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Abstract—Traditional system engineering methods focus on 
sequential activities of requirements specification, design, 
implementation, integration, verification, and validation. Often 
times this process proceeds with requirements that are ill formed, 
underspecified, inconsistent, or simply do not capture the 
designer’s intent. The inherent flaw in this approach is that any 
specification or design errors found in the verification phase 
require rework through all steps in the process, often resulting in 
substantial cost and schedule overruns. In this paper we 
introduce a formalized requirements development framework 
named Specification and Analysis of Requirements (SpeAR) that 
is designed to aid users in developing more consistent, well-
formed requirements that mathematically capture the designer’s 
intent while adhering to a natural language look and feel. 
Additionally, these formally constructed requirements enable 
early analysis; reducing errors, reducing cost. SpeAR provides a 
set of formal patterns that map to English grammar commonly 
used in expressing system requirements. This paper will discuss 
the features of SpeAR and briefly discuss how to apply the 
framework to a simple turbofan which was used to specify and 
analyze requirements. 

Keywords— Requirements, Model Checking, K-Induction, 
KIND, Lustre 

I. INTRODUCTION 
Software in safety-critical domains has grown 

exponentially in recent years and traditional verification 
methods have been unable to keep pace. [1] Specifically, 
requirements flaws discovered in traditional testing can cause 
both schedule delays and cost overruns.[2] Current literature 
estimates that in software development approximately 70% of 
system errors occur during the first stages of system design 
which includes requirement definition, architectural design, 
and early model development. Conversely, the percentage of 
overall errors discovered early in the design process is 
estimated to only encompass 3.5% of the errors found in the 
completion of the engineering process. [3] [4] With 
requirement generation an early step in system engineering 
models, enforcing a methodology to formalize and check 
requirements can help mitigate error propagation. [5] The use 
of formal methods in engineering design can aid the generation 
of requirements that can be traced to a mathematical basis. 

With such a foundation users gain the ability to analyze and 
validate those requirements against other defined aspects of 
systems throughout the development cycle. However, a 
limitation of widespread formal methods adoption has been the 
steep learning curve to teach Subject Matter Experts (SMEs) 
and line engineers to read and write requirements using various 
formal logics such as temporal and tree logics.[6] We propose 
a technique to enable natural language requirements to be 
translated in a manner that will enable access to these groups. 
The approach extends work where patterns identified in well-
formed requirements provides the formalization basis to allow 
for analysis. SpeAR (Specification and Analysis of 
Requirements) is a framework that enables the user to create 
formal specifications by way of pattern identification. It also 
provides a set of automated analyses to reduce errors in the 
design and implementation phases of development. This work 
does not attempt to capture the entire scope of natural language 
but patterns specific to safety critical system requirements. In 
this paper, use of formal patterns will be demonstrated through 
a sampling of high-level turbofan engine requirements. The 
formalizations will be specified and the analysis techniques 
available will be discussed. The paper will conclude with a 
brief overview of the formal pattern techniques and 
discoveries.  

II. BACKGROUND 
Development of today’s complex systems require many 

different groups of subject matter experts (SMEs) to come 
together to develop complex systems. Therefore as the 
complexity of the system increases it becomes less likely that 
the entire system is fully understood by one individual or 
group. Therefore, the interactions of all components are less 
understood which can lead to incorrect or incomplete 
understanding of how the components interact. This 
inconsistent system view can allow emergent behavior to occur 
in systems. [7] Not only is system complexity a challenge but 
also the loss of knowledge transferred throughout the system 
development process. As SMEs develop requirements it is 
often the case that years of experience provide completion of 
the constraints of the system that is not captured in traditional 
requirement generation techniques. As others are not fully 
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aware of understood constraints, implementation often can no 
longer guarantee that the barrier will not be violated. 

Throughout this paper, the authors will utilize a small 
selection of high-level requirements of a representative 
turbofan engine to show the formalization of the requirements 
to an applicable system. The overall process of developing 
requirements should be meant as an interactive process of 
discovery and description. One such technique to achieve this 
refinement is the use of the “Twin Peaks” paradigm that relates 
requirement definition to knowledge gained from other sources 
such as models and architectures. [8] This is also a 
foundational aspect of the spiral development cycle where 
multiple cycles encourage refinement of a design solution. This 
paper utilizes EngineSim (version 1.8a) on the NASA Glenn 
Research Center site to generate the representative model for 
analysis. [9] The primary need of the engine model is to 
determine the association between the safety constraints with 
those of the dynamics of the system. 

Using the simulated representation of a Pratt & Whitney 
F100 afterburning turbofan engine (common in the F-15 Eagle 
and F-16 Fighting Falcon), the basis of the requirement set was 
derived. [10] The challenge to capture these requirements 
within a formal definition has proved to be a barrier to 
advanced analysis techniques such as the implementation of 
the use of model checkers and theorem provers.[6] Advances 
in requirement definition techniques allowed for the 
development of two primary approaches to formalizing 
requirement sets: (1) parsing existing natural language 
requirements or (2) encouraging SMEs to utilize a constrained 
natural language paradigm when they write the requirements. 

In order to parse the existing natural language 
requirements, toolsets, such as SRI’s Automatic Requirements 
Specification Extraction from Natural Language (ARSENAL), 
were developed [11]. These tools require the ability to 
associate the natural language to a database of terminology that 
carries similar usage inside the text to decipher the linguistic 
meaning. Once the natural language is matched to the evolved 
terminology database, then a mathematical basis can be 
leveraged to the requirement set. Implementing this translation 
provides the necessary information to the system to generate 
provably correct analysis of the existing set.  

The other methodology, although adding responsibility to 
the system engineers and SMEs, encourages use of a 
constrained natural language that will more closely translate 
into the mathematical foundations necessary for analysis. It is 
this methodology that SpeAR leverages in order to bridge the 
gap in the natural language to mathematical expression.  

III. TURBOFAN EXAMPLE 
In order to best describe how SpeAR utilizes a constrained 

language to build requirements, the use of a turbofan example 
was chosen. Examination of this example provides a number of 
overall properties of the engine to be defined at the system 
level. These properties show overarching high-level 
requirements of the system that must be maintained. Often 
these represent the safety properties of a system at each 
component level. The component requirements at each level 
defines the behavior of the component. Therefore, each 

component must have agreement in its defined behavior and its 
properties. Looking specifically at the system properties that 
define a relationship between thrust and fuel flow rate, 
examples of the analysis capabilities can be demonstrated. 
Utilizing NASA EngineSim, some representative requirements 
are considered to demonstrate these cases and are simplified to 
ease understanding. These categories will be introduced 
without the constrained language that is used in SpeAR so to 
build the general idea of these requirements. 

A. Direct Property Conflicts 
Engine Property 1: As the fuel flow increases, the thrust of the 

engine should also increase. 
Engine Property 2: As the fuel flow decreases, the thrust of the 

engine will also decrease. 
It can be seen that these engine properties are simplified for 

clarity of the example. This is a violation that can be found 
where the overarching behaviors of a component or system 
cannot coexist. Looking back at the system level property that 
defines a relationship between the fuel rate and the engine 
thrust, the relationship defines in proportional 
increase/decrease in both as the expected reaction. If another 
property is defined that would contradict this relationship, the 
system will create a counterexample that shows one of the two 
properties cannot possibly exist based on the defined behavior. 
Although trivial in this example, as systems become more 
complex, this type of conflict commonly emerges. 

B. Requirement Conflict / Dissatisfaction 
Engine Property 3: The engine must have a pump which will 

provide fuel to the combustion chamber. 
Pump Requirement 1: While the engine is on, the fuel pump 

shall supply the engine with a fuel flow proportional to that of 
the desired throttle. 

Pump Requirement 2: While the engine is on, the fuel pump 
shall supply the engine with a fuel flow independent of the 

throttle. 
 

The engine will contain a sub-component to manage the 
fuel flow into the turbofan combustion chamber. Assuming that 
this is directly managed by a fuel pump, we define the fuel 
pump component. This component utilizes throttle settings to 
manage the fuel rate. The second pump requirement violates 
that relationship by stressing that the fuel flow and throttle 
settings are independent forcing a direct conflict in behavior of 
the pump component in pump requirement 1 and 2. 

This is one of the most common analysis results found 
utilizing this framework. Assume that the system level property 
defined an inverse relation of fuel flow to that of engine thrust. 
As the subcomponent fuel pump provides the system a 
proportional change (fuel use increase implies an increase in 
thrust), then a counterexample would be generated that shows 
that these cannot as prove independent responses in the engine 
behavior. This counterexample would specify that a fuel rate 
increase is not able to create a condition with less thrust 
according to the behavior defined in the fuel pump component. 
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C. Under Specification 
Engine Property 1: The engine shall be provided fuel at a rate 

of no greater than 24,000 lb/hr. while at 0ft altitude. 
Engine Property 2: When the engine afterburner is engaged 
the fuel flow rate shall be 67,000 lb/hr while at 0ft altitude. 

 
This is an example of an under specification conflict as a 

result of how the system properties were defined. In the first 
property, the lack of additional constraints of the requirement 
resulted in a design parameter of a max fuel flow that was 
insufficient should the afterburner be activated at the same 
conditions. Therefore, analysis of these engine properties 
would result in a failure if the resulting requirement set only 
utilized the lower flow rate. 

This analysis is a common weakness in natural language 
requirements due to the ease for incomplete scope definition. 
For example, the system level property defines a safety check 
of the increased fuel flow rate that translates to some increase 
in thrust of the engine. In the physical world, this specification 
may be fully defined. However, in the cyber realm, this is an 
incomplete specification. There is no description of what is 
expected when the fuel flow rate is decreasing or is the same. 
Model checkers (as would software) exploit this since the 
behavior is not fully constrained. The behavior can be anything 
thereby opening the ability of a system to develop 
unconstrained or emergent behavior. 

 

IV. SPEAR 
The backbone of the SpeAR framework is a set of precise 

mathematical notations used to represent requirements, 
inspired by sets of formal property specification patterns 
developed at Kansas State University by Dwyer et al. [13]. 
These specification patterns were chosen because they captured 
a wide variety of temporal behaviors, were published and peer 
reviewed for accuracy, and are easily translated to the 
languages of various formal analysis tools such as the Kind and 
NuSMV model checkers. In addition, the patterns provide an 
abstraction; users are not required to understand the logical 
basis behind the formalisms allowing novices to use SpeAR 
with minimal training. This pattern set was further investigated 
and expanded upon by Castillos et al. in 2013 whose work 
sought to provide pattern definitions through the use of finite 
automata. [14] 

Each requirement is implemented in SpeAR as a scope and 
predicate scope pairing. The scope defines the temporal 
relationship of when the defined variables should hold, while 
the predicate defines the expected state of the variables. In 
Figure 1, an example natural language requirement could 
specify an association between the engine state and the 
rotational shaft of the engine. The scope defines the 
understanding of an attribute of the engine that the system 
engineer sees while the engine is on. Since this requirement 
was formulated with an identified pattern, translation into the 
direct pattern and the mathematical representation of the 
statement can be achieved. 

 
Figure 1: Scope and predicate example of a patterned requirement 

 
Figure 2: SpeAR pattern formulation of the example in Figure 1 

A. Scope and Predicate Relationship 
In Dwyer’s original work, the team identified five specific 

scopes that the majority of the specification patterns are based 
upon. These original scopes include Global, Before Q, After Q, 
After Q until R, and Between Q and R. In Figure 3, these 
scopes are defined graphically upon a timeline representing 
possible events. The scopes are driven by the identification of 
trigger events in temporal relationship with other events of 
interest 

 
Figure 3: Patterns identified by Dwyer et al. 

The Global scope is utilized in patterns where a predicate 
condition of a variable must be held valid for the entire lifespan 
of the system. The Before Q and After Q scopes are closely 
related in that they both utilize a relation to the trigger event to 
hold validity. The scopes After Q until R and Between Q and R 
are often confusing because in many situations they could 
appear to be equivalent. The difference is in the acceptance of 
the scope constraint range. With After Q until R, the scope is in 
the acceptance state after Q has occurred. Due to the 
unbounded natural of temporal logic, the scope guarantees that 
R will occur at some time in the future. Therefore, should the R 
event not occur until infinitely in the temporal future, then the 
scope is still valid. Between Q and R, this is not the case. For 
this scope to be valid, there must exist a Q that precedes the 
occurrence of an R event. Should the response of the R event 
not be defined prior to the termination of the analysis, then the 
scope was never determined to be valid and, therefore, its 
predicate specification would not be held. 

The capability of these scopes to map directly to the 
temporal constraints provides the foundation of the 
mathematical rigor of this methodology. For example, the 
Global scope pattern maps directly to the global (□) temporal 
logic equivalency. Furthermore, we utilized automata in a 
similar fashion as Castillos et al. [14] to define the patterns 
utilizing these scopes. This will be discussed in greater detail in 
Section IV.B. 

Upon examination of the turbofan, it can be seen that a 
number of the logical requirement sets are ideally suited for the 
pattern scope/predicate relationship. Requirements that meet 
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this capability are said to be “formalizable” meaning that the 
structure of the requirement itself defines the necessary 
information needed to develop a formal representation to 
analyze. Such a requirement is demonstrated with Figure 1. 
Since these requirements often well-define the functional 
behavior of systems, they are also known as functional 
requirements. In most all requirement sets, the existence of 
requirements that do not have a formal basis also exist in the 
set. Such requirements, known as “non-formalizable” 
requirements, are not readily translatable into a formal 
semantic. Often these requirements exist when system 
engineers add architectural information to the requirement set 
(e.g., “The system shall be quad-redundant”). Examples of 
formalized requirements with specific scope: 

 

Table 1: Example formalized requirements pertaining to a turbofan 
engine 

The rotation of the turbofan axle will always be in the 
clockwise direction. 

The temperature of the combustion chamber will not 
exceed 1500 degrees Fahrenheit. 

As the fuel flow increases, the thrust of the engine should 
also increase. 

Prior to the startup of the system, the engine shall be 
unpowered in the OFF state. 

 

B. Patterns 
The patterned specifications (Table 1) demonstrates further 

examples on how natural language requirements with a formal 
basis can be classified into mathematical patterns. The SpeAR 
framework supports the patterns associated with 
absence/always, existence, precedence, and response from the 
original specification patterns (see Dwyer et al. [13]) and 
further supported by Castillos et al. [14] work. It also 
introduces new and derived patterns to capture requirements 
that were found to be useful including initial, delta, range, and 
invariant. 

By utilizing patterns to generate a formal mathematical 
basis of the requirements, it is now possible to utilize model 
checking tools to examine if the specifications can properly 
exist in a defined system. Examining the requirements defined 
in Table 1, example SpeAR formulations can be completed as 
shown in Table 2. In order to properly define these 
requirements further definition of the distinctive varaibles of 
the pattern must also be defined. For example, in the first 
formulation which denotes the direction of the axel spin 
direction, the variable axle_direction would need to be defined 
prior its use here to represent an axle. The other requirements 
written here would need definition for associated variables that 
would allow inspection and evaluation. Furthermore, it is 
known for the third requirement that constant altitude, inlet 
velocity, and pressure to state a few additional constraints that 
would have to exist in the system for the fuel flow and engine 
thrust relationship to hold. This is simplified for the examples 
in this piece. 

Table 2: SpeAR pattern equivalent requirements of those defined in 
Table 1 

global::always axle_direction == Direction.Clockwise; 

global::always combustion_chamber_temp <= 1500 F 

while pre_flow_rate < flow_rate   
:: always pre_thrust_value < thrust_value 

initial :: engine_state == OFF and power_level == 0; 

 

V. ANALYSIS 
SpeAR provides two types of specification analyses: 

language level checking to ensure consistency and 
completeness of a specification and formal analysis for 
validation of requirements. As the user writes a specification, 
checks are performed to guide the user into making complete, 
well-formed specifications. Many of these checks, such as 
type-checking, are trivial. However, they provide quick and 
easy feedback to the user; reducing the errors that migrate to 
later stages of development. This analysis is conducted with 
the use of model checking tools and techniques that take 
advantage of computer science graph theory and the capability 
to quickly explore problem spaces. 

A. Model Checking 
In order to utilize the capabilities of model checkers, it is 

necessary to have a basic understanding of how this class of 
tools can efficiently explore problem state spaces. At its most 
fundamental understanding, these tools take advantage of the 
computer processor’s ability to quickly calculate all possible 
paths from that of a given point or known state of the modeled 
system. For this given point there exists algorithms to test 
combinations of variables of the system to verify claimed 
requirement behavior. It is the initial known state that allows 
for the brute-force manner to propagate the state exploration 
forward [15]. The tool is able to propagate the decisions of the 
state forward using a defined model of the system in question. 
Illustrated in Figure 4, the system is compared to the 
requirements that should properly bound the model space. If 
the system and the requirements are proven to properly 
constrain the space, the tool returns a satisfied state; otherwise, 
a counter-example is generated that demonstrates how the 
inconsistency was achieved. It is critical to note that a counter-
example only specifies that there is a disagreement between  
the definition of the formal specifications and the 
representative model of the system itself. It does not 
specifically demonstrate where the fault lies. What this tool 
does demonstrates is an inconsistency of the design of branches 
that feed the model-checking engine block. For example, the 
counter-example may demonstrate that a value could go 
negative. Was this behavior expected in the model? If not, then 
that shows that the model may be flawed; otherwise, should a 
negative value be valid? If so, then it points to a lack of a 
proper constraint provided by the requirement definition. 
Therefore, model checking tools provide the capability to point 
out inconsistencies for the user to examine and not an 
automated system that provide solutions without human 
reasoning. 
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Figure 4: Schematic view of the model checking approach (red) [15] 
with SpeAR attachment into the process (blue) 

1) Compositional Verification 
Even though current model checkers have been shown to 

be powerful on certain classes of problems, they do come with 
limitations such as that of state-space explosion [16]. This 
challenge is common among complex systems due to the 
inability to feasibly traverse the possible bounded model space 
within a reasonable computation time. Systems that suffer from 
state-space explosion often cannot isolate the atomic nature of 
choices in parse trees and thus eliminates the ability to vary the 
system along an isolated degree of freedom to explore system 
setting combinations. Several techniques exist to mitigate state-
space explosion in system design verification. One such 
method is the use of compositional verification which abstracts 
subcomponents as black boxes, disregarding the design details 
in favor of contracts that describe the relevant behaviors of the 
component [17]. This concept stresses that complex systems 
are made of more simplistic components that are easier to 
verify, thus reducing the monolithic expanse of variables in the 
systems. Then, once these subcomponents are verified, they 
can be treated as an atomic piece (the black box) higher in the 
system. Naturally, the challenge then becomes how to ensure 
that the relationship between the components and the higher 
level composite system is well understood and valid. Although 
also not a trivial problem, there has been a number of advances 
in architecture to leverage model checking to help solve these 
interaction problems [18]. 

In the turbofan example, compositional design and 
verification is illustrated with the relationship of the of an 
engine level output of overall thrust and fuel flow. In order for 
the fuel flow to be maintained in the system in a controlled 
manner a pump must supply and regulate the flow. Therefore, 
requirements on how responsive changes in the thrust are to the 
fuel flow in turn provide requirements that the pump must be 
able to achieve.  

B. Formal Analysis 
In our analysis, we define properties that represent the 

high-level specifications of the component. The requirements 
define the derived model that should satisfy the properties and 
disambiguates how the system will respond to a given input. 
This analysis is completed in SpeAR by translating the 
specification to a Lustre model. [19] In this model, all variables 
are represented as nondeterministic, varying inputs. Then, the 

requirements restrict the values that these variables are allowed 
to take on. This set of traces is then checked against each 
property. If a property does not accept a trace, one or more 
requirements allow an unintended behavior or the property 
itself is incorrect. This analysis is done by creating an 
obligation. In this obligation, the conjunction of all the 
requirements ( 𝑅𝑅𝑗𝑗 ) and assumptions ( 𝐴𝐴𝑖𝑖 ) must imply the 
properties (𝑃𝑃𝑘𝑘) of interest. This is captured in Equation (1). 

                   ⋀ 𝐴𝐴𝑖𝑖 ∧ ⋀ 𝑅𝑅𝑗𝑗𝑛𝑛
𝑗𝑗=1 ⟹  ⋀ 𝑃𝑃𝑘𝑘

𝑞𝑞
𝑘𝑘=1

𝑚𝑚
𝑖𝑖=1   (1) 

VI. DEFINING A SYSTEM USING THE SPEAR FRAMEWORK 
The SpeAR Framework is developed using the Eclipse IDE 

with the XText markup extension [20]. This allows for the user 
to be able to define the system compositionally with the use of 
the Relation and Definition files. 

A. SpeAR Relation File 
The Relation file (Figure 6) is the location where all the 

relation information of the system or component is captured.  
The file is constructed with three parts; (1) the heading block, 
(2) the input/output (I/O) and local variable block, and (3) the 
component Definitions/requirements block. The heading block 
(area 1 in Figure 6) has a Relation label (only a single entry) 
that defines how the file will be referenced in the overall 
project and a Uses section that lists all the external files that 
have information needed in this file. The Uses label can be 
utilized as many times as necessary in order fully allow access 
to other external files. This is commonly used to incorporate 
the contents of Definition files into the Relation file. It is also 
used to ensure that the different data types that are specified in 
other files may also be used here. The next block in the 
Relation file is the I/O and local variable block (area 2 in 
Figure 6). One of the constructs necessary in the SpeAR file 
format is the premise that components have known inputs and 
outputs for the system. This represents the first two parts of this 
block; Inputs define the information that is input into the 
component, Outputs define the information that the component 
will send out. Ultimately, these labels define the input and 
output of a “clear box” representation of system. The State 
section provides an area for the system engineer to define 
variables that will be local to the component (i.e., not provided 
by inputs). The Macros section provides the ability to create 
shorthand calls to complex conditions and/or calculations (not 
pictured). The last block in a Relation file is the component 
definition/requirements section (area 3 in Figure 6). The first 
section in this block is the Requirements which defines the 
component level requirements (also known as the derived 
requirements). This section defines the behavior of the 
component that will be tested by the model checker. The last 
section in this block is the Properties which define the 
conditions that must be held for the overarching component. 
Also known as high-level requirements, this section typically 
describes safety and/or security constraints that the component 
must ensure are maintained. 
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Figure 5: Representation of a SpeAR Relation File 

B. SpeAR Definition File 
It is important to note that parts of the Definition file can 

also be included in the Relation file if desired. Often it is better 
to have a specific Definition file especially in compositional 
designs of a system. In order for many specifications to be 
properly verified, there is the need to have a unified 
understanding of the units, constants, datatypes, etc. that are 
used across multiple files. In Figure 7, there are three blocks of 
the representative SpeAR Definition file; (1) the file unique 
name, (2) the agreed upon units of measure for the system, and 
(3) the constants and datatype definitions. The first section 
(area 1 of Figure 7) gives the unique name to the Definition 
label. It is good practice to use the example naming convention 
as seen in the Figure 7 where the project name and further 
description of the Definition file is listed. The second section 
(area 2 of Figure 7) explicitly defines how Units will be related 
in this system. This is an important aspect of many requirement 
sets due to the changing between understood units have caused 
a number of accidents including the loss of the NASA Mars 
Climate Orbiter in 1999 [21]. The last block (area 3 in Figure 
21) defines the Constants and Types sections of the file. The 
Constants allow the user to define the understood constants of 
the system in a single location that can be brought into Relation 
files. The Types section defines datatypes that the user can 
define for the system and incorporate into Relation files as 
well. 

 
Figure 6: Representation of a SpeAR Definition File 

VII. CONCLUSION 
In this paper, we introduced the SpeAR framework for 

developing a formalized set of requirements. It provides a set 
of formal semantics for expressing desired system behaviors, a 
domain specific language to ensure consistency and coherency, 
and formal analysis capabilities to help the user verify and 
validate the specified behaviors are correct. The authors plan to 
continue this work by enhancing the SpeAR framework to 
allow for increased expressibility of requirements through 
patterns that users can develop. Furthermore, the authors plan 
to extend the capability here into Assume/Guarantee systems 
which look to leverage high-level and derived requirements to 
define compositional interactions which will lead to “system of 
systems" concepts to be used in modern system development. 
In addition, there are plans to investigate techniques to generate 
testing artifacts from formalized requirement specifications that 
would aid in the future certification process of systems. 
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