
DISTRIBUTION STATEMENT A: Approved for Public
Release; Distribution Unlimited (Case Number: 88ABW-2015-2770)

Formal Requirements of a Simple Turbofan
Using the SpeAR Framework

 ISABE-2015-20266

Aaron W. Fifarek
LinQuest Corporation
3601 Commons Blvd.

Beavercreek, OH 45431
aaron.fifarek@linquest.com

Lucas G. Wagner
Rockwell Collins

400 Collins Rd NE
Cedar Rapids, IA 52498

lgwagner@rockwellcollins.com

Abstract—Traditional system engineering methods focus on
sequential activities of requirements specification, design,
implementation, integration, verification, and validation. Often
times this process proceeds with requirements that are ill formed,
underspecified, inconsistent, or simply do not capture the
designer’s intent. The inherent flaw in this approach is that any
specification or design errors found in the verification phase
require rework through all steps in the process, often resulting in
substantial cost and schedule overruns. In this paper we
introduce a formalized requirements development framework
named Specification and Analysis of Requirements (SpeAR) that
is designed to aid users in developing more consistent, well-
formed requirements that mathematically capture the designer’s
intent while adhering to a natural language look and feel.
Additionally, these formally constructed requirements enable
early analysis; reducing errors, reducing cost. SpeAR provides a
set of formal patterns that map to English grammar commonly
used in expressing system requirements. This paper will discuss
the features of SpeAR and briefly discuss how to apply the
framework to a simple turbofan which was used to specify and
analyze requirements.

Keywords— Requirements, Model Checking, K-Induction,
KIND, Lustre

I. INTRODUCTION
Software in safety-critical domains has grown

exponentially in recent years and traditional verification
methods have been unable to keep pace. [1] Specifically,
requirements flaws discovered in traditional testing can cause
both schedule delays and cost overruns.[2] Current literature
estimates that in software development approximately 70% of
system errors occur during the first stages of system design
which includes requirement definition, architectural design,
and early model development. Conversely, the percentage of
overall errors discovered early in the design process is
estimated to only encompass 3.5% of the errors found in the
completion of the engineering process. [3] [4] With
requirement generation an early step in system engineering
models, enforcing a methodology to formalize and check
requirements can help mitigate error propagation. [5] The use
of formal methods in engineering design can aid the generation
of requirements that can be traced to a mathematical basis.

With such a foundation users gain the ability to analyze and
validate those requirements against other defined aspects of
systems throughout the development cycle. However, a
limitation of widespread formal methods adoption has been the
steep learning curve to teach Subject Matter Experts (SMEs)
and line engineers to read and write requirements using various
formal logics such as temporal and tree logics.[6] We propose
a technique to enable natural language requirements to be
translated in a manner that will enable access to these groups.
The approach extends work where patterns identified in well-
formed requirements provides the formalization basis to allow
for analysis. SpeAR (Specification and Analysis of
Requirements) is a framework that enables the user to create
formal specifications by way of pattern identification. It also
provides a set of automated analyses to reduce errors in the
design and implementation phases of development. This work
does not attempt to capture the entire scope of natural language
but patterns specific to safety critical system requirements. In
this paper, use of formal patterns will be demonstrated through
a sampling of high-level turbofan engine requirements. The
formalizations will be specified and the analysis techniques
available will be discussed. The paper will conclude with a
brief overview of the formal pattern techniques and
discoveries.

II. BACKGROUND
Development of today’s complex systems require many

different groups of subject matter experts (SMEs) to come
together to develop complex systems. Therefore as the
complexity of the system increases it becomes less likely that
the entire system is fully understood by one individual or
group. Therefore, the interactions of all components are less
understood which can lead to incorrect or incomplete
understanding of how the components interact. This
inconsistent system view can allow emergent behavior to occur
in systems. [7] Not only is system complexity a challenge but
also the loss of knowledge transferred throughout the system
development process. As SMEs develop requirements it is
often the case that years of experience provide completion of
the constraints of the system that is not captured in traditional
requirement generation techniques. As others are not fully

DISTRIBUTION STATEMENT A: Approved for Public
Release; Distribution Unlimited (Case Number: 88ABW-2015-2770)

aware of understood constraints, implementation often can no
longer guarantee that the barrier will not be violated.

Throughout this paper, the authors will utilize a small
selection of high-level requirements of a representative
turbofan engine to show the formalization of the requirements
to an applicable system. The overall process of developing
requirements should be meant as an interactive process of
discovery and description. One such technique to achieve this
refinement is the use of the “Twin Peaks” paradigm that relates
requirement definition to knowledge gained from other sources
such as models and architectures. [8] This is also a
foundational aspect of the spiral development cycle where
multiple cycles encourage refinement of a design solution. This
paper utilizes EngineSim (version 1.8a) on the NASA Glenn
Research Center site to generate the representative model for
analysis. [9] The primary need of the engine model is to
determine the association between the safety constraints with
those of the dynamics of the system.

Using the simulated representation of a Pratt & Whitney
F100 afterburning turbofan engine (common in the F-15 Eagle
and F-16 Fighting Falcon), the basis of the requirement set was
derived. [10] The challenge to capture these requirements
within a formal definition has proved to be a barrier to
advanced analysis techniques such as the implementation of
the use of model checkers and theorem provers.[6] Advances
in requirement definition techniques allowed for the
development of two primary approaches to formalizing
requirement sets: (1) parsing existing natural language
requirements or (2) encouraging SMEs to utilize a constrained
natural language paradigm when they write the requirements.

In order to parse the existing natural language
requirements, toolsets, such as SRI’s Automatic Requirements
Specification Extraction from Natural Language (ARSENAL),
were developed [11]. These tools require the ability to
associate the natural language to a database of terminology that
carries similar usage inside the text to decipher the linguistic
meaning. Once the natural language is matched to the evolved
terminology database, then a mathematical basis can be
leveraged to the requirement set. Implementing this translation
provides the necessary information to the system to generate
provably correct analysis of the existing set.

The other methodology, although adding responsibility to
the system engineers and SMEs, encourages use of a
constrained natural language that will more closely translate
into the mathematical foundations necessary for analysis. It is
this methodology that SpeAR leverages in order to bridge the
gap in the natural language to mathematical expression.

III. TURBOFAN EXAMPLE
In order to best describe how SpeAR utilizes a constrained

language to build requirements, the use of a turbofan example
was chosen. Examination of this example provides a number of
overall properties of the engine to be defined at the system
level. These properties show overarching high-level
requirements of the system that must be maintained. Often
these represent the safety properties of a system at each
component level. The component requirements at each level
defines the behavior of the component. Therefore, each

component must have agreement in its defined behavior and its
properties. Looking specifically at the system properties that
define a relationship between thrust and fuel flow rate,
examples of the analysis capabilities can be demonstrated.
Utilizing NASA EngineSim, some representative requirements
are considered to demonstrate these cases and are simplified to
ease understanding. These categories will be introduced
without the constrained language that is used in SpeAR so to
build the general idea of these requirements.

A. Direct Property Conflicts
Engine Property 1: As the fuel flow increases, the thrust of the

engine should also increase.
Engine Property 2: As the fuel flow decreases, the thrust of the

engine will also decrease.
It can be seen that these engine properties are simplified for

clarity of the example. This is a violation that can be found
where the overarching behaviors of a component or system
cannot coexist. Looking back at the system level property that
defines a relationship between the fuel rate and the engine
thrust, the relationship defines in proportional
increase/decrease in both as the expected reaction. If another
property is defined that would contradict this relationship, the
system will create a counterexample that shows one of the two
properties cannot possibly exist based on the defined behavior.
Although trivial in this example, as systems become more
complex, this type of conflict commonly emerges.

B. Requirement Conflict / Dissatisfaction
Engine Property 3: The engine must have a pump which will

provide fuel to the combustion chamber.
Pump Requirement 1: While the engine is on, the fuel pump

shall supply the engine with a fuel flow proportional to that of
the desired throttle.

Pump Requirement 2: While the engine is on, the fuel pump
shall supply the engine with a fuel flow independent of the

throttle.

The engine will contain a sub-component to manage the
fuel flow into the turbofan combustion chamber. Assuming that
this is directly managed by a fuel pump, we define the fuel
pump component. This component utilizes throttle settings to
manage the fuel rate. The second pump requirement violates
that relationship by stressing that the fuel flow and throttle
settings are independent forcing a direct conflict in behavior of
the pump component in pump requirement 1 and 2.

This is one of the most common analysis results found
utilizing this framework. Assume that the system level property
defined an inverse relation of fuel flow to that of engine thrust.
As the subcomponent fuel pump provides the system a
proportional change (fuel use increase implies an increase in
thrust), then a counterexample would be generated that shows
that these cannot as prove independent responses in the engine
behavior. This counterexample would specify that a fuel rate
increase is not able to create a condition with less thrust
according to the behavior defined in the fuel pump component.

DISTRIBUTION STATEMENT A: Approved for Public
Release; Distribution Unlimited (Case Number: 88ABW-2015-2770)

C. Under Specification
Engine Property 1: The engine shall be provided fuel at a rate

of no greater than 24,000 lb/hr. while at 0ft altitude.
Engine Property 2: When the engine afterburner is engaged
the fuel flow rate shall be 67,000 lb/hr while at 0ft altitude.

This is an example of an under specification conflict as a

result of how the system properties were defined. In the first
property, the lack of additional constraints of the requirement
resulted in a design parameter of a max fuel flow that was
insufficient should the afterburner be activated at the same
conditions. Therefore, analysis of these engine properties
would result in a failure if the resulting requirement set only
utilized the lower flow rate.

This analysis is a common weakness in natural language
requirements due to the ease for incomplete scope definition.
For example, the system level property defines a safety check
of the increased fuel flow rate that translates to some increase
in thrust of the engine. In the physical world, this specification
may be fully defined. However, in the cyber realm, this is an
incomplete specification. There is no description of what is
expected when the fuel flow rate is decreasing or is the same.
Model checkers (as would software) exploit this since the
behavior is not fully constrained. The behavior can be anything
thereby opening the ability of a system to develop
unconstrained or emergent behavior.

IV. SPEAR
The backbone of the SpeAR framework is a set of precise

mathematical notations used to represent requirements,
inspired by sets of formal property specification patterns
developed at Kansas State University by Dwyer et al. [13].
These specification patterns were chosen because they captured
a wide variety of temporal behaviors, were published and peer
reviewed for accuracy, and are easily translated to the
languages of various formal analysis tools such as the Kind and
NuSMV model checkers. In addition, the patterns provide an
abstraction; users are not required to understand the logical
basis behind the formalisms allowing novices to use SpeAR
with minimal training. This pattern set was further investigated
and expanded upon by Castillos et al. in 2013 whose work
sought to provide pattern definitions through the use of finite
automata. [14]

Each requirement is implemented in SpeAR as a scope and
predicate scope pairing. The scope defines the temporal
relationship of when the defined variables should hold, while
the predicate defines the expected state of the variables. In
Figure 1, an example natural language requirement could
specify an association between the engine state and the
rotational shaft of the engine. The scope defines the
understanding of an attribute of the engine that the system
engineer sees while the engine is on. Since this requirement
was formulated with an identified pattern, translation into the
direct pattern and the mathematical representation of the
statement can be achieved.

Figure 1: Scope and predicate example of a patterned requirement

Figure 2: SpeAR pattern formulation of the example in Figure 1

A. Scope and Predicate Relationship
In Dwyer’s original work, the team identified five specific

scopes that the majority of the specification patterns are based
upon. These original scopes include Global, Before Q, After Q,
After Q until R, and Between Q and R. In Figure 3, these
scopes are defined graphically upon a timeline representing
possible events. The scopes are driven by the identification of
trigger events in temporal relationship with other events of
interest

Figure 3: Patterns identified by Dwyer et al.

The Global scope is utilized in patterns where a predicate
condition of a variable must be held valid for the entire lifespan
of the system. The Before Q and After Q scopes are closely
related in that they both utilize a relation to the trigger event to
hold validity. The scopes After Q until R and Between Q and R
are often confusing because in many situations they could
appear to be equivalent. The difference is in the acceptance of
the scope constraint range. With After Q until R, the scope is in
the acceptance state after Q has occurred. Due to the
unbounded natural of temporal logic, the scope guarantees that
R will occur at some time in the future. Therefore, should the R
event not occur until infinitely in the temporal future, then the
scope is still valid. Between Q and R, this is not the case. For
this scope to be valid, there must exist a Q that precedes the
occurrence of an R event. Should the response of the R event
not be defined prior to the termination of the analysis, then the
scope was never determined to be valid and, therefore, its
predicate specification would not be held.

The capability of these scopes to map directly to the
temporal constraints provides the foundation of the
mathematical rigor of this methodology. For example, the
Global scope pattern maps directly to the global (□) temporal
logic equivalency. Furthermore, we utilized automata in a
similar fashion as Castillos et al. [14] to define the patterns
utilizing these scopes. This will be discussed in greater detail in
Section IV.B.

Upon examination of the turbofan, it can be seen that a
number of the logical requirement sets are ideally suited for the
pattern scope/predicate relationship. Requirements that meet

DISTRIBUTION STATEMENT A: Approved for Public
Release; Distribution Unlimited (Case Number: 88ABW-2015-2770)

this capability are said to be “formalizable” meaning that the
structure of the requirement itself defines the necessary
information needed to develop a formal representation to
analyze. Such a requirement is demonstrated with Figure 1.
Since these requirements often well-define the functional
behavior of systems, they are also known as functional
requirements. In most all requirement sets, the existence of
requirements that do not have a formal basis also exist in the
set. Such requirements, known as “non-formalizable”
requirements, are not readily translatable into a formal
semantic. Often these requirements exist when system
engineers add architectural information to the requirement set
(e.g., “The system shall be quad-redundant”). Examples of
formalized requirements with specific scope:

Table 1: Example formalized requirements pertaining to a turbofan
engine

The rotation of the turbofan axle will always be in the
clockwise direction.

The temperature of the combustion chamber will not
exceed 1500 degrees Fahrenheit.

As the fuel flow increases, the thrust of the engine should
also increase.

Prior to the startup of the system, the engine shall be
unpowered in the OFF state.

B. Patterns
The patterned specifications (Table 1) demonstrates further

examples on how natural language requirements with a formal
basis can be classified into mathematical patterns. The SpeAR
framework supports the patterns associated with
absence/always, existence, precedence, and response from the
original specification patterns (see Dwyer et al. [13]) and
further supported by Castillos et al. [14] work. It also
introduces new and derived patterns to capture requirements
that were found to be useful including initial, delta, range, and
invariant.

By utilizing patterns to generate a formal mathematical
basis of the requirements, it is now possible to utilize model
checking tools to examine if the specifications can properly
exist in a defined system. Examining the requirements defined
in Table 1, example SpeAR formulations can be completed as
shown in Table 2. In order to properly define these
requirements further definition of the distinctive varaibles of
the pattern must also be defined. For example, in the first
formulation which denotes the direction of the axel spin
direction, the variable axle_direction would need to be defined
prior its use here to represent an axle. The other requirements
written here would need definition for associated variables that
would allow inspection and evaluation. Furthermore, it is
known for the third requirement that constant altitude, inlet
velocity, and pressure to state a few additional constraints that
would have to exist in the system for the fuel flow and engine
thrust relationship to hold. This is simplified for the examples
in this piece.

Table 2: SpeAR pattern equivalent requirements of those defined in
Table 1

global::always axle_direction == Direction.Clockwise;

global::always combustion_chamber_temp <= 1500 F

while pre_flow_rate < flow_rate
:: always pre_thrust_value < thrust_value

initial :: engine_state == OFF and power_level == 0;

V. ANALYSIS
SpeAR provides two types of specification analyses:

language level checking to ensure consistency and
completeness of a specification and formal analysis for
validation of requirements. As the user writes a specification,
checks are performed to guide the user into making complete,
well-formed specifications. Many of these checks, such as
type-checking, are trivial. However, they provide quick and
easy feedback to the user; reducing the errors that migrate to
later stages of development. This analysis is conducted with
the use of model checking tools and techniques that take
advantage of computer science graph theory and the capability
to quickly explore problem spaces.

A. Model Checking
In order to utilize the capabilities of model checkers, it is

necessary to have a basic understanding of how this class of
tools can efficiently explore problem state spaces. At its most
fundamental understanding, these tools take advantage of the
computer processor’s ability to quickly calculate all possible
paths from that of a given point or known state of the modeled
system. For this given point there exists algorithms to test
combinations of variables of the system to verify claimed
requirement behavior. It is the initial known state that allows
for the brute-force manner to propagate the state exploration
forward [15]. The tool is able to propagate the decisions of the
state forward using a defined model of the system in question.
Illustrated in Figure 4, the system is compared to the
requirements that should properly bound the model space. If
the system and the requirements are proven to properly
constrain the space, the tool returns a satisfied state; otherwise,
a counter-example is generated that demonstrates how the
inconsistency was achieved. It is critical to note that a counter-
example only specifies that there is a disagreement between
the definition of the formal specifications and the
representative model of the system itself. It does not
specifically demonstrate where the fault lies. What this tool
does demonstrates is an inconsistency of the design of branches
that feed the model-checking engine block. For example, the
counter-example may demonstrate that a value could go
negative. Was this behavior expected in the model? If not, then
that shows that the model may be flawed; otherwise, should a
negative value be valid? If so, then it points to a lack of a
proper constraint provided by the requirement definition.
Therefore, model checking tools provide the capability to point
out inconsistencies for the user to examine and not an
automated system that provide solutions without human
reasoning.

DISTRIBUTION STATEMENT A: Approved for Public
Release; Distribution Unlimited (Case Number: 88ABW-2015-2770)

Figure 4: Schematic view of the model checking approach (red) [15]
with SpeAR attachment into the process (blue)

1) Compositional Verification
Even though current model checkers have been shown to

be powerful on certain classes of problems, they do come with
limitations such as that of state-space explosion [16]. This
challenge is common among complex systems due to the
inability to feasibly traverse the possible bounded model space
within a reasonable computation time. Systems that suffer from
state-space explosion often cannot isolate the atomic nature of
choices in parse trees and thus eliminates the ability to vary the
system along an isolated degree of freedom to explore system
setting combinations. Several techniques exist to mitigate state-
space explosion in system design verification. One such
method is the use of compositional verification which abstracts
subcomponents as black boxes, disregarding the design details
in favor of contracts that describe the relevant behaviors of the
component [17]. This concept stresses that complex systems
are made of more simplistic components that are easier to
verify, thus reducing the monolithic expanse of variables in the
systems. Then, once these subcomponents are verified, they
can be treated as an atomic piece (the black box) higher in the
system. Naturally, the challenge then becomes how to ensure
that the relationship between the components and the higher
level composite system is well understood and valid. Although
also not a trivial problem, there has been a number of advances
in architecture to leverage model checking to help solve these
interaction problems [18].

In the turbofan example, compositional design and
verification is illustrated with the relationship of the of an
engine level output of overall thrust and fuel flow. In order for
the fuel flow to be maintained in the system in a controlled
manner a pump must supply and regulate the flow. Therefore,
requirements on how responsive changes in the thrust are to the
fuel flow in turn provide requirements that the pump must be
able to achieve.

B. Formal Analysis
In our analysis, we define properties that represent the

high-level specifications of the component. The requirements
define the derived model that should satisfy the properties and
disambiguates how the system will respond to a given input.
This analysis is completed in SpeAR by translating the
specification to a Lustre model. [19] In this model, all variables
are represented as nondeterministic, varying inputs. Then, the

requirements restrict the values that these variables are allowed
to take on. This set of traces is then checked against each
property. If a property does not accept a trace, one or more
requirements allow an unintended behavior or the property
itself is incorrect. This analysis is done by creating an
obligation. In this obligation, the conjunction of all the
requirements (𝑅𝑅𝑗𝑗) and assumptions (𝐴𝐴𝑖𝑖) must imply the
properties (𝑃𝑃𝑘𝑘) of interest. This is captured in Equation (1).

 ⋀ 𝐴𝐴𝑖𝑖 ∧ ⋀ 𝑅𝑅𝑗𝑗𝑛𝑛
𝑗𝑗=1 ⟹ ⋀ 𝑃𝑃𝑘𝑘

𝑞𝑞
𝑘𝑘=1

𝑚𝑚
𝑖𝑖=1 (1)

VI. DEFINING A SYSTEM USING THE SPEAR FRAMEWORK
The SpeAR Framework is developed using the Eclipse IDE

with the XText markup extension [20]. This allows for the user
to be able to define the system compositionally with the use of
the Relation and Definition files.

A. SpeAR Relation File
The Relation file (Figure 6) is the location where all the

relation information of the system or component is captured.
The file is constructed with three parts; (1) the heading block,
(2) the input/output (I/O) and local variable block, and (3) the
component Definitions/requirements block. The heading block
(area 1 in Figure 6) has a Relation label (only a single entry)
that defines how the file will be referenced in the overall
project and a Uses section that lists all the external files that
have information needed in this file. The Uses label can be
utilized as many times as necessary in order fully allow access
to other external files. This is commonly used to incorporate
the contents of Definition files into the Relation file. It is also
used to ensure that the different data types that are specified in
other files may also be used here. The next block in the
Relation file is the I/O and local variable block (area 2 in
Figure 6). One of the constructs necessary in the SpeAR file
format is the premise that components have known inputs and
outputs for the system. This represents the first two parts of this
block; Inputs define the information that is input into the
component, Outputs define the information that the component
will send out. Ultimately, these labels define the input and
output of a “clear box” representation of system. The State
section provides an area for the system engineer to define
variables that will be local to the component (i.e., not provided
by inputs). The Macros section provides the ability to create
shorthand calls to complex conditions and/or calculations (not
pictured). The last block in a Relation file is the component
definition/requirements section (area 3 in Figure 6). The first
section in this block is the Requirements which defines the
component level requirements (also known as the derived
requirements). This section defines the behavior of the
component that will be tested by the model checker. The last
section in this block is the Properties which define the
conditions that must be held for the overarching component.
Also known as high-level requirements, this section typically
describes safety and/or security constraints that the component
must ensure are maintained.

DISTRIBUTION STATEMENT A: Approved for Public
Release; Distribution Unlimited (Case Number: 88ABW-2015-2770)

Figure 5: Representation of a SpeAR Relation File

B. SpeAR Definition File
It is important to note that parts of the Definition file can

also be included in the Relation file if desired. Often it is better
to have a specific Definition file especially in compositional
designs of a system. In order for many specifications to be
properly verified, there is the need to have a unified
understanding of the units, constants, datatypes, etc. that are
used across multiple files. In Figure 7, there are three blocks of
the representative SpeAR Definition file; (1) the file unique
name, (2) the agreed upon units of measure for the system, and
(3) the constants and datatype definitions. The first section
(area 1 of Figure 7) gives the unique name to the Definition
label. It is good practice to use the example naming convention
as seen in the Figure 7 where the project name and further
description of the Definition file is listed. The second section
(area 2 of Figure 7) explicitly defines how Units will be related
in this system. This is an important aspect of many requirement
sets due to the changing between understood units have caused
a number of accidents including the loss of the NASA Mars
Climate Orbiter in 1999 [21]. The last block (area 3 in Figure
21) defines the Constants and Types sections of the file. The
Constants allow the user to define the understood constants of
the system in a single location that can be brought into Relation
files. The Types section defines datatypes that the user can
define for the system and incorporate into Relation files as
well.

Figure 6: Representation of a SpeAR Definition File

VII. CONCLUSION
In this paper, we introduced the SpeAR framework for

developing a formalized set of requirements. It provides a set
of formal semantics for expressing desired system behaviors, a
domain specific language to ensure consistency and coherency,
and formal analysis capabilities to help the user verify and
validate the specified behaviors are correct. The authors plan to
continue this work by enhancing the SpeAR framework to
allow for increased expressibility of requirements through
patterns that users can develop. Furthermore, the authors plan
to extend the capability here into Assume/Guarantee systems
which look to leverage high-level and derived requirements to
define compositional interactions which will lead to “system of
systems" concepts to be used in modern system development.
In addition, there are plans to investigate techniques to generate
testing artifacts from formalized requirement specifications that
would aid in the future certification process of systems.

VIII. REFERENCES

[1] G. Van Oss, Avionics Acquisition, Production, and
Sustainment: Lessons Learned -- The Hard Way, DTIC,

2002.
[2] B. Boehm and V. R. Basili, "Software Defect Reduction

Top 10 List," Computer, pp. 135-137, January 2001.
[3] D. Galin, Software Quality Assurance: From Theory to

Implementation, Pearson/Addison-Wesley, 2004.
[4] NIST, "The Economic Impacts of Inadequate Infrastructure

for Software Testing," 2002.
[5] M. Dorfman, "System and Software Requirements

Engineering," in IEEE Computer Society Press Tutorial,
1990.

[6] J. A. Davis, M. Clark, D. Cofer, A. Fifarek, J. Hinchman, J.
Hoffman, B. Hulbert, S. P. Miller and L. Wagner, "Study

on the Barriers to the Industrial Adoption of Formal
Methods," in 18th International Workshop on Formal

Methods for Industrial Critical Systems, Madrid, Spain,
2013.

[7] H. V. D. Parunak and R. S. VanderBok, "Parunak, H. Van
Dyke, and Raymond S. VanderBok. "Managing emergent

behavior in distributed control systems.," in ISA-Tech, Ann
Arbor, 1997.

[8] J. Cleland-Huang, R. S. Hanmer, S. Supakkul and M.
Mirakhorli, "The twin peaks of requirements and

architecture," Software, IEEE 30.2, 2013.
[9] NASA Glenn Research Center, "EngineSim Version 1.8a,"

NASA, 2013. [Online]. Available:
https://www.grc.nasa.gov/www/k-12/airplane/ngnsim.html.

[Accessed 13 5 2015].
[10] United Technologies Corporation – Pratt & Whitney

Division, "F100 Engine," 2015. [Online]. Available:
http://www.pw.utc.com/F100_Engine. [Accessed 14 5

2015].
[11] S. Ghosh, N. Shankar, P. Lincoln, D. Elenius, W. Li and

W. Steiener, "Automatic Requirements Specification

DISTRIBUTION STATEMENT A: Approved for Public
Release; Distribution Unlimited (Case Number: 88ABW-2015-2770)

Extraction from Natural Language (ARSENAL)," DTIC,
2014.

[12] M. Heimdahl and N. Leveson, "Completeness and
consistency in hierarchical state-based requirements," IEEE
Transactions on Software Engineering, vol. 22, no. 6, pp.

363-377, 1996.
[13] M. B. Dwyer, G. S. Avrunin and J. C. Corbett, "Patterns in

property specifications for finite-state verification," in
Proceedings of the 1999 International Conference, 1999.

[14] K. C. Castillos, F. Dadeau, J. Julliand, B. Kanso and S.
Taha, "A Compositional Automata-based Semantics for

Property Patterns," in In Integrated Formal Methods, 2013.
[15] C. Baier and J.-P. Katoen, Principles of model checking,

Cambridge, MA: MIT Press, 2008.
[16] E. M. Clarke, W. Klieber, M. Novacek and P. Zuliani,

"Model checking and the state explosion problem," in
Tools for Practical Software Verification, Springer Berlin

Heidelberg, 2010, pp. 1-30.
[17] H. Garavel and F. Lang, "SVL: a scripting language for

compositional verification," in Formal Techniques for
Networked and Distributed Systems, 2002.

[18] M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan and M.
P. Heimdahl, ""Your "What" is my "How": Iteration and

hierarchy in system design," IEEE Software, vol. 30, no. 2,
pp. 54-60, 2013.

[19] N. Halbwachs, The synchronous data-flow language
Lustre.

[20] The Eclipse Foundation, "Eclipse," The Eclipse
Foundation, 2015. [Online]. Available:

http://www.eclipse.org/. [Accessed 17 March 2015].
[21] R. Lloyd, "Metric mishap caused loss of NASA orbiter,"

CNN.com, 30 September 1999. [Online]. Available:
http://www.cnn.com/TECH/space/9909/30/mars.metric.02/.

[Accessed 17 March 2015].
[22] E. Vassev and M. Hinchey, "Autonomy Requirements

Engineering," Computer, vol. 46, no. 8, August 2013.

	I. Introduction
	II. Background
	III. TurboFan Example
	A. Direct Property Conflicts
	B. Requirement Conflict / Dissatisfaction
	C. Under Specification

	IV. SpeAR
	A. Scope and Predicate Relationship
	B. Patterns

	V. Analysis
	A. Model Checking
	1) Compositional Verification

	B. Formal Analysis

	VI. Defining a System using the SpeAR Framework
	A. SpeAR Relation File
	B. SpeAR Definition File

	VII. Conclusion
	VIII. References

