
PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

AACE: Automated Assurance Case Environment
for Aerospace Certification

Zamira Daw∗, Chanwook Oh†, Matthew Low†, Timothy Wang∗, Isaac Amundson‡,
Alessandro Pinto∗, Massimiliano Chiodo∗, Guoqiang Wang∗, Saqib Hasan‡,

Ryan Melville∗, Pierluigi Nuzzo†

∗Raytheon Technologies Research Center, Berkeley, CA, USA
†University of Southern California, Los Angeles, CA, USA

‡Collins Aerospace, Minneapolis, MN, USA

Abstract— A certification process evaluates whether the risk
of a system is acceptable for its intent. Certification processes are
complex and usually human-driven, requiring expert evaluators
to determine software conformance to certification guidelines
based on a large number of development artifacts. These pro-
cesses may result in superficial, biased, and long evaluations. In
this paper, we propose a computer-aided assurance framework,
called Automated Assurance Case Environment (AACE), en-
abling synthesis and validation of assurance cases (ACs) based on
a system’s specification, assurance evidence, and domain expert
knowledge captured in AC patterns. A commercial aerospace
case study shows that the generated ACs are meaningful, and
numerical results show the efficiency of AACE.

Index Terms—Assurance cases, certification, synthesis, valida-
tion

I. INTRODUCTION

Certification processes help ensure aspects of product de-
pendability including safety, security, and functional correct-
ness. However, typical certification efforts contribute to a
considerable portion of the product cost (40% for product
changes) and delays the introduction of new technologies.
Therefore, there is a need for methodologies that make certi-
fication processes more agile and automated. Current method-
ologies and tools require a significant amount of manual effort,
and do not incorporate advanced reasoning technologies to
support automated validation. Certification is generally based
on guidelines and standards that provide best practices to
develop high-assurance systems. However, technology inno-
vation outpaces the evolution of those standards. In case
of new technologies where standards are not yet available,
assurance arguments can help applicants present novel means
of compliance in a structured manner.

Assurance cases (ACs) provide a means to make explicit an
argument that dependability properties have been acceptably

Distribution statement “A” (approved for public release, distribution unlim-
ited). This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA), contract FA875020C0508. The views,
opinions, or findings expressed are those of the authors and should not be
interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government. The authors wish to also acknowl-
edge the partial support by the National Science Foundation (NSF) under
Awards 1846524 and 2139982, the Office of Naval Research (ONR) under
Award N00014-20-1-2258, the Defense Advanced Research Projects Agency
(DARPA) under Award HR00112010003, and the Okawa Research Grant.

addressed in a system. More specifically, an assurance case is
defined as a “reasoned and compelling argument, supported
by a body of evidence, that a system, service, or organization
will operate as intended for a defined application in a defined
environment” [1].

At present, however, ACs are generally created through
manual processes and limited to facilitating discussion by
collecting related arguments and documenting the structure
of the arguments. Difficulties in utilizing ACs for purposes
beyond manual documentation partly stem from the absence
of formal semantics. Existing tools for AC visualization and
manipulation suffer from notational gaps, leaving room for dis-
agreeing interpretations and misunderstandings among devel-
opers. Unfortunately, the creation of rigorous and interpretable
arguments is non-trivial, and only a small number of attempts
have been made toward formalisms and tools that can assist
in this task [2]–[4].

The construction and validation of ACs is further compli-
cated by the following factors:

• Increasing complexity of modern cyber-physical system
designs

• Heterogeneity of supporting evidence
• Necessity to assess argument quality when faced with

quantitative and qualitative sources of doubt
• Requirement to produce interpretable outcomes.

This paper addresses these challenges by presenting a
framework for the automated synthesis and validation of
ACs. We use a commercial aerospace industrial example as
a case study, showing that certification arguments generated
by AACE are understandable and plausible, and the perfor-
mance of the tool can support industrial applications. Overall,
AACE reduces manual validation tasks done by certification
authorities using automation while maintaining a high level
of assurance by using argumentation patterns. This objec-
tive is achieved by combining formal methods and domain
knowledge encapsulation in a novel manner. Furthermore, the
formalization of the patterns reduces ambiguity in the argu-
ment and allows future analysis regarding cost and schedule
optimizations.



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

II. BACKGROUND

We provide an overview of assurance cases as well as
assume-guarantee contracts and Bayesian networks, which are
the underlying formalisms used in this paper.

A. Assurance Cases

An assurance case (AC) is a hierarchical argument that
maps a top-level claim to evidence through strategies and
intermediary claims to establish that a system satisfies the
requirements in its operative environment [4], [5]. Structured
language [6] or graphical notations such as Claims-Arguments-
Evidence (CAE) [7] and Goal Structuring Notation (GSN) [1]
are often employed to describe ACs. The AC representation
is then a directed acyclic graph that maps the system spec-
ification (the top-level claim) at the root to the leaf nodes
representing the supporting evidence.

B. Assume-Guarantee (A/G) Contracts

Assume-guarantee (A/G) contracts offer effective mecha-
nisms to analyze system requirements and behaviors in a mod-
ular way [8]–[11]. By using A/G contracts as a specification
formalism, we can represent both the claims about the system
as well as the contexts under which the claims must hold.

An A/G contract C is a triple (V,A,G) where V is the
set of variables, A (assumptions) is a specification for an
environment over V , and G (guarantees) is a specification for
an implementation over V , representing the set of promised
behaviors given that the environment satisfies A. We omit V
when this is clear from the context.

C. Bayesian Networks

We model sources of doubt in ACs using Bayesian networks
(BNs), which have been successfully used in many application
domains to incorporate subjective notions of probability or
belief and to quantitatively reason about the confidence in as-
sertions affected by uncertainty [12]–[14]. BNs can efficiently
encompass both aleatoric and epistemic uncertainty, produc-
ing more compact models than other probabilistic reasoning
frameworks for uncertainty quantification [15].

III. FORMALIZING ASSURANCE CASES

We use the following running example to demonstrate the
workflow of the AC generation framework (see Figure 1).
For illustration purposes, the patterns are represented using
elements of the GSN.

Pattern P1 in Figure 1 establishes the sufficiency of the test
cases for checking system correctness if the tests exercise all
requirements and cover the entire source code. P2 argues that a
set of tests covers the entire source code if the decision cover-
age (DC) and modified condition/decision coverage (MCDC)
metrics are satisfied. P3 argues that a set of test cases fully
exercises the requirements if the tests cover the normal and
robust ranges of the requirements. Confidence in this statement
can be boosted by adding evidence from falsification tools.

We formalize an AC into a hierarchical contract net (HCN)
that specifies the logic of the argument and a confidence

Fig. 1. AC pattern library used in the running example throughout the paper.
Rendered as a rectangle, a goal node G represents a claim forming a part of
the argument while an evidence (or solution) node E, rendered as a circle,
represents a reference to an item of evidence.

Fig. 2. Formalization of P3 in Figure 1 as an HCN.

network that captures the sources of doubt of the logical
argument. An HCN is a tree-like structure that connects a
top-level contract, which specifies the AC claim, to a contract
network that consists of all premises and supporting evidence
of an AC. Formally, the connection is defined by a refinement
relation between the top-level contract and the composition
of contracts within the network. Details on HCNs can be
found in [16]. Figure 2 shows the HCN corresponding to P3
in Figure 1. Note that the claim and the premises of P3 are
transformed into guarantees in the contracts.

A confidence network captures sources of uncertainty in the
premises of the AC (formalized by an HCN). A confidence
network is implemented as a Bayesian network (BN), where
the nodes of the BN correspond to the sources of uncertainty
modeled as random variables, while the edges and the as-
sociated conditional probabilities represent the dependencies
between the sources of uncertainty. For example, a method for



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

𝑀𝐶𝐷𝐶𝑂𝑟𝑎𝑐𝑙𝑒 
(𝑀𝐶𝐷𝐶𝑂)

𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 
(𝑡𝐶)

𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑦𝑀𝐶𝐷𝐶 
(𝑐𝐵𝑀𝐶𝐷𝐶)

𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑑𝑒 
(𝑠𝐶)

𝐷𝐶𝑂𝑟𝑎𝑐𝑙𝑒 
(𝐷𝐶𝑂)

𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐵𝑦𝐷𝐶 
(𝑐𝐵𝐷𝐶)

𝑇𝑒𝑠𝑡𝑠 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 
𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑑𝑒

(𝑡𝐸𝑆𝐶)

Fig. 3. Bayesian model captures sources of uncertainty and their relationship
allowing analysis of the impact of the source of doubt on the goal.

ensuring that high-level software requirements satisfy system-
level requirements is through a validation activity. The result
of this validation activity is captured as a part of the logical
argument and the lack of independence in the validation is
captured as a possible source of doubt. Details on confidence
networks can be found in [17].

The BN in Figure 3 can be associated with pattern P2 in Fig-
ure 1. BNs can incorporate aleatoric and epistemic uncertainty,
and allow combining multiple evidence items. For example,
via the conditional probability P (tESC|cBMCDC, cBDC),
the BN pattern in Figure 3 can capture the dependencies
among the confidence in the claim “tests exercise the source
code,” the result of the test (a source of aleatoric uncertainty)
and the belief (subjective probability) in the quality of the test
oracle (a source of epistemic uncertainty).

IV. AACE FRAMEWORK

AACE is an assurance generation and validation tool for
aerospace certification (Figure 4). AACE automatically trans-
lates argumentation patterns, written in Resolute [18], into
HCNs and BNs. Based on a problem definition and pattern
library, the generation algorithm creates an HCN that repre-
sents all possible assurance cases, which we refer to as AC
candidates. Although this process guarantees the correctness
of the generated assurance cases by construction, the gen-
eration algorithm does not consider the available evidence,
which typically relates to the leaf premises in an assurance
argument modeled as an HCN. Therefore, some candidates
may be eliminated later in the validation process due to the
lack of evidence or confidence. We denote by evidence a set
of objective facts collected, for example, via tests, analyses,
or proofs, that can be used in support of or against a claim.
The validation algorithm coordinates logic and probabilistic
reasoning to validate the soundness of an HCN and quantify its
confidence level based on the available evidence. AACE also
provides intuitive user interfaces to guide pattern specification
as well as evaluation of the generated assurance cases.

Stakeholders: A high-level representation of AACE capabil-
ities and its interaction with its stakeholders is shown in the use
case diagram in Figure 5. The AACE stakeholders are Domain
Expert, Program Manager, Certification Authority, Evidence
Curator, and Evidence Extractor, as further detailed below:

• Argumentation Team: models domain-specific AC pat-
terns that provide a general argument of how a given
claim can be achieved in a domain and under specific

conditions. The argumentation team is composed of a
domain expert and an argumentation expert. Having a
team ensures that the arguments are understandable, un-
ambiguous, logical, and correct according to the domain.

• Program Managers: set top-level claim, which includes
the target system, the certification goal, and the met-
ric on which ACs can be optimized (e.g., confidence,
cost, schedule). The Program Manager can trigger the
generation of optimal ACs, which include validation and
optimization of ACs by taking into account the available
evidence.

• Certification Authorities: evaluate the resulting ACs for a
given system and certification target. Certification author-
ities can refute ACs in which the argument is determined
to be unsatisfactory. They could also go a step further
and revise the applied pattern (e.g., by adding missing
required evidence or tuning confidence models).

• Evidence Curator: provides evidence upon request.
• Evidence Extractor: extracts additional evidence in case

there is still missing evidence.

V. CAPTURING DOMAIN EXPERT KNOWLEDGE

AACE proposes the use of argumentation patterns to capture
the means of compliance and their justification. An argu-
mentation pattern represents a generalizable, modular, and
reusable assurance case. Patterns undergo vetting by domain
experts to ensure their completeness and correctness. AACE
provides a pattern editor, as shown in Figure 6. Domain expert
knowledge is encapsulated within the argumentation pattern.
The elicitation process is led by the argumentation expert, who
engages with the domain expert (e.g., a software engineer) to
inquire about the required premises for achieving a given goal.
In the running example, we employed DO-178C to extract
domain knowledge. It is noteworthy that we did not directly
map the objective; instead, our focus was on understanding the
reasoning behind the objectives in order to create the patterns,
as depicted in Figure 1. Sources of doubt can be added as
defeaters using the editor.

After the pattern is created, the editor generates a
Resolute file (Figure 7) that combines a human-
understandable justification (to facilitate evaluation by cer-
tification authorities) with a formal specification to enable
automation.

If sources of doubt are identified in the pattern creation,
AACE generates a json file containing a BN, as shown in
Figure 3. Domain experts can use a BN editor to add/remove
sources of doubt, interconnections between sources of doubt,
and modify the impact of the sources of doubt on the goal.
BNs can be constructed based on domain expert knowledge,
e.g., via an elicitation and calibration process. The BN in Fig-
ure 3 models a confidence pattern encapsulating notions from
testing, to express the key correlations between the outcome
of a coverage test and the quality of the artifacts (e.g., source
code, test oracle) produced during software development and
testing.



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

Fig. 4. AACE architecture.

Fig. 5. Stakeholders of argumentation-based certification.

VI. REASONING ABOUT LIFECYCLE ARTIFACTS

Evidence produced during the entire lifecycle is captured
in an ontology database. Such evidence is linked to real arti-
facts. The evidence ontology defines key software certification
concepts such as Component, Requirement, and Test that are
widely accepted by industry domain experts. In addition, the
ontology captures data types and their relationships. Utilizing
ontological reasoning between the assurance case generation
and the evidence extraction allows the incorporation of varied
sources of evidence and enables automated pre-analysis to
identify inconsistencies and conflicts. Currently, we use the
Rapid Assurance Curation Kit (RACK) [19] as our evidence
database. Alternatively, evidence may be retrieved from other
sources such as an architecture model of the system under
development (e.g., in AADL).

The evidence assessment is executed by a query creator
and ontology reasoner. The query creator receives evidence
requests from the generation and validation modules. The evi-
dence request is then evaluated, and one or multiple SPARQL
queries are created and sent to the ontology reasoner. The
current interface design uses the REST (REpresentational State
Transfer) protocol.

Fig. 6. Pattern editor supports the creation of patterns by providing a search
mechanism for existing claims and by separating the argument creation from
the argument formalization.

VII. GENERATING PLANNED CERTIFICATION ARGUMENTS

Based on a library of patterns and the specification of a
given system, AACE generates all possible assurance cases
(see Figure 9), termed AC candidates. AC candidates can then
be ranked according to several metrics, such as confidence,
cost, and schedule, allowing project managers to make in-
formed decisions regarding system certification strategies.

The generation algorithm uses Satisfiability Modulo The-
ory (SMT) solving for instantiating and connecting different
argumentation patterns to build a certification argument. This
process guarantees the correctness of the generated assurance
cases by construction. Once the AC candidates are created,
AACE assesses if the arguments are sufficiently supported
by the available evidence. We refer to evidence as a set of
facts collected, for example, via tests, analyses, or proofs,
that can be used in support of the argument. Given the AC
pattern library shown in Figure 1 and the top-level claim “test



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

Fig. 7. Argumentation patterns are defined in Resolute that can be understood
by humans with some training and automatically translated in formal models.

Fig. 8. Evidence produced during the entire product lifecycle is captured in
an ontology database allowing automatic reasoning about system and process
evidence.

cases are sufficient to verify system correctness,” the synthesis
algorithm generates the AC shown in Figure 10, where the
contract networks defined in P2 and P3 refine the two premises
of P1.

VIII. ASSESSING CERTIFICATION ARGUMENTS

In the current certification process, validation is performed
manually. A certification authority picks a handful of devel-
opment products (e.g., system level requirements) and traces
them through the development lifecycle to validate that the
proposed plan has been executed. In contrast, AACE auto-
mates the validation process by systematically checking all
the supporting evidence and assessing the confidence in the
ACs using a combination of logic and probabilistic reasoning
(see Figure 11). To quantify the persuasiveness of claims
supported by evidence, we utilize BNs to compute confi-
dence values. These confidence values are then classified into
coarsely grained, qualitative levels, such as Low, Medium,
or High. To determine the sufficiency of an intermediate
claim supported by sub-claims, we combine the qualitative
confidence levels based on pre-defined rules. For instance,
a simple rule might require that all sub-claims must have
a High confidence level. This combination provides a way
to reason about evidence that is required (e.g., results of a
validation process) and evidence that increases or reduces
the level of confidence (e.g., independence in the validation).
The required level of confidence can vary with the criticality
level. The values in green attached to each claim in Figure 12

Fig. 9. Synthesis and independent validation of soundness of assurance case
candidates.

Fig. 10. Generated AC based on the AC pattern library in Figure 1. Dotted
boxes highlight the instantiated pattern.

represent the confidence values when all the evidence items
are available. On the other hand, the values in red represent
the confidence values with missing evidence to support the
claim “tests exercise robustness of the system.”

IX. CASE STUDIES

We evaluated our framework using two synthetically gen-
erated and an industrial-level aerospace case studies on an
Intel core i7 processor with 16-GB RAM. The performance
metrics were averaged over three runs. We first evaluated the
performance and scalability of the proposed synthesis and
validation algorithms.

In Experiment 1, we conducted an assessment to evaluate
the influence of the AC pattern library size (Sys Lib) and the
size of the synthesized HCN (V al Lib) on the execution time
of the synthesis and validation plugins. To perform this evalu-
ation, we executed the framework using input pattern libraries



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

Fig. 11. Assessment of the support of evidence.

Fig. 12. Assurance case with confidence calculation.

of different sizes, which were generated synthetically. Addi-
tionally, we used several different top-level claims, resulting in
HCNs of varying sizes. The size of the pattern library ranged
from 121 to 29,524 (Sys Lib=121 to Sys Lib=29,524), as
indicated by the three different colored markers at the bottom
of Figure 13. The size of the synthesized HCNs, measured by
the number of the patterns that are instantiated for constructing
the HCNs, ranged from 3 to 1,200. As depicted in Figure 13,
the results demonstrate that the size of the library has no
discernible effect on the validation time and only a negligible
impact on the execution time of the synthesis process. On the

Fig. 13. Performance of the synthesis and validation plugins with respect to
the size of the AC pattern library and the size of the generated HCN (x-axis).

other hand, both the synthesis and validation execution times
display a linear increase as the size of an HCN grows.

In Experiment 2, we assessed the impact of the number of
the AC candidates on the execution time of the synthesis and
validation plugins. Similarly to experiment 13, the synthesis
plugin was executed given input libraries of different sizes and
top-level claims. The plugin produced multiple AC candidates
supporting a single top-level claim.

Multiple AC candidates were created whenever a claim
could be supported by more than one argument pattern, e.g.,
since an implementation can either be verified using a set of
testing or a formal method, two AC candidates can be created
in this case.

The candidates were constructed such that they have the
same size (measured by the number of patterns used in the
synthesis). In this experiment, the number of generated AC
candidates varied from 1 to 1, 094. As shown in Figure 14,
the execution time of the synthesis plugin was not significantly
impacted by the number of candidates. In contrast, the execu-
tion time of the validation plugin increased as the number of
candidates increased.

In Experiment 3, we aim to demonstrate how the framework
can be used to generate overarching properties (OP) certifica-
tion arguments for the navigation subsystem of an autopilot
module. The autopilot has a flight stack, which performs
the estimation and control of a drone, and a middleware,
that supports communication and hardware integration. The
navigation subsystem sends an input to the actuators based
on multiple sensors (e.g., GPS, IMU, camera control, distance
sensor, optical flow) and the target position provided by the
remote control. The navigation subsystem possesses 230 high-
level requirements, 376 low-level requirements, and 66,000
software components. High-level requirements (HLRs) are
written in natural language, and low-level requirements (LLRs)
are modeled in Simulink. Requirement-driven testing was
utilized to evaluate the correctness of the implementation.

We created an assurance case library containing 50 AC pat-
terns incorporating best system development practices inspired
by compliance with the RCA DO-178C, DO-331, and DO-333
standards.



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

Fig. 14. Performance of the synthesis and validation plugins with respect to
the amount of generated AC candidates.

One of the generated ACs is shown in Figures 15 and 16.
This AC consists of 44 claims and has a top-level goal stating
that “the navigation subsystem is suitable for flying.” The top-
level goal is satisfied by showing that the navigation system
satisfies the Intent, Correctness, and Innocuity properties. For
a detailed illustration of the AC, we refer to the Appendix.

Once the AC candidates were generated, the validation
algorithm queried the evidence database containing the arti-
facts from the lifecycle processes (test cases, reviews) and
the system specifications on the software components, code
generation, criticality level, etc. The AC generation framework
took 2.92 seconds to generate and assess the AC for the
navigation subsystem.

By employing argumentation patterns repeatedly, our frame-
work achieved enhanced efficiency, particularly in the synthe-
sis plugin. In this experiment, we were able to instantiate over
606 claims within an AC utilizing just a few of argumentation
patterns. This approach not only saved memory but also
reduced the effort required for logic validation. However, we
encountered a bottleneck when the number of evidence items
in the database grew, resulting in longer querying times and
subsequently increased validation time.

X. RELATED WORK

Some existing tools (AdvoCATE [20], DS-Bench [21])
support limited automation for AC representation and val-
idation with GSN or CAE pattern libraries. However, the
semantics of these tools are not fully characterized, e.g.,
the nature of refinement (inductive or deductive) between
claims is not specified [5]. This gap can undermine the
strength of an argument through confirmation bias [4]. Our
tool removes these ambiguities by modeling claims as con-
tracts and leveraging the well-defined contract algebra [8].
Additionally, we consider Bayesian reasoning to assess the
relative strength of available arguments. The AMASS platform

provides tools for AC automation using contracts but does not
support quantitative assessment of an argument’s confidence.
Other tools [22], [23] enable AC automation and also support
confidence assessment, however, they do not utilize a contract-
based, compositional framework. Our tool [24] is the only one
to combine rigorous, contract-based AC automation with logi-
cally monitored Bayesian reasoning for confidence assessment.
We additionally provide an accessible and clear interface [25]
to guide domain experts and certification authorities from
pattern specification to argument evaluation in a cohesive, end-
to-end framework.

XI. CONCLUSION

We presented the Automated Assurance Case Environment
(AACE), a framework for automatic generation and validation
of ACs, leveraging domain knowledge-based assurance pat-
terns. ACs are formalized as hierarchical contract networks,
which allow for efficient, modular synthesis and validation
of arguments. We proposed an AC synthesis approach that
uses SMT for instantiating and composing unit argumentation
patterns to build a complete AC and an AC validation approach
that combines logic and probabilistic reasoning to propagate
confidence calculations throughout the AC. We validated the
quality of the generated ACs and the performance of our
algorithms on a commercial aerospace case study.

We plan to support sensitivity analysis to facilitate the
evaluation of BN confidence patterns. We also plan to add
cost information to the patterns so that we can investigate
cost-effective solutions during synthesis and validation.

REFERENCES

[1] The Assurance Case Working Group, “Goal structuring notation com-
munity standard (version 3),” 2021.

[2] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly, “Weaving an
assurance case from design: a model-based approach,” in 2015 IEEE
16th International Symposium on High Assurance Systems Engineering.
IEEE, 2015, pp. 110–117.

[3] J. Rushby, “Formalism in safety cases,” in Making Systems Safer.
Springer, 2010, pp. 3–17.

[4] R. Bloomfield and J. Rushby, “Assurance 2.0: A manifesto,” arXiv
preprint arXiv:2004.10474, 2021.

[5] J. Rushby, “The interpretation and evaluation of assurance cases,”
Computer Science Laboratory, SRI International, Tech. Rep. SRI-CSL-
15-01, 2015.

[6] C. M. Holloway, “Explicate’78: Uncovering the implicit assurance case
in DO-178C,” Safety-Critical Systems Symposium, 2015.

[7] Adelard LLP, Claims, Arguments and Evidence (CAE), 2019,
https://www.adelard.com/asce/choosing-asce/cae.html.

[8] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
and K. G. Larsen, “Contracts for system design,” Foundations and
Trends in Electronic Design Automation, vol. 12, no. 2-3, pp. 124–400,
2018.

[9] S. S. Bauer, A. David, R. Hennicker, K. Guldstrand Larsen, A. Legay,
U. Nyman, and A. Wakowski, “Moving from specifications to contracts
in component-based design,” in Fundamental Approaches to Software
Engineering. Springer, 2012, pp. 43–58.

[10] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-based design for cyber-physical systems,”
European journal of control, vol. 18, no. 3, pp. 217–238, 2012.

[11] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, “A platform-based design methodology with contracts and
related tools for the design of cyber-physical systems,” Proceedings of
the IEEE, vol. 103, no. 11, pp. 2104–2132, 2015.



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

[12] F. V. Jensen, Introduction to Bayesian Networks, 1st ed. Springer, 1996.
[13] R. Neapolitan, Learning Bayesian Networks, ser. Artificial Intelligence.

Pearson Prentice Hall, 2004.
[14] C. Hobbs and M. Lloyd, “The application of Bayesian belief networks

to assurance case preparation,” in Achieving Systems Safety. Springer
London, 2012, pp. 159–176.

[15] K. Verbert, R. Babuška, and B. De Schutter, “Bayesian and Dempster–
Shafer reasoning for knowledge-based fault diagnosis–A comparative
study,” Engineering Applications of Artificial Intelligence, vol. 60, pp.
136–150, 2017.

[16] T. E. Wang, Z. Daw, P. Nuzzo, and A. Pinto, “Hierarchical contract-based
synthesis for assurance cases,” in NASA Formal Methods Symposium.
Springer, 2022, pp. 175–192.

[17] C. Oh, N. Naik, Z. Daw, T. E. Wang, and P. Nuzzo, “ARACHNE:
Automated validation of assurance cases with stochastic contract net-
works,” in International Conference on Computer Safety, Reliability, and
Security. Springer, 2022, pp. 65–81.

[18] A. Gacek, J. Backes, D. D. Cofer, K. Slind, and M. Whalen, “Resolute:
An assurance case language for architecture models,” in Proceedings
of the ACM SIGAda annual conference on High integrity language
technology, 2014, pp. 19–28.

[19] A. Moitra, P. Cuddihy, K. Siu, B. Meng, J. Interrante, D. Archer,
E. Mertens, K. Quick, V. Robert, and D. Russell, “A semantic refer-
ence model for capturing system development and evaluation,” in 16th
International Conference on Semantic Computing (ICSC). IEEE, 2022,
pp. 173–174.

[20] E. Denney, G. Pai, and J. Pohl, “AdvoCATE: An assurance case
automation toolset,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2012, pp. 8–21.

[21] H. Fujita, Y. Matsuno, T. Hanawa, M. Sato, S. Kato, and Y. Ishikawa,
“DS-Bench toolset: Tools for dependability benchmarking with simula-
tion and assurance,” in International conference on dependable systems
and networks. IEEE, 2012, pp. 1–8.

[22] C. Cârlan, V. Nigam, S. Voss, and A. Tsalidis, “ExplicitCase: tool-
support for creating and maintaining assurance arguments integrated
with system models,” in International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, 2019, pp. 330–337.

[23] S. Ramakrishna, C. Hartsell, A. Dubey, P. Pal, and G. Karsai, “A
methodology for automating assurance case generation,” arXiv preprint
arXiv:2003.05388, 2020.

[24] T. Wang, C. Oh, M. Low, I. Amundson, Z. Daw, A. Pinto, M. Chiodo,
G. Wang, S. Hasan, R. Melville, and P. Nuzzo, “Computer-aided
generation of assurance cases,” in Computer Safety, Reliability, and
Security. SAFECOMP Workshops. Springer, 2023.

[25] Z. Daw, T. Wang, C. Oh, M. Low, I. Amundson, G. Wang, R. Melville,
and P. Nuzzo, “Computer-aided evaluation for argument-based certifica-
tion,” in 42nd AIAA/IEEE Digital Avionics Systems Conference. IEEE,
2023.

APPENDIX

This section provides details on the AC generated in Ex-
periment 3. The AC represented in Figure 16 shows that
the navigation system satisfies the Intent, Correctness, and
Innocuity properties. These three properties are sufficient since
Overarching Properties (OPs) are used as a means of compli-
ance. In this Figure, the branches related to Correctness and
Innocuity are undeveloped for readability. The branch of the
AC arguing about Correctness is, instead, shown in Figure 15.

The AC argues that Intent holds if the software system
specification satisfies (complies with) the system-level require-
ments (SLR) (G5), the specification is of high quality (G9),
and is fully developed (G13). Since the navigation system is
specified using high-level requirements (HLRs), low-level re-
quirements (LLRs), and software architecture, the instantiated
pattern achieves G5 by ensuring that system-level requirements
are satisfied by HLRs (G6) and that the software architecture
and the LLRs satisfy the HLRs in G7 and G8, respectively. The
synthesis algorithm instantiates the same pattern to satisfy G6
and G7, showing refinement between two sets of requirements
by checking for traceability and compliance. Depending on the
type of requirements, compliance can be shown using a manual
check-list, especially for natural-language requirements, or for-
mal verification, if both the sets of requirements are specified
using formal models. In the navigation example, compliance
is shown by manual check-list. By virtue of its modularity,
our framework can then support the automatic incorporation
of manual check-lists, aiming to evaluate single pieces of
evidence, when they are deemed necessary, and enable their

Fig. 15. Part of the generated AC for the certification of a commercial aerospace product corresponding to the Correctness property.



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

Fig. 16. Generated AC for the certification of a commercial aerospace product. The AC portion corresponding to Correctness is shown in Figure 15. The
Innocuity AC is not shown due to space constraints.



PREPRINT - Accepted at the 42nd AIAA/IEEE Digital Avionics Systems Conference (DASC), 2023.

assessment in the context of complex argumentation steps and
the overall AC.

To illustrate the reasoning capability of our framework for
general properties, we selected “high quality” as a property to
be supported by the specification. Depending on the type of
specification, this property may be interpreted as stating that
the requirements are well-written without ambiguity or that the
models are formulated at the right level of abstraction. In this
respect, the AC pattern itself captures information about its
applicability, which is used by the synthesis algorithm during
the pattern instantiation process. An example of this situation
is offered by G10 and G12, where a different pattern was
selected for HLRs written in natural languages versus LLRs
specified using Simulink models.

G10 is achieved by checking that textual requirements are
accurate (E10), verifiable (E7), follow standards (E9), and are
compatible with the specific hardware (HW) platform (E8).
Since LLRs are specified as Simulink models and they have
defined semantics, accuracy and verifiability do not need to
be checked. The instantiated pattern ensures high quality by
checking that there is no inconsistency (E14), that models
comply with modeling guidelines (E11), and that they are
compatible with the target HW platform (E12). Evidence for
consistency is supplied by a report from Simulink Design
Verifier.

Correctness (G2) is satisfied if the implementation complies
with the specification (G14), the source code is high-quality
(G17), the implementation is compatible with the target HW
platform (G16), and the implementation exists (G15). Since

1Justification nodes are labeled with J in GSN.

the navigation system code is auto-generated from the model,
the synthesis algorithm instantiates a pattern specific to code
generation. This pattern (instantiated for G14) argues that
the configuration of the code generator needs to undergo a
safety assessment in order to avoid optimizations that lead
to discrepancies between the behavior of the model and the
implementation. This type of information is provided to the
user as justification1. However, it is not shown in the figure,
for the sake of readability.

Testing is used to show that the implementation complies
with the specification (G18). This goal is achieved by ensuring
that the implementation passed all tests (E22) and that test
cases sufficiently cover the system functionality (G19) and
the code structure (G20). Coverage of system functionality is
ensured by showing traceability (E25, E26) and coverage of
the requirements for normal and robust ranges (E23, E24).
Because the autopilot system is classified as a high-criticality
system (Level A), the synthesis selected a pattern correspond-
ing to that level of criticality (G20). Accordingly, for this
pattern, test cases need to achieve three different coverage
metrics: Decision coverage (DC), modified condition/decision
coverage (MC/DC) and statement coverage.

Two examples illustrating how different artifacts can be
grouped in the generated AC are G6 and G8, which instantiate
the same pattern for requirement satisfaction, and G10 and
G12, which instantiate different patterns to ensure a high-
quality specification. This modeling choice avoids the instanti-
ation of the same pattern for 606 requirements and prevents the
validation algorithm from querying for the available evidence
for each requirement.


