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Abstract. Fuzzing is a form of robustness testing in which random,
invalid or unusual inputs are applied to a system while monitoring its
overall health. Model-based fuzzing is a fuzzing technique that employs
a mathematical model of system behavior to guide the fuzzing pro-
cess and explore behaviors that would otherwise be difficult to reach by
chance. Whereas traditional fuzzing frameworks generate tests randomly,
a model-based framework can deduce tests from a behavioral model us-
ing a constraint solver. We are developing FuzzM, a model-based fuzzing
framework that employs Lustre as a modeling language and leverages
the JKind model checker as a constraint solver. Because the state space
being explored by the fuzzer is often large, the rapid generation of test
vectors is crucial. The need to generate tests quickly, however, is anti-
thetical to the use of a constraint solver. Our solution to this problem is
to use JKind to generate an initial solution and then to perform trape-
zoidal generalization of the solution relative to the Lustre specification.
Test generation then consists of rapid, repeated, randomized sampling
of trapezoidal generalization spaces. Trapezoidal generalizations are or-
dered, hierarchical conjunctions of linear constraints. They are more ex-
pressive than simple intervals but are more efficient to manipulate and
easier to sample than generic polytopes. In this paper we describe an
approach to the trapezoidal generalizations of JKind counterexamples
relative to Lustre models with integer division, remainder, and uninter-
preted functions. We demonstrate our approach on a Lustre specification
that recognizes permutations of complete integer sequences by general-
izing a counterexample sequence satisfying the permutation property to
produce a family of permuted sequences that can be rapidly sampled.

1 DMotivation

Fuzzing (or fuzz testing) is a form of robustness testing in which random, invalid
or unusual inputs are applied while monitoring the overall health of the system.

This work was sponsored by DARPA /AFRL Contract FA8750-16-C-0218. The views,
opinions, and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of Defense
or the U.S. Government. Approved for Public Release, Distribution Unlimited



Fuzz testing has been successful in finding bugs. The efficacy of random fuzzing,
however, is often limited by even simple software well-formedness checks that
are unlikely to succeed on random data. CRC checks on Ethernet packets, for
example, are unlikely to be correct by chance thus most packets generated at
random are likely to be immediately discarded. Smart fuzzers have emerged
that allow the user to specify data format templates while computing essential
content such as CRCs programmatically. Random (but well structured) inputs
are then constructed by the fuzzer by filling in these data templates.

Model-based fuzzing is an evolution of smart fuzzing that, in addition to data
formats, employs a mathematical model of expected system behavior to guide
the fuzzing process. Whereas smart fuzzing frameworks construct fuzz tests by
simply filling in data structure templates, a model-based framework can deduce
tests from a behavioral model using a constraint solver. Testing objectives can be
expressed mathematically as logical constraints and those constraints, along with
the behavioral model, can be passed to a constraint solver that deduces an input
sequence that will cause the model (and, presumably, the device under test) to
satisfy the testing objective. Using a constraint solver in this manner enables the
creation of high-quality tests capable of targeting deep system behaviors that
random testing alone would be unlikely to reach.

The objective of model-based fuzzing is to find bugs in systems whose ab-
stract behavior is described by a model, not to identify bugs in the behavioral
system model itself. While progress against traditional test coverage metrics can
be measured against the model, the objective of fuzz testing is to explore the
behavior of a system beyond the model to search for otherwise unknown vul-
nerabilities. Because the unknown state space being explored by the fuzzer is
likely to be substantially larger than the model state space, effective exploration
of that space requires the rapid generation of large numbers of random test vec-
tors. Unfortunately, the need to generate tests quickly is antithetical to the use
of a constraint solver. In addition to performance limitations, it can be surpris-
ingly difficult to induce a constraint solver to generate random solutions. Rather,
solutions tend to cluster around model and constraint features or near special
values like zero. While specially crafted hypotheses can be employed to drive the
solver away from previous solutions, the presence of large, complex hypotheses
can degrade solver performance even further.

Generalization can be employed to help to meet the objectives of model-
based fuzzing by decoupling the constraint solving from test generation. Gener-
alization is a technique that converts a single constraint solution into a set of
solutions that cover the state space in the region of the original solution. Given
a generalized solution, test generation can be seen as a matter of sampling the
solution set. With trapezoidal generalizations, this sampling process is amenable
to efficient implementation and is capable of rapidly producing large numbers of
high-quality tests from a single solver invocation. The sampling of the solution
set can also be randomized, shifting much of the onus of generating desirable,
random test distributions from the solver to the sampler.



This paper describes a trapezoidal generalization technique developed for the
model-based fuzzing framework FuzzM. FuzzM leverages Lustre as a modeling
language and the JKind model checker as a constraint solver. JKind produces
solutions (counterexamples) that exhibit potentially hard to reach model be-
haviors while generalization is relied upon to provide the bandwidth needed to
explore the state space around those solutions in search of proximate vulnera-
bilities in the target system. We say that the constraint solver is used to target
known behaviors and the generalizer is used to fuzz unknown behaviors. This
configuration allows us to amplify JKind solution streams of approximately 1
vector per second into fuzzing streams of nearly 2000 test vectors per second.

2 Lustre

Lustre is a formally defined, declarative, synchronous dataflow language designed
for describing reactive systems and for expressing safety properties about such
systems.[3]. While a series of specifications for the Lustre language have been
published, no reasoning tool appears to support every language feature. Rather,
most tools support both some subset and some superset of some version of the
official language. Because we are leveraging the JKind model checker, we restrict
our discussion to those fragments of the Lustre language supported by JKind.

3 JKind

JKind is an open-source infinite-state model checker for safety properties of
synchronous systems. Systems and their properties are expressed in the Lustre
language. Verification is based on k-induction and property directed reachability
using back-end SMT solvers. A verified property is guaranteed to be true for all
runs of the system. A falsified property is reported with an explicit counterex-
ample demonstrating the property violation. In our FuzzM framework, JKind is
employed as a constraint solver. Constraints are submitted to JKind as negated
properties. When those properties are subsequently falsified, the resulting coun-
terexample is a satisfying instance of the constraint. JKind is used as the back-
end model checker for many other projects and tools at Rockwell Collins as well
including the AGREE tool and the SIMPAL tool. JKind is designed to be cross-
platform, reliable, and easy to extend, with power and performance as secondary
goals. While JKind attempts to be largely compatible with pkind and Kind 2,
this varies over time due to continued independent developments in each system.

4 Complete Set Challenge

In a recent effort to fuzz a network communication protocol we were faced with
the challenge of modeling a transport layer fragmentation and reassembly pro-
tocol. The specification required that the receiver be capable of accepting trans-
mission packets in any order and then, once a complete sequence is received, re-



construct the original network packet from the payloads of the individual trans-
mission packets. To accomplish this, the transmitter assigns each fragmented
transmission packet a sequence number. After all of the transmission packets
have been sent, the receiver uses the sequence numbers to correctly order the
packets. Only if the received packets contain a complete set of sequence numbers
does reassembly take place,

To fuzz these requirements, we need a model that can cause the solver to
generate packets with complete sets of sequence numbers, but appearing in any
order. In other words, we need to define a Lustre predicate that can accept
packets, in any order, and determine whether or not the sequence numbers from
those packets constitutes a complete set of numbers over some interval.

In defining the complete set predicate, we observe that it is necessary for the
sum of the sequence numbers to equal the sum of all of the numbers in the desired
interval. Such a summation property is easy to express in Lustre. We have also
proven that the aforementioned equality of the sums is sufficient to characterize
a complete set if the collection of sequence numbers also contains no duplicates.
Capturing this uniqueness property in Lustre, however, is not straightforward.

While, arguably, one could use an array to maintain a history of sequence
numbers, this approach is cumbersome and limited by the fact that JKind sup-
ports only fixed, finite arrays. Another, more elegant, approach is to use unin-
terpreted functions. Assume that the evaluation of an uninterpreted function on
each sequence number in turn is known to be equal to the value of a simple, in-
creasing sequence. We then know that the output of the function, being a simple,
increasing sequence, contains no duplicates. But if the outputs of the function
are all different, then, by virtue of the fact that it is a function, the inputs must
be different as well. In this way, we can use uninterpreted functions to identify
sequences of numbers that contain no duplicates.

A Lustre specification that combines the aforementioned properties to rec-
ognize complete sets of input values is presented in Figure 1.

5 JKind UF Support

We recently added UF support to JKind to enhance the expressive capabilities of
the FuzzM framework and to enable solutions to challenges such as complete set
problem. A substantial concern when adding new features or theories into JKind
is whether they will work generically across the supported solvers and engines.
Another issue is that, while solver support is necessary for most theories, it
constitutes only a small fraction of the actual coding effort. Most of the work
tends to be in transforming the Lustre into a simplified form for the SMT solvers
while preserving/handling the new theory. That is, most the work in adding new
theory support is 'plumbing’ and ’bookkeeping’.

Because SMTInterpol supports UF we were able to support UF with the PDR
engine. All of the other SMT-LIB based solvers support UF so implementing
this interface allowed us to advantage of this theory with Yices2, Z3, CVC4,
and MathSAT. Most of the solvers supported by JKind are SMT-LIB compliant.



function unique(x: int) returns (y: int);
function min() returns (y: int);

node main(in: int) returns (complete_set: bool) ;
var
pin: int;
sequence: int;
sumsq: int;
sumin: int;
ssize: int;
interesting_length: bool;
not_increasing: bool;
not_decreasing: bool;
sum_equiv: bool;
let

--- Establish arbitrary bounds on the input
assert( in < 128);
assert(-128 <= in);

--— We do this to keep the solutions
--- from being completely degenerate.
not_decreasing = false -> ((in < (pre in)) or (pre not_decreasing));
not_increasing = false -> ((in > (pre in)) or (pre not_increasing));

--— Here we use an uninterpreted function to establish an arbitrary
--- lower bound on the interval and say that all values are greater
--- than or equal to it.

assert(min() <= in);

-- We bias our input stream by the arbitrary minimum to
-- generate a sequence of non-negative values.
pin = in - minQ);

-- This assertion ensures that out input sequence
-- contains no duplicates.

sequence = 0 -> (pre sequence) + 1;

assert (unique(pin) = sequence);

-- The sum_equiv predicate ensures the sum of the input sequence is
-- equal to the sum of a simple arithmetic sequence

sumsq = (sequence -> sequence + (pre sumsq));

sumin = (pin -> pin + (pre sumin));

sum_equiv = (sumsq = sumin);

-- FuzzM negates the properties it submits to JKind so that the
-- resulting counterexamples satisfy the desired constraints.
complete_set = (not (not_increasing and not_decreasing and sum_equiv));

--%PROPERTY complete_set;

tel

Fig. 1. Lustre Complete Set Specification

Early versions of the SMT-LIB standard, however, did not standardize the syntax
for describing uninterpreted function instances (counterexamples) and not all
solvers support the most recent standard. Reporting solution results, therefore,
proved challenging because each solver reported its results differently. Because
the solvers often returned expressions that reflected a specific implementation,
we opted to write code to evaluate the models reported by the solvers so that
JKind can report the results as a simple table of function evaluations as in
Table 1.



[&]
%
—
8
—
8

[=[ylg(z, )

05| 1
312 1
4171 2

NI
| = =

Table 1. Examples of JKind’s Tabular Reporting of Function Instances

Our implementation supports uninterpreted functions that accept as inputs
and produce as outputs values of any primitive or user defined type supported by
JKind and they are allowed to return multiple values. Note, however, that dur-
ing pre-processing JKind reduces complex functions into simpler functions that
accept only primitive input types and return only a single primitive result type.
JKind also supports functions with no inputs. UF is expected to work seamlessly
with JKind’s advice, smoothing, and interval generalization capability. UF has
not been tested with IVC, but the interaction between UF and quantifiers may
cause performance issues with Z3.

The output from our UF-enabled JKind when applied to the complete set
model of Figure 1 is shown in Figure 2.

JKind 3.0.5-uf

There are 1 properties to be checked.
PROPERTIES TO BE CHECKED: [complete_set]

B B O Y
INVALID PROPERTY: complete_set || bmc || K = 3 || Time = 0.115s

Step
variable 0 1 2

INPUTS
in 1 2 0

OUTPUTS
complete_set false false true

FUNCTIONS

Fig. 2. JKind Complete Set Solution



6 Generalization

Generalization is a technique that converts a single constraint solution into a set
of solutions that cover the state space in the region of the original solution. The
FuzzM framework employs generalization to decouple constraint solving from
test generation. Given an appropriate generalization, the sampling process can
be implemented efficiently and is capable of rapidly producing large numbers of
high-quality tests from a single solver invocation. The sampling of the solution
set can also be randomized and biased, shifting much of the onus of generating
desirable, random test distributions from the solver to the sampler.

The FuzzM framework originally relied on JKind’s interval generalization
capability. An interval generalization consists of a list of intervals, one for each
input at each step of the counterexample. An example interval generalization is
given in in Table 2.

l Lower Bound [ Variable [ Upper Bound

100 < x < 200
0< y < 100
—50 < z <50

Table 2. Example Interval Generalization

As a volume, an interval generalization looks like a multi-dimensional rect-
angle. Figure 3 illustrates what the interval generalization of Table 2 looks like
as a volume in x-y-z space.

A

Fig. 3. Rectilinear Generalization Volume

Sampling an interval generalization is trivial: a value for an input is computed
by randomly selecting a value from that input’s associated interval. Uniform
sampling means that every value in the interval is equally likely to be selected.
Biased sampling means that values near the interval boundaries are preferred.
We use heat maps to visualize the distribution of test vectors generated by the
FuzzM framework. Heat maps are generated by color coding (red = more, blue
= less) the relative frequencies of solutions from millions of samples from the



generalizations of solutions to thousands of constraint queries. The heat maps
presented here are generated from arbitrary Boolean combinations of the three
linear constraints of Equation 1 that define a triangular region, as shown in
Figure 4.

23(y — 95) > —88(x — 24)
82(y — 2) > T1(x — 21) (1)
106(y — 92) < —47(x + 1)

Fig. 4. Graph of Linear Features used to Generate Heat Maps

Figure 5 shows heat maps for uniform (left) and biased (right) sampling
of interval generalizations. While JKind’s generalization capability did enable a
substantial boost in our fuzzing bandwidth, the inherent limitations of rectilinear
generalization resulted in sensitivity to the initial solutions and poor alignment
between interval boundaries and linearly dependent model features. Artifacts of
these issues are visible in the heat maps as clumping in the distributions and
the fact that, even with biased sampling, the distributions appear to avoid the
linear feature boundaries.

Fig. 5. Uniform and Biased Heat Maps for Interval Generalization



To address these issues we developed a trapezoidal generalization technique
that substantially improves the fuzzing quality of the resulting vector set without
undue computational penalty[2]. A trapezoidal generalization consists of an or-
dered list of variables whose interval bounds are rational first-order multivariate
polynomials expressed in terms of previous variables, as shown in Table 3.

l Lower Bound ‘ Variable ‘ Upper Bound ‘

100 < x < 200
3z — 290 < y < —3z + 970
y+x—250 < z <—y+7

Table 3. Example Trapezoidal Generalization

As a volume, a trapezoidal generalization resembles a multi-dimensional
trapezoid. Figure 6 illustrates what the trapezoidal generalization of Table 3
looks like as volume in the x-y-z space.

L.,

Fig. 6. Trapezoidal Volume

e

The size of a trapezoidal representation is worst case quadratic and opera-
tions over the representation are worst case cubic in the total number of inputs
(ie: model inputsxunwindings). Trapezoidal generalizations provide a better ap-
proximation of feature boundaries, enhancing boundary value testing, and they
are generally larger (in volume) than similar rectilinear generalizations, allowing
each counterexample to yield more test vectors.

Sampling a trapezoidal solution space is only slightly more complex than
sampling a rectilinear space. The sampling is done sequentially and each input
assigned a value selected from the interval obtained by evaluating the upper
and lower bound expressions relative to the inputs that have already been as-
signed. Because each variable bound is expressed in terms of earlier variables,
this procedure is guaranteed to yield concrete bounds for each variable choice.

Figure 7 shows uniform (left) and biased (right) heat map images generated
using trapezoidal generalizations. Note that in the uniform image the distribu-
tion is nearly piece-wise uniform over the entire state space. This is a result of



Fig. 7. Uniform and Biased Trapezoidal Heat Maps

larger generalizations that better approximate the linear features of the model.
Note, too, that biased solutions tend to cluster near the boundaries and inter-
sections of linear features.

6.1 Generalizing UF

Generalization is a crucial feature of the FuzzM framework. We rely on gener-
alization to randomize solver results, to generate tests with specific statistical
distributions, and, above all, to improve performance. When adding new the-
ory support it is therefore essential to consider the impact that the theory will
have on generalization. Even if it is possible to generalize around a theory, if
the resulting generalization is too restrictive, the generalization process may not
provide the flexibility or performance required to make it feasible. An impor-
tant contribution of this work is in demonstrating a technique for generalizing
solutions involving UF instances into a manageable set of linear constraints that
offer reasonably large solution spaces.

We illustrate the operation of our algorithm with an example using the the
uninterpreted function declared in Figure 8.

function f(x: int, y: real, z: bool) returns (a: int);

Fig. 8. An uninterpreted function with int, real, and a bool arguments

Table 4 illustrates a counterexample that provides several function instances
of f(z,y,2).



[z lyl=z]f@y2 |
1(30] T 7
1 (30| F 9
0 [30| F 7

Table 4. A UF Function Instance

Our objective in generalizing this solution is to replace the constant values
in Table 4 with arbitrary symbolic variables, as in Table 5.

L= [ v [ 2z [/f@y2]
243T7 | y43T7 | 24377 | f43T7
243F9 | y43F9 | 243F9 | [43F9
203F7 | y03F7 | 203F7 | fO3FT

Table 5. A UF counterexample instance for f(z,v, 2)

Simply doing this, however, would ignore the fact that the inputs and outputs
of an uninterpreted function are constrained by the UF axiom. The UF axiom
for f(x,y, 2) is shown in Equation 2. It says that the evaluation of two different
instances of f must be the same if the same arguments passed to them are the
same.

rl =22 Nyl =y2 ANzl =22
F(xl,y1,21) = f(22,y2, 22) 2)

The contrapositive form of the UF axiom, presented in Equation 6.1, says
that if two function instances produce different output values then at least one
of the inputs to the instances must be different.

UF Axiom for f(x,y,2)

f(al,yl, 21) # (22,42, 22)
xl #x2Vyl #y2V z1 # 22

Contrapositive Form

It would be inconsistent with the UF axiom to simply replace the values in
each function instance with the variables of Table 5 because it is possible to select
values for those variables that violate this axiom. Rather, the variables need to
be constrained so that any variable assignment that satisfies the constraint also
satisfies the UF axioms.

To do this, we start with the unique function instances provided in the coun-
terexample. Presumably those instances satisfy the UF axiom because they were
generated by the constraint solver. For each numeric input to the function, we
sort the list of values associated with that input. For numeric inputs we use the



resulting list to identify an appropriate linear relationship between the pairs of
values in the list. We then constrain the generalized variables associated with
each instance by substituting them into those linear relationships as shown in
Tables 6 and 7.

4
x43F9

cex 0 < 4
T z03F7 | < x43T7

AYIA

Table 6. Ordering constraints on generalizations of x

cex 3.0 <= 3.0 <= 3.0
y yd3T7 | <= | y43F9 | <= | y03F7

Table 7. Ordering constraints on generalizations of y

For Boolean inputs we use the resulting list to identify an appropriate equality
relationship between the pairs of values in the list. We then generate a set of
constraints by substituting the generalized Boolean variables from Table 5 into
those equality relationships[1], as in 8.

cex F = F % T
z z43F9 | = | 203F7 | # | 243T7

Table 8. Equality constraints on the generalizations of z

Any solution for the generalization variables that satisfies the constraints
resulting from this process is guaranteed to preserve the ordering (or equivalence)
relationship that existed in the original solution. That ordering (equivalence)
relationship ensures that the inputs to any two distinct function instances in
Table 5 will differ by at least one input, which will always be sufficient to satisfy
the UF axiom regardless of the values chosen for function outputs.



7 Trapezoidal Generalization in Lustre

We now describe how trapezoidal generalization is performed in Lustre. We
begin with an overview of the Lustre syntax upon which our generalization
algorithm operates. We then present an overview of the various data structures
and methods used in the generalization process, how the process is initialized,
and how symbolic simulation is performed to compute the final generalization
result.

7.1 Supported Lustre Syntax

program: (node | function)* EOF ;

node:
’node’ ID ’(’ varDeclList? ’)°
’returns’ ’(° varDeclList? ’)°’ ’;’
(’var’ varDeclList ’;’ )7
’let’ ( equation | property | assertion )* ’tel’

}

function: ’function’ ID ’(’ varDeclList? ’)°
’returns’ ’(° varDeclList? ’)’ 73’

varDeclList: varDecl (’;’ varDecl)x* ;
varDecl: ID ’:’ type ;
type: (’int’ | ’bool’ | ’real’) ;
property: ’--%PROPERTY’ ID ’;’ ;
assertion: ’assert’ expr ’;’ ;
equation: ID ’=’ expr ’;’ ;
expr: ID # idExpr
| (INT | REAL | BOOL) # constantExpr
| ’real’ ’(’ expr ’)’ # castExpr
| ’floor’ ’(’ expr ’)’ # castExpr
| ’pre’ expr # preExpr
| expr ’->’ expr # arrowExpr
| ’not’ expr # notExpr
| >-’ expr # negateExpr
| expr (x> | /> | ’div’ | ’mod’ | ’+’ | ’-’) expr # arithmeticExpr
| expr (P<’ | ’<=? | ’>> | ’>=> | 7=’ | ’<>’) expr # relationExpr
| expr (and’ | ’or’ | ’xor’ | ’=>’ ) expr # binaryExpr
| >if’ expr ’then’ expr ’else’ expr # ifThenElseExpr
| ID °( (expr (’,’ expr)*)? ’)’ # callExpr

Fig. 9. Lustre Grammar supported by Trapezoidal Generalization



Generalization can be applied to any Lustre specification supported by JKind.
However, we rely on methods from JKind to pre-process the original Lustre
model into a more primitive form semantically equivalent to the original but
easier to work with. As a result, the syntax upon which our generalization al-
gorithm operates is a subset of the syntax supported by JKind proper. The
grammar for that subset of Lustre is given in Figure 9

The primitive Lustre types are Booleans (bool), unbounded integers (int) ,
and reals (real). In JKind, reals are interpreted as rationals so we use the terms
'real’ and 'rational’ interchangeably. Lustre also supports user defined record
and array types and provides syntax for accessing and updating such structures.
Instances of complex user defined data-types, however, are reduced to instances
of the primitive data types during pre-processing. Since JKind supports only fi-
nite arrays, even array instance are expanded to their constituent elements while
array accesses are transformed into if-then-else expressions. Records and tuples
are similarly affected and multiple-value assignments are reduced to multiple
single assignments. Pre-processing is also applied to functions. If a function has
as an argument a complex data type, the signature of the function is extended to
accept each primitive element of that data type. If a function returns a complex
data type (or tuple), new function names are introduced for each primitive type.
JKind supports the built-in real() function to cast integer values into real val-
ues, but it does not support int(). Rather it supplies a built-in floor() function
for that purpose. We support two temporal operators, pre and -> (au“lrovv)7 a
conditional if-then-else expression, and a number of Boolean and arithmetic op-
erators including integer division and modulus. After pre-processing the Lustre
specification is reduced to a single node. The body of that node contains only
variable declarations, equations, assertions, and properties. Any call expression
remaining after pre-processing is a call to a function.

7.2 Data Structures for Generalization

In explaining the generalization process we begin with an overview of the basic
data structures we employ. The primitive Lustre numeric types are reflected in
Number, which may be unbounded integers or reals (rationals). More generally
any Lustre primitive value can be captured using LustreValue which includes
Booleans.

( int | real );

( Number | bool );

type Number
type LustreValue

Objects of type LustreTypeName allow us to manipulate Lustre type names
explicitly and the method isBool() allows us to distinguish between numeric
and Boolean types.

type LustreTypeName = {
isBool();
};

We assume that the Lustre syntax parses into AST objects and that expres-
sions map into objects that extend Expr. Again, the isBool() method gives us



the ability to distinguish between numeric and Boolean expressions. The gen-
eralization method operates recursively over the expression syntax. It accept
an integer argument, the current unwinding step, and returns an instance of the
generalization type, GenType. The ID expression is used to represent Lustre vari-
able and function names and the Lustre literal expressions implement methods
to translate their representations into primitive type values.

type Expr = {
GenType generalize(int);
bool isBool();

};

type ID extends Expr;

type LITERAL extends Expr = { LustreValue getValue(); }
type INT extends LITERAL;

type BOOL extends LITERAL;

type REAL extends LITERAL;

Model inputs generalize into Variables. The new variable constructor (allo-
cator) takes a LustreTypeName and a LustreValue. The primitive value supplied
to the Variable constructor is available via the cex field. Technically variables
also have names and there is a total ordering among them. However, these ca-
pabilities are not used by the algorithms discussed in this paper.

type Variable = {

LustreValue cex;

Variable newVar(LustreTypeName,LustreValue);
};

The generalization process produces a result of type GenType which will
always be either a Polynomial or a Trapezoid. As with variables, the value of
the generalization evaluated at the counterexample is stored in the cex field. An
abstract constructor, TorP() allows generalizations to be constructed based on
the type of the given Variable or Number.

GenType : type = {
LustreValue cex;
GenType TorP(Variable);
GenType TorP (Number) ;

}

Numeric Lustre expressions generalize into Polynomials (Poly). A Poly’s
evaluation under the counterexample is stored in the cex field as a Number. It is
possible to construct a Poly from a constant Number or from a numeric Variable.
Constant polynomials are recognized by isConst(). A polynomial is divisible
(1) by an integer if all of its coefficients are divisible by that integer. Standard
arithmetic operations over polynomials are supported as are multiplication and
division by constants.



type Poly extends GenType = {

Numbe
Poly
Poly
bool
bool
Poly
Poly
Poly
Poly
Poly

Boolean Lustre expressions generalize into Trapezoids (Tzoid) which are
symbolic expression involving linear relations over polynomials. A Tzoid’s eval-
uation under the counterexample is stored in the cex field as a Boolean. It is
possible to construct a Tzoid from a constant bool or from a Boolean Variable.
The relational operations on Polynomials produce Trapezoids. Trapezoids can
be combined via conjunction (A) and disjunction (V) and they can be negated

r cex;

poly (Number) ;
poly(Variable);

isConst();

(Poly | int);
(Poly + Poly);
(Poly - Poly);
(- Poly);
(Number * Poly);
(Poly / Number);

using the negation operation (™).

type Tzoid extends GenType = {

bool

cex;

Tzoid tzoid(bool);
Tzoid tzoid(Variable);

// Boolean Combinations of Trapezoids
Tzoid (Tzoid /\ Tzoid);

Tzoid (Tzoid \/ Tzoid);

Tzoid (~ Tzoid);

// Linear Relations over Polynomials

Tzoid
Tzoid
Tzoid
Tzoid
Tzoid
Tzoid
Tzoid
Tzoid
Tzoid
Tzoid

Function signatures are stored in an FSigType. This data structure contains
the Lustre type names of the various arguments (arg) and of the return value
(value). An FSigMapType maintains a collection of function signatures, indexed
by a function name.

(Poly
(Poly
(Poly

(Poly >

(Poly
(Poly
(Poly
(Poly

(Poly >

(Poly

Poly);
Poly);
Poly);
Poly);
Poly);
Number) ;
Number) ;
Number) ;
Number) ;
Number) ;



type FSigType = {
LustreTypeName argl[int];
LustreTypeName value;

};
type FSigMapType = FSigTypel[ID];

An uninterpreted function instance is represented using an FInstType. This
data structure contains the Lustre values of the various arguments (arg) and of
the return value (value). An FInstMapType is a collection of lists of function
signatures, indexed by a function name.

type FInstType = {
LustreValue value;
LustreValue arglint];

};
type FInstMapType = FInstType[ID] [int];

A function instance generalization is represented using an FGenType. This
data structure contains generalization data structures representing the various
arguments (arg) and the return value (value). An FGenMapType is a collection of
FGenTypes indexed by a list of LustreValues that represent concrete argument
values applied to the function. The method getNthArgs (int) returns the list of
generalizations associated with the function’s n’th argument. FGenMapTypeMap
is a collection of collections of function generalizations (FGenMapType) indexed
by a function name.

type FGenType = {
GenType value;
GenType argl[int];
};

type FGenMapType = FGenType[LustreValue[]l] {
GenType[] getNthArgs(int);
}

type FGenMapTypeMap = FGenMapType[ID];

Finally we have a polymorphic len() operator that returns the length of a
list or collection.



7.3 Algorithm Initialization

The initial state of the system is completely determined by the counterexample.
The counterexample includes assignments to all of the system inputs at each step
of the model unwinding. It also includes tables enumerating all relevant uninter-
preted function evaluations. Evaluating the Lustre model on the counterexample
will satisfy all of the assertions in the model in every step of the unwinding and
will falsify the property in the finals step of the unwinding. The generalization
process begins by generalizing the initial state of the system, both the inputs
and the uninterpreted functions.

The Global State There a several global variables used in the generalization
process that must be initialized and maintained properly to ensure the correct-
ness of our results. The global cache, when it hits, maps variable ID’s at different
steps of the unwinding to a generalization result. It is used to store the initial
generalization of the system inputs as well as to cache intermediate generaliza-
tion results for the sake of efficiency. Information about how each uninterpreted
function instance has been generalized is stored in a the global table FGenMap
that can be accessed when UF instances are encountered in the course of the
generalization process. Finally, the global Trapezoid G, initially True, is used to
accumulate invariants that arise during the generalization of certain expressions.

global GenType cache[int] [ID];
global FGenType FGenMap [ID] [LustreValue[1];
global Tzoid G = tzoid(true);

Initializing System Inputs Generalizing the initial system inputs involves it-
erating over all of the system inputs in each step of the unrolling specified by the
original counterexample. At each step, each input is associated with a unique,
new variable. Upon creation, variables are given a value that corresponds to the
value of the input at that specific step of the unrolling in the original coun-
terexample. Binding variables to their original value from the counterexample
allows us to later compute the value of arbitrary expressions under the origi-
nal counterexample, a feature that is crucial in maintaining the satisfiability of
our final generalization result. After allocation, each variable is stored in the
cache as an appropriate generalization based on it’s Lustre type. The construc-
tor TorP(Variable) will construct either a Trapezoid for Boolean variables or a
Polynomial for numeric variables.

Initializing Uninterpreted Functions UF generalization begins by creating
fresh variables for each input and output of each unique instance of each function,
a la Table 5. Note that, just as with system inputs, the variables created here are
associated with the values of the values they generalize in the counterexample.
The global FGenMap data structure being created is indexed first by a function
name and then by a list of values that correspond to the arguments of one of



procedure initializeInputs(LustreValue cex[int] [ID]) {

global GenType cachelint] [ID]; // the global cache
for (i=0;i<cex.len();i++) { // For each step of the unrolling ..
foreach (ID v,type in Input) { // For each input ..
var <- newVar(type,cex[k] [v]) // .. allocate a new variable
cache[i] [v] <- TorP(var) // Cache the appropriate generalization
}
}

}
Fig. 10. Generalization Initialization Procedure

the known function instances and returns a generalized function instance that
contains the generalizations for each of the inputs and the outputs.

procedure generalizeUF(FInstType finstListMap[ID] [int]) {
global FGenType FGenMap[ID] [LustreValue[]]; // The global FGen data structure
foreach (FSigType fsig in Functiomns) { // For each function (signature)
ID fname <- fsig.name
FInstTypel[] finstList <- finstListMap[fname] // get all fname instances
FGenType [LustreValueType[]] genMap <- {}
foreach (FInstType finst in finstList) { // For each function instance ..
FGenType fgen;
for (n=0;n<finst.arg.len();n++) { // For each argument position ..
LustreValueType argn <- finst.argl[i] // argument value
LustreTypeName type <- fsig.arg[i] // argument type

Variable avar <- newVar(type,argn) // .. allocate a fresh variable
fgen.argl[i] <- TorP(avar) // use appropriate generalization
LustreValueType fval <- finst.value // function instance value
LustreTypeName ftype <- fsig.value // function return type
Variable fvar <- newVar(ftype,fval) // allocate a fresh return variable
fgen.value <- TorP(fvar) // use appropriate generalization
genMap[finst.arg] <- fgen // Add to the generalized instance map
// keyed by all argument values
}
FGenMap [fsig.name] <- genMap // Update the global data structure

}
}

Fig. 11. Generalization of UF Instances

Having generalized the function instances, we now compute the invariants es-
sential to satisfy the UF axioms and add them to the set of global invariants. The
following procedure implements that algorithm outlined in Section 6.1, sorting
the generalized arguments by their value in the counterexample and then im-
posing that same ordering on the generalized variables.

7.4 Generalization Algorithm

Unlike rectilinear generalization, which requires multiple interval simulations to
compute, a trapezoidal generalization is performed in a single symbolic simula-
tion of the Lustre model. Generalization is performed depth-first, evaluating the
inputs to each expression before using those results to generalize the expression
itself. At the top level, the generalization process is driven by a specific property
and any assertions contained in the Lustre model. Note that all assertions are
assumed to be relevant in constraining the counterexample, even if they might



procedure constrainUF (FInstType finstListMap[ID] [int]) {
global FGenType FGenMap[ID] [LustreValue[]]; // The global FGen data structure

global Tzoid Gj; // The global invariants
foreach (FSigType fsig in Functiomns) { // For each function (signature)
for (n=0;n<fsig.arg.len();n++) { // For each function argument ..
argnlList <- FGenMap.getNthArgs(n) // Get all n’th generalized arguments
argnlist <- argnList.sort(.cex) // Sort all n’th arguments in ascending

// order by cex
LustrueTypeName type = fsig.arg[n]

if type.isBool() { // for a Boolean argument
for (i=1;i<argnList.len();i++) { // starting with the second instance ..
Tzoid vi <- argnList[i] // Current variable
Tzoid vm <- argnList[i-1] // Previous variable
if (vm.cex == vi.cex) { // Compare cex values
G <= G /\ (vm = vi) // Ensure always that vm = vi
} else {
G <- G /\ (vm = ~vi) // Ensure always that vm = “vi
}
}
} else { // for a Numeric argument
for (i=1;i<argnList.len();i++) { // starting with second instance ..
Poly vi <- argnList[i] // Current variable
Poly vm <- argnList[i-1] // Previous variable
if (vm.cex < vi.cex) { // Compare cex values
G <= G /\ (vm < vi) // Ensure always that vm < vi
} else {
G <- G /\ (vm <= vi) // Ensure always that vm <= vi
}
}
}

Fig. 12. Generate UF Global Invariants

be provably irrelevant to the truth of the property. The final result is computed
as the conjunction of all of the following:

— Each assertion evaluated at each step of the unwinding
— The negation of the property evaluated in the final step
— The final global state after all of these evaluations

The top level algorithm for the generalization process is given in Figure 13.

Trapezoid generalizeProperty(ID property, int k) {

global Trapezoid G; // The global constraint
for (i=0;i<k;i++) { // For each step of the unrolling ..
foreach (a: Expr in Assertions) { // For each assertion ..
A <- a.generalize(i) // generalize the assertion at step i
G<-G/\A // intersect w/global constraint
}
}
P <- property.generalize(k-1) // generalize the property at step k-1
return G /\ “P // The final result is the intersection

// of the negation of the property with
// the final global constraint
Fig. 13. Generalization Algorithm

The symbolic evaluation of Lustre expressions required for generalization is
performed by extending one of the generic evaluation visitors patterns provided



by the JKind framework. The visitor maps recursively over the syntax tree de-
fined by the expression grammar. We describe the behavior of the generalizer
using production rules based on that grammar. In the following diagrams, the

symbol T, denotes result of applying the generalization method at unwinding
step T and any global side effect of applying a given production rule are denoted
by actions appearing to the right of the rule.

Temporal Operators The Lustre language can express both temporal behav-
iors and properties through the use of its temporal operators. Because a Lustre
specification may involve temporal properties, a single JKind counterexample
may span multiple time steps. We say that multiple time steps in a JKind coun-
terexample coresponds to multiple “unrollings” of the Lustre model. At each
unrolling, the inputs and outputs of the Lustre model may assume new values
because they represent the state of the system at different time steps.

The semantics of the binary ¢->’ operator are such that it evaluates to its
left hand side expression at time step 0 and to its right hand side expression
in any subsequent time step. The unary pre operator returns the value of its
argument evaluated in the previous time step. We say that a pre operator is
“guarded” if it appears in the right hand side of an -> operator. An “unguarded
pre” operators may require the evaluation of an expression in a time step before
0. Unguarded pre operators are not supported.

7>0 ETS P
(‘pre’E)l)P

T=0 F1-55P1 T>0 E2-55 P2
(E1 -> E2)-L5P1  (El ‘“-> E2) -1 P2

Variables Every variable appearing in the Lustre model is either an input,
output, or a local variable. If the variable is an output or a local variable, it
also has a single defining equation in the body of the Lustre node. If a variable
is an input, our initialization procedure ensures that it will have a binding in
the global cache. If a variable is not an input, the Lustre language ensures that
it is defined by an equation. If a variable is not already bound in the cache,
we compute its value by evaluating its defining equation. After evaluating the
equation, we update the cache with the computed value for the variable. This
caching of computed values substantially improves generalization performance.

R = cache[TT|[ID] R# L
ID- SR
cache[T|[ID] = L (ID ‘=> E¢;*) E -3 R
ID- LR

cache[T][ID] <+ R



if then else If the type of the if-then-else expression is Boolean, we can logically
combine the condition with the two branches. However, since we have no way
to represent conditional polynomials, we must restrict our final result to reflect
only either the true of false branch of the condition if the type is numeric. To do
this, we conjoin either the condition or its negation (whichever was true under
the counterexample) with the global invariant and return the generalization of
the selected branch.

FlisBool() E1-LsR1 E2-1sR2 E3 -1 R3
(‘if’ F1 ‘then’ E2 ‘else’ E3) - (R1NR2)U (~R1N R3)

“El.isBool() E1-+Rl Rl.cex E2-+ P2
(‘if’ E1 ‘then’ E2 ‘else’ E3) T, p2

G+ GNRI1

“El.isBool() El1-- Rl ~Rl.cex E3 -1 P3
(¢if’ E1 ‘then’ E2 ‘else’ E3) —» P3

G+ GN™R1

Rational Division and Multiplication We only support the generalization
of linear models. For rational division this means that the denominator must
generalize to a constant polynomial. To ensure this we create a constant poly
using the value of the denominator evaluated at the counterexample. We then
add a global constraint that asserts that the denominator expression is always
equal to that value, effectively linearizing the result around that solution.

E1-pP1 E2- 1 p2
d=P2.cex D=poly(d) R=(P2=D)

= G+ GNR
(E1 /> E2) L P1/d

The linear model restriction also means that we only support the multiplica-
tion of Polynomials by a constant. If neither argument generalizes to a constant
polynomial, we create a constant poly using the value the multiplicand evaluated
at the counterexample. We then add a global constraint that asserts that the
multiplicand is always be equal to that value, effectively linearizing the result
around that solution.

1L, P1 E2- T P2 PlisConst() m = Pl.cex
(E1 ‘x> E2) Ls m« P2




1L p1 B2-T p2 P2.isConst() m = P2.cex

(E1 ‘x> E2) Ls mxP1

r1-5pr1 B2 p2 “isConst(P1) TisConst(P2)
m = Pl.ctx M = poly(m) R=(Pl1=M)

P G+ GNR
(E1 ‘%’ E2) — m=x* P2

div and mod The behaviors of div and mod are generally under-specified
for negative numbers. JKind adopts an interpretation of their behavior that is
consistent with that of its various back-end solvers. In this interpretation, the
result of the modulus operation is always positive, even for negative divisors.
Under JKind, the following properties of ‘div’ and ‘mod’ are both theorems:

node main(D, N : int) returns (okl, ok2 : bool);
let

assert D <> 0;

okl = (D*x(N div D) + (N mod D)) = N;

ok2 = N mod D >= 0;

--%PROPERTY oki;

--%PROPERTY ok2;

tel;

Fig. 14. JKind div and mod properties

Integer division and modulus cannot be accurately modeled using rational
division unless the numerator is divisible by the denominator. In this case, we
simply perform the division or modulus and return the result. If not, a different
approach is required. As implied by Figure 14, for a constant divisor D and
appropriate values of k and m, any integer N can be expressed as in Equation 3
and Equation 4.

N=Dxk+m (3)
0 <=m <= |D| (4)

This implies Equation 5 and Equation 6.

NdivD=k ()
Nmod D=m (6)
So our approach to generalizing div and mod is to introduce two new vari-

ables, k and m, decompose their input according to Equation 3, constrain m a la
Equation 4, and return a result using Equation 5 or Equation 6 as appropriate.



Again, we only support div and mod by constants. To enforce this we generate
a global constraint on the denominator to ensure that it is always equal to its
value at the counterexample.

E1- L Pl B2 p2
d= P2.cex D = poly(d)

Pl|d
R=(P2=D)

7 G+~ GNR
(E1 “div’ E2) L+ P1/d
E1- L pP1 B2 5 p2
d=P2[] D = poly(d)
Pl|d
R=(P2=D)

G+~ GnNR

(E1 ‘mod’ E2) l>poly(0)

151 B2-75 P2

n = Pl.cex d= P2.cex D = poly(d) D.aps = poly(|d|)
P1td

k' = newVar(int,n divd) K = poly(k)

m’ = newVar(int,n mod d) M = poly(m')
R=(Pl=d*K+M)N(P2=D)n{0 <= M) (M < Dapy)

) p= G+~ GNR
(E1 ‘div’ E2) — K
1L p1 25 P2
n = Pl.cex d= P2.cex D = poly(d) Daps = poly(|d|)
P1td
k' = newVar(int,n divd) K = poly(k')
m’ = newVar(int,n mod d) M = poly(m')
R=(Pl=d+K + M) (P2=D)N {0 <= M) N (M < Du,)
G+ GNR

(E1 ‘mod’ E2) 1 M



real() and int() No special processing is required to cast an integer to a real.

ELp
(‘real’ “CCE“)?) T p

We treat £loor(x), on the other hand, as though it were (x div 1). Which
is to say, we deconstruct x as x = 2’ 4+ ¢/ where 2’ is an integer and ¢’ is a real
such that 0.0 < ¢’ < 1.0.

EL P

n = P.cex

2 =newVar(int,n div 1) Z = poly(z’)
q¢ = newVar(real,n mod 1) @ = poly(q’)
R=(P=Z+Q)N{0.0<=Q)N{(Q < 1.0

(‘floor’ ‘(CC E ©)7?) l)Q

G+~ GNR

Uninterpreted Functions The generalization of uninterpreted function oc-
currences is driven by the values of the function arguments evaluated at the
counterexample and the generalized function instances generated during initial-
ization. First the argument list to the function is generalized. The evaluation of
the argument list at the counterexample is then used to index into the global
function generalization map to locate the generalization specific to this specific
function instance. A global invariant is then generated that constrains each of
the generalized inputs to this function occurrence to be equal to the generalized
inputs from the original function instance (thus inheriting the constraints on
those inputs). Finally the generalized function instance value is returned as the
generalization result.

Ey - E, 15 P[]

V][] = P[].cex

FGen = FGenMap|V[]]

R =Vi: (P[i]| = FGen.arg[i])

- G+~ GNR
(ID “C Ey -+ E, )’ )— FGen.value

Addition and Subtraction The Lustre addition and subtraction expressions
are interpreted as addition and subtraction of polynomials.



E1-5P1 E2-T P2 E1-55P1 E2-T P2
(E1 “+> E2)-55P1+P2 (E1 ‘- E2) - P1— P2

E1-55 P1
(- E1)-Ls (—P1)

Constants Literal constants are processed based on their type. Numeric con-
stants are translated into constant Polynomials and Boolean constants are trans-
lated into constant Trapezoids.

E = (INT|REAL|BOOL) P =TorP(E.getValue())

E L p

Logical Operators The Lustre logical operators are interpreted as their cor-
responding operators over trapezoidal regions.

El1- LRl B2 L R2 E1- LR B2 5 R2
(E1l ‘and’ E2) 5 RINR2 (El ‘=>’ E2) -5 ~R1IUR2

El1- LR B2 5 R2 E1-5 R1
(E1 ‘or’ E2)-L5 RIUR2  (‘not’ E1) -1 ~Rl

E1-55 Rl E2-15 R2
(E1 ‘xor’ E2)-Ls (“R1INR2)U(RLN ~R2)

Relational Operators The Lustre relational operators over numeric expres-
sions become primitive linear relations over polynomials.

El1- L p1 B2 P2 el pP1 B2 P2
(E1 ‘<> E2) -5 (P1<P2) (E1 ‘<=> E2) -1 (P1<=P2)

E1-55P1 E2-T, P2 E1-55P1 E2-T, P2
(E1 > E2) -5 (P1>P2) (E1 “>=’ E2) -1 (P1>= P2)

E1-5r1 B2 p2 E1-5r1 E2-T P2
(E1 ‘= E2) -5 (P1=P2) (E1 ‘<>’ E2) -1 ~(P1=P2)




8 Complete Set Solution

Running the model and counterexample through the generalizer produces the
result shown in Figure 15.

(1) <= |UF_unique(1)_argO_#10] <= (1) &&

|UF_unique(1)=0_#9| = (0) &&

(0) <= |UF_unique(0)_argO_#8| < (|UF_unique(1)_argO_#10|) &&

|UF_unique(0)=2_#7| = (2) &&

|UF_unique(2) _arg0_#6| = (-|UF_unique(1)_argO_#10| - |UF_unique(0)_argO_#8| + 3) &&
|UF_unique(2)=1_#5| = (1) &&

(-128) <= |UF_min()=0_#4| < (125) &&

in[0] = (|UF_unique(1)_argO_#10| + |UF_min()=0_#4|) &&
in[1] = (-in[0] + 2*|UF_min()=0_#4| - |UF_unique(0)_argO_#8| + 3) &&
in[2] = (-in[0] - in[1] + 3%|UF_min()=0_#4| + 3)

Fig. 15. Generalized Complete Set Solution

Note that the generalization is just a conjunction of linear constraints on
variables that either appear as inputs to the (unrolled) model or were generated
as part of the generalization process. The |UF. . | variables are auxiliary variables
generated to generalize UF function instances or their arguments. We have two
UF functions: f(z) and min(). The auxiliary variable names are constructed
to reflect the initial JKind solution for those functions. The most important
thing to observe is that this generalization provides a recipe for creating new
sequences for the model input (in[0], in[1], and in[2]) by selecting new values for
the various variables, especially |UF_min()=0_#4| which is a generalization of
the output of the min() function. A little algebra and variable renaming reveals
that the parameterized solution set specified by the generalization is as shown
in Figure 16.

in[0] = min() + 1
in[1] min() + 2
in[2] min() + O

Fig. 16. Simplified Generalization

Note that in the original solution min() was 0. We can now see that by
using the generalization we can generate a family of different ”complete set”
solutions by choosing different values for min(). Unfortunately the generalization
doesn’t allow us to permute the sequence. The ability to describe such behavior
would require a generalization that is strictly more expressive than our current
trapezoidal representation.

9 Conclusion

We have described a generalization technique for Lustre developed to support
the performance needs of model-based fuzzing. Our generalization technique em-



ploys trapezoidal solution sets that can be computed with reasonable space and
time bounds and then sampled efficiently even over integer domains. Our general-
ization techniques have been extended to support integer division, modulus, and
uninterpreted functions. Finally, we demonstrated the utility of our approach on
a complete set example and showed how, given a single permuted solution, we
could generalize the solution to generate an entire family of such solutions.

References

1. David Greve. Trapezoidal Generalization of Boolean Circuits.

2. David Greve and Andrew Gacek. Trapezoidal Generalization over Linear Con-
straints.

3. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305-1320, Sept 1991.



