on malformed messages. This transformation is illus-
trated on the UAV mission control example in Fig. 2. The filter
controls the flow of messages on the communication channel,
ensuring that only well-formed messages get forwarded from
the radio driver to the flight controller, and also that every
well-formed message gets forwarded. The precise definition
of “well-formed” will vary from design to design; hence, it
is a parameter that the system designer can instantiate. In
this paper, we consider filters where well-formedness can be
decided by adherence to the JSON standard [6].

JSON (JavaScript Object Notation) is a popular lightweight
interchange format for structured data. JSON is text-based, and
is relatively simple to generate and parse. JSON data payloads
are built from two basic primitives: a collection of name-
value pairs, and an ordered list of values. In our use case,
a UAV air-ground communications system employs JSON to
encode certain messages sent between the UAV and its ground-
based control station. For example, a UAV coordinate could
be encoded in JSON as:

{"lat":42.008, "long":-91.644, "alt":5000}

To aid in thwarting cyber attacks, we need to construct
a filter component that checks whether a given air-ground
message is legal JSON, and rejects any malformed messages.
However, as this added filter component could itself contain
vulnerabilities (thus increasing rather than decreasing the
attack surface), we need to design said filter in the highest
assurance manner possible.

In order to create such a JSON filter, we need to perform
both lexical and syntactic level analysis on any candidate
JSON message received?.

A. Lexical Analysis

For the lexical level analysis, we have constructed verified
tools that generate a verified lexer based on Deterministic
Finite-state Automata (DFAs), where the individual lexeme
specifications are given as regular expressions [7].

In previous work [5], we generated regular-expression-based
filter functions in Higher Order Logic that were then compiled
into verified machine code via the facilities of the verified
CakeML compiler [8]. This work benefited from a method,

3Note that we assume that there is some system-defined maximum message
size, such that the message to be checked can be held all at once in memory.

G5}

Fig. 2. Simplified model of a UAV mission controller with inserted filter.

developed for the CASE program, to prove liveness properties
for non-terminating CakeML programs [9]. In the present
work, we wish to experiment with hardware/software co-
design utilizing the tools described in Section III, so we have
used the same verified DFA tables as generated previously, but
have written a simple DFA traverser by hand in a language
better-suited for hardware/software co-design; in future work,
this traverser code will be automatically generated.

1) Formalization of Regular Expression Matching: The
semantics of regular expressions, £(—), maps from a regular
expression to a formal language (set of strings). Strings are
represented as lists of characters. Regular expression opera-
tions are described below:

L(Epsilon) = {¢} ;empty string
L(Symbs P) = {[z] |z € P} ;char from set
LOrryre) = L{r1)UL(r2) ; disjunction
L(Catryry) = L(r1)-L(re) ; concatenation
L(Star r) = (L(r)* ; Kleene star
L(Not r) = L(r) ; complement
LAnd r; re) = L(r1) N L(re) ; intersection

The concrete syntax of regular expressions used to specify
lexemes in our system is that used by various programming
languages. As an example, consider a simple regular ex-
pression for a hexadecimal number, where both 0x and 0X
hexadecimal prefix indicators are accepted:

0(x|X)[0-%9a—fA-F]+

Here | indicates disjunction, + means “one or more,” and
[1 encloses a set of possible characters. The above regular
expression can thus be read as “0 followed by either x or X,
followed by one or more characters in the ranges 0 through
9, a through £, or A through F.”

2) Regular Expression Compilation: A variety of means
exist to translate a regular expression to a corresponding
DFA. We chose one from Brzozowski [10], who proposed an
algorithm that compiles regular expressions directly to DFAs,
avoiding low-level automata constructions and treating non-
standard—but useful—boolean operations such as negation
and intersection uniformly. The core of the algorithm is an
elegant quotient construction identifying regular expressions
with DFA states. Recent work [11] has shown that his method
often generates minimal DFAs and can be extended to large
character sets and character classes.

We have formalized and proved a version of Brzozowski’s
algorithm in HOL4. The complete HOL4 proof that the

array-based DFA code generated by the Brzozowski method
implements the semantics of regular expressions is provided
in the HOL4 distribution®.

B. Syntactic Analysis

For syntactic-level analysis, we employ the Vermillion veri-
fied LL(1) parser generator due to Lasser, et. al. [12], coupled
with a parse table traverser hand-written using the toolchain
described in Section III. The parse table traverser is a bit more
complex than that for the lexer, in that it requires a rule stack;
for this, we employ a verified stack component, discussed in
Section IV. We also record the rules used as we proceed in a
list, allowing us to reconstruct the parse tree later on.

Our LL(1) grammar rules for JSON are presented below.
An initial capital letter indicates a nonterminal symbol; the
rest are terminals. As before, € designates the empty string.
The terminal symbols fls (false), fit (float), int (integer), nul
(null), str (string), tru (true), open brace, close brace, open
bracket, close bracket, colon, and comma constitute the JSON
lexemes produced by the lexer.

Value — { Pairs } Pairs — Pair PairsTl
Value — [Elts] PairsTl — ¢

Value — str PairsTl — , Pair PairsTl
Value — int Pair — str @ Value
Value — fit Elts — &

Value — tru Elts — Value EltsTI
Value — Afls EltsTI — &

Value — nul EltsTI — , Value EltsTl
Pairs — ¢

The structure of the overall filter for JSON, including both
lexical and syntactic analysis toolchains, is displayed in Fig. 3.

III. ALGORITHMIC C AND HARDWARE/SOFTWARE
CO-ASSURANCE

We take our primary inspiration for hardware/software co-
assurance from the hardware verification domain. To achieve
the highest level of assurance, we need a development lan-
guage that allows us to specialize designs to hardware or
software, and that can be reasoned about using automated
formal verification tools. In his tour de force book on hardware
floating-point formal verification [13], David Russinoff details
a 20-year quest to provide mathematical proofs for complex
arithmetic hardware utilizing an automated theorem prover,

4In examples/formal-languages/regular.

inpu
Target]Lexer Table\] Parse Table\

’Token Regexps‘ | Grammar Rules |

Fig. 3. JSON filter built from hardware/software co-assurance components.

namely ACL2. Russinoff begins by presenting a formalization
of modular arithmetic in standard mathematical notation, but
backed by ACL2 collections of ACL2 lemmas, called books
in ACL2 parlance. These RTL books are named after the
“Register Transfer Logic” artifacts that hardware designers
produce using Hardware Description Languages (HDLs); the
RTL books are designed to assist in reasoning about the
formalization of designs expressed at the level of RTL. After
developing progressively more complex arithmetic circuits,
Russinoff concludes his text with an exposition of the complete
mathematical verification of representative Arm floating-point
RTL for addition, multiplication, fused multiply/add, division,
and square root. All of the sources and tools described in
Russinoff’s book are available as part of the ACL2 distribution,
so the curious reader can reproduce his proofs.

The development language that Russinoff uses in his text
is a subset of Algorithmic C [14]. Algorithmic C entails a
set of freely available C++ header files providing support
for hardware development, including the peculiar bit widths
utilized in floating-point design, and enables compilation to
both hardware and software platforms. John O’Leary and
David Russinoff have created a toolchain for a subset of
Algorithmic C, called Restricted Algorithmic C, or RAC. (RAC
started as a similar toolchain for SystemC, called MASC
[15].) The RAC toolchain accepts RAC source, parses it to
an S-expression-based intermediate form, then translates this
intermediate to S-expression forms acceptable to ACL2. A
simplified view of the RAC toolchain is shown in Fig. 4; for
a complete depiction, see Fig. V.1 of [13].

RAC imposes several restrictions on the Algorithmic C
developer. The most significant of these is that all RAC
function arguments must be pass-by-value, and all functions
must be side-effect-free. Additional restrictions apply to loops,
etc., in order to ease the translation of loops into ACL2
recursion, and so on; see Chapter 15 of [13] for details.
C++ loops are translated into ACL2 tail-recursive functions®.
The translator automatically generates ACL2 measures that
are used in the proofs of termination that must be performed

STail-recursive functions can be efficiently compiled to loops, avoiding
potential call stack overflow issues, but are somewhat more difficult to reason
about than non-tail-recursive functions.

Algorithmic C
Headers

AlgorithmicC| || ACL2
Source Translator

C++/ \

Hardware
Compiler | | Synthesis

ACL2
Theorem
Prover

\

Proofs

Fig. 4. Restricted Algorithmic C (RAC) toolchain.

#define STK_MAX_NODE1l 16383

struct STKNode {
i6ed val;
uil used;
uild next;

bi

struct
uild

STKObJj {
nodeHd;
uild nodeTl;
uild nodeCount;

array<STKNode, STK_MAX_NODE1> nodeArr;

Fig. 5. Stack datatype declaration in Algorithmic C.

before ACL2 functions can be admitted into the logic; with
the appropriate measures, ACL2 termination proofs proceed
automatically without user input.

The challenge at hand, then, is to determine the RAC
toolchain’s effectiveness for the development of high-
assurance hardware/software algorithms and data structures in
varied domains, particularly our JSON filter.

IV. A VERIFIED STACK DATATYPE FOR THE JSON FILTER

As an example, consider the development of a basic stack
datatype, implemented using a fixed-size array. The Algorith-
mic C header file declaration for this type is given in Fig. 5.
We arbitrarily set the maximum number of stack elements to
16383 for this example.

Note the use of specific integer widths, such as the uil4
declaration for the 14-bit unsigned integer edge indices, that
are not readily available in “vanilla” C++. One might deem
these exacting type declarations to be bothersome, but, in our
experience, the benefits of such strong typing in areas such
as early error identification outweigh the costs. Also note that
the struct-of-arrays of Fig. 5 is translated into ACL2 records,
with the usual ACL2 record AG (get) and AS (set) operators.

The body of the stack code consists of a number of basic
C++ functions implementing various stack operations. One
such stack operator is the push operator, depicted in Fig. 6.

A. Verification by ACL2 Proof

Once the stack datatype code has been translated into
ACL2 by the RAC toolchain, we can begin to reason about
the translated functions in the ACL2 environment, using the
RTL books, as well as other ACL2 books. One functional

STYP STK_push (i64 v, STKObJj amp (SObj)) {
if ((SObj.nodeCount == MAX_NODE) || (v == BAD_VAL)) {
return SVAL;
} else {
uild prevHd = SObj.nodeHd;
uild index = STK_find_free_node (SObj);

if (index > STK_MAX_NODE) {
return SVAL;
} else {
SObj.nodeHd = index;
if (SObj.nodeCount == 0) {
SObj.nodeTl = index;
}
SASN STK_add_node_at_index (index, v,
SObj.nodeArr[index] .next = prevHd;
return SVAL;

S0bj) ;

Fig. 6. Stack push function in Algorithmic C.

correctness property to prove of our stack representation is
that the top-of-stack resulting from a push followed by a pop
is the same as the original top-of-stack, given that space exists
for the push. This is expressed in ACL2 as

(defthm STK_top-0f-STK_pop-o0f-STK_push
(implies
(and
(good-stkp 0Ob3j)
(spacep 0b7j)
(acl2::signed-byte-p 64 n)
(>> n *STK_MIN_VALx*))

(STK_push n 0bj)))

((STK_top (STK_pop

(STK_top Obj))))

where good-stkp is a well-formedness predicate for the stack
object, and spacep is true if there is space for more elements
on the stack. ACL2 readily proves this theorem after a few
basic lemmas are introduced.

B. Validation by Simulation

In addition to formal verification of the stack datatype,
we can perform validation of the datatype via simulation,
both within ACL2, as well as via the C++ compilation
and Hardware Synthesis paths depicted in Fig. 4. We have
introduced some ‘“preprocessor magic” to the return types,
struct types, and return statements of our code so that larger
structs can be used in C++ simulations, with the usual pass-by-
reference semantics, while preserving the RAC pass-by-value
restrictions for analysis.

V. RESULTS

We were able to successfully realize a JSON lexical analyzer
and syntactic analyzer in RAC for a significant subset of JSON
(we chose not to deal with the complexities of, e.g., Unicode in
this first experiment). In our implementation, an input message
(sequence of bytes) is presented to the lexical analyzer, and
the tokens generated by the lexer are then directly fed to
the syntactic analyzer. If the lexical and syntactic analyses
both succeed, an input-bytes-to-token map, as well as a parse

tree, are generated, and the message is allowed to be further
processed by the UAV software; otherwise the input message
is rejected. The code for the JSON filter comprised some 1800
RAC source lines, as well as approximately 600 lines of ACL2
theorems specific to the correctness of the JSON filter. All
work was performed using the RAC tools provided as part of
ACL2 version 8.2 running on Mac OS X.

We were able to test our JSON filter on concrete input
messages by running the executable binary code generated by
compiling the RAC code using the clang compiler, as well as
by invoking the (automatically translated) JSON filter func-
tions in ACL2 from the ACL?2 read/eval/print loop; these two
approaches yielded identical test results. We also measured
performance of our compiled JSON lexer/parser, using test
JSON input from [12]. The RAC-derived executable was some
20% faster than a lexer/parser generated by the (unverified)
Menhir parser generator [16], running on the same hardware,
and presented with the same input. The verified parser reported
in [12] is 2-4 times slower than the Menhir-generated version.

VI. RELATED WORK

Much of the work on system-level formal verification
has been performed in the context of higher-level Model-
Based System Engineering languages such as AADL [17],
or Simulink/Stateflow (e.g. [18], [19]). Most of the formal
verification work of which we are aware utilizes model check-
ers to establish Linear Temporal Logic (LTL) or Computation
Tree Logic (CTL) properties. While hardware/software co-
design is enabled by these system-level architecture and design
tools, very little has been done on true hardware/software co-
assurance. Notable work has been done on the development
of High-Assurance Domain-Specific languages targeting both
hardware and software implementation (e.g. [20], [21]).

Floating-point hardware verification utilizing theorem prov-
ing technology has a notable history (e.g. [22], [23], [13]).
Many of these efforts have focused on engineering artifacts
expressed using traditional Hardware Description Languages,
such as Verilog; Russinoff’s work using Algorithmic C is a
notable exception.

Many tools exist for the verification of C code. Tools that
take a similar approach to ours include Appel’s Hoare Logic
for CompCert C [24], which is derived from the operational
semantics of the CompCert verified C compiler in Coq [25].
The AutoCorres tool [26] arose out of the selL4.verified
operating system verification effort; it translates ASTs from a
parser for the restricted C dialect used in seL4 to Schirmer’s
SIMPL theory in Isabelle/HOL [27].

VII. CONCLUSION AND FUTURE WORK

We have explored methods and tools for enhancing
the safety and security of critical systems using a hard-
ware/software co-assurance approach. We employed a state-of-
the-art toolchain, Restricted Algorithmic (RAC), due to Russi-
noff and O’Leary, and documented in Russinoff’s floating-
point hardware verification book, to develop high-assurance
architectural transformations that can be realized as hardware,

software, or a combination of the two. We utilized the RAC
toolchain to translate Restricted Algorithmic C to the subset
of Common Lisp supported by the ACL2 theorem prover. We
translated an example JSON filter application featuring alge-
braic datatypes “lowered” to an array-based representation,
verified table-driven lexing, as well as verified table-driven
parsing, to ACL2, and then carried out correctness proofs in
ACL2. Finally, we described methods for validation of our
JSON filter by simulation, both within ACL2, as well as by
execution of the compiled RAC source code.

In future work, we will investigate various ways to refine
the RAC toolchain, e.g., utilizing ACL2 typed records, and
improving error handling. In the interest of “eating one’s own
dog food,” we are keen to implement a verified version of
the RAC-to-ACL2 translator using the verified lexer/parser
technology used to create the JSON filter; however, we first
need to develop a means for high-assurance invocation of
“action code”. We also see a need for RAC code generation
from higher-level functional languages, such as Scala or ML.
Finally, we will investigate the composition of hardware and
software modules, both written in Algorithmic C, with support
for proof development for the resulting system.

VIII. ACKNOWLEDGMENTS

Many thanks to Sam Lasser of Tufts University for his assis-
tance with the Vermillion verified LL(1) parser generator code;
to David Russinoff of Arm for answering questions about the
RAC toolchain; and to Konrad Slind of Collins Aerospace
for creating the verified JSON lexer tables. This work was
sponsored in part by the Defense Advanced Research Projects
Agency (DARPA).

REFERENCES

[1] DO-178C Software Considerations in Airborne Systems and Equipment
Certification, RTCA Committee SC-205, 2015. [Online]. Available:
https://my.rtca.org/nc__store?search=DO-178C

[2] D. S. Hardin and K. L. Slind, “Using ACL2 in the design of efficient,
verifiable data structures for high-assurance systems,” in Proceedings of
the 15th International Workshop on the ACL2 Theorem Prover and its
Applications, ser. EPTCS, S. Goel and M. Kaufmann, Eds., vol. 280,
2018, pp. 61-76.

[3] S. Rasmussen, D. Kingston, and L. Humphrey, “A brief introduction to

unmanned systems autonomy services (UXAS),” in 2018 International

Conference on Unmanned Aircraft Systems (ICUAS), June 2018, pp.

257-268. [Online]. Available: https://doi.org/10.1109/SP.2013.35

G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,

H. Tuch, and S. Winwood, “seL.4: formal verification of an operating-

system kernel,” Comm. ACM, vol. 53, no. 6, pp. 107-115, 2010.

[Online]. Available: http://doi.acm.org/10.1145/1743546.1743574

[5]1 D. S. Hardin, K. L. Slind, J. A. Pohjola, and M. Sproul, “Synthesis of

verified architectural components for autonomy hosted on a verified mi-

crokernel,” in Proceedings of the 53rd Hawaii International Conference

on System Sciences, January 2020, pp. 6365-6374.

The JSON Data Interchange Syntax Standard (ECMA-404),

ECMA International, 2017. [Online]. Available: http://www.ecma-

international.org/publications/filessECMA-ST/ECMA-404.pdf

[7]1 D.S. Hardin, K. L. Slind, M. A. Bortz, J. Potts, and S. Owens, “A high-
assurance, high-performance hardware-based cross-domain system,” in
Computer Safety, Reliability, and Security - 35th International Confer-
ence, SAFECOMP 2016, Trondheim, Norway, September 21-23, 2016,
Proceedings, ser. LNCS, vol. 9922. Springer, 2016, pp. 102-113.

[4

=

[6

=

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: A
verified implementation of ML,” in POPL ’l14: Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, Jan. 2014, pp. 179-191.

J. A Pohjola, H. Rostedt, and M. O. Myreen, “Characteristic
formulae for liveness properties of non-terminating CakeML
programs,” in 2019 International Conference on Interactive
Theorem Proving (ITP), September 2019, pp. 32:1-32:19. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/lipics-complete/lipics-
vol141-itp2019-complete.pdf

J. Brzozowski, “Derivatives of Regular Expressions,” Journal of the
ACM, vol. 11, no. 4, pp. 481-494, October 1964.

S. Owens, J. Reppy, and A. Turon, “Regular-expression derivatives re-
examined,” Journal of Functional Programming, vol. 19, no. 2, pp. 173—
190, Mar. 2009.

S. Lasser, C. Casinghino, K. Fisher, and C. Roux, “A Verified
LL(1) Parser Generator,” in [0th International Conference on
Interactive Theorem Proving (ITP 2019), ser. Leibniz International
Proceedings in Informatics (LIPIcs), J. Harrison, J. O’Leary, and
A. Tolmach, Eds., vol. 141, 2019, pp. 24:1-24:18. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2019/11079

D. M. Russinoff, Formal Verification of Floating-Point Hardware De-
sign: A Mathematical Approach. Springer, 2018.

Algorithmic C (AC) Datatypes, Mentor Graphics Corporation,
2016. [Online]. Available: https://www.mentor.com/hls-lp/downloads/ac-
datatypes

J. W. O’Leary and D. M. Russinoff, “Modeling algorithms in SystemC
and ACL2,” in Proceedings of the 12th International Workshop on the
ACL2 Theorem Prover and its Applications, vol. 152. EPTCS, 2014,
pp. 145-162. [Online]. Available: https://arxiv.org/pdf/1406.1565.pdf
F. Pottier and Y. Regis-Gianas, Menhir Reference Manual, INRIA, 2020.
[Online]. Available: http://gallium.inria.fr/ fpottier/menhir/manual.pdf
D. Cofer, J. Backes, A. Gacek, D. DaCosta, M. Whalen, I. Kuz,
G. Klein, G. Heiser, L. Pike, A. Foltzer, M. Podhradsky, D. Stuart,
J. Grahan, and B. Wilson, “Secure mathematically-assured composition
of control models,” Air Force Research Laboratory Information
Directorate, Tech. Rep., September 2017. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/1039782.pdf

M. Whalen, D. Cofer, S. Miller, B. Krogh, and W. Storm, “Integration
of formal analysis into a model-based software development process,”
in FMICS, 2007.

D. S. Hardin, T. D. Hiratzka, D. R. Johnson, L. G. Wagner, and
M. W. Whalen, “Development of security software: A high assurance
methodology,” in Proceedings of the 11th International Conference on
Formal Engineering Methods: Formal Methods and Software Engineer-
ing (ICFEM’09), K. Breitman and A. Cavalcanti, Eds. Springer, 2009,
pp. 266 — 285.

S. Browning and P. Weaver, “Designing tunable, verifiable cryptographic
hardware using Cryptol,” in Design and Verification of Microprocessor
Systems for High-Assurance Applications, D. S. Hardin, Ed. Springer,
2010, pp. 89-143.

A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling,
“Introducing Kansas Lava,” in Implementation and Application of Func-
tional Languages, ser. LNCS, vol. 6041. Springer, 2009, pp. 18-35.
J. Harrison, “Floating-point verification using theorem proving,” in
Formal Methods for Hardware Verification, M. Bernardo and A. Cimatti,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 211-
242.

W. A. Hunt, S. Swords, J. Davis, and A. Slobodova, “Use of formal
verification at Centaur Technology,” in Design and Verification of
Microprocessor Systems for High-Assurance Applications, D. S. Hardin,
Ed. Springer, 2010, pp. 65-88.

A. W. Appel, Program Logics for Certified Compilers.
University Press, 2014.

X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107-115, 2009.

D. Greenaway, J. Lim, J. Andronick, and G. Klein, “Don’t
sweat the small stuff: Formal verification of C code without the
pain,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI *14.
New York, NY, USA: ACM, 2014, pp. 429-439. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594296

N. Schirmer, “Verification of sequential imperative programs in Is-
abelle/HOL,” Ph.D. dissertation, TU Munich, 2006.

Cambridge

