\l/ .
2\\ < CO"'“S Aerospace Inc.ll.JstriaI Scale Proof En_gine_ering for
Critical Trustworthy Applications

(INSPECTA)

Carnesie DARPA PROVERS : Pipelined Reasoning of Verifiers
l\/[e]]()ng j wmﬁxﬁ = UNSW Enabling Robust Systems

. . SYDNEY
University

High Confidence Software and Systems | HCSS 2024
Darren Cofer | Principal Investigator

KANSAS STATE B'V jProofcrcf’E:|

UNIVERSITY DORNERWORKS for a verified future

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

PROVERS PROGRAM OBJECTIVES

Develop automated, scalable formal methods tools that are integrated into@raditionaDsoftware

development pipelines.
, DEFENSE & AEROSPACE

Enable@raditionaDsoftware developers to incrementally produce and maintain high-assurance national
security systems.

S& RTX

Adoption of formal methods in Defense Industrial Base development processes

W .
%ﬂé Collins Aerospace

HIGH ASSURANCE CYBER
MILITARY SYSTEMS (HACMS)

: ; - = .._,ﬂmm_
i
_ DEFC&N Do
e , VILLAGE
DARPA &

We brought a hackable quadcopter with defenses built

) os/aud T St dea

Sedttesaliay 41 81 IT IT 4 W M &1 07 3f

HACMS ULB : on our HACMS program
#ABrospace ge. As prog ager
I reports, many attempts to
- breakthrough were made but none were successful.
ol ..; | Formal methods FTW!
- ae

>

-

| N

> M o) 9:59/25:07 Loonwerks.com/projects/hacms

\// . O
%ﬂé Collins Aerospace >
> M o) 219/343

e

FINAL DEMO
COLLINS CUST
HUNTSVILLE A

AADL model

|

i

) |

|

ENVIRONMENT J/ J/
Awas HAMR
Info

Flow

Requirements
Analysis

Cyber AGREE
Transforms

Assurance
Case

Resolute

BUILD ENVIRONMENT

Generated
code

Hand-written
component code

Ny

Pre-verified
code (selL4)

C compiler |

g

L el b

CAMKES Synthesized| [SPLAT)
config files code
——
[CAmkES | [CakeML] Pre-verified component
compiler code (Attestation)

© 2021 Collins Aerospace

INSPECTA : HIGHLIGHTS

= Our workflow and tools will address the entire software development stack from requirements and system
models, to component source code, through build and deployment on the sel4 secure microkernel, linked by
formal verification at each level.

= We will achieve scalability for complex defense systems through compositional reasoning at the system level and
automated analysis of components based on powerful, cloud-based solvers.

= We will achieve the highest levels of assurance by building upon the best available technologies and leveraging
our experience from recent research programs as a starting point.

= QOur tools will be integrated with current Collins workflow automation processes and applied to defense and
aerospace products currently under development to demonstrate their usability, practicality, and effectiveness.

= Formal verification will be made accessible to non-formal methods experts through automated analysis with
streamlined user feedback and generalized proofs that are robust to changes, augmented by automated repair
tools.

= Our framework is adaptable and extendable to allow incorporation of results from other researchers, including
other specification languages, other source code languages, and other operating system targets.

= Our access to critical defense and aerospace products in both commercial and military domains served by Collins
will serve as the basis for compelling demonstrations of INSPECTA technologies.

W .
%ﬂé Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

INSPECTA TEAM

Technology Area 1 — Proof Engineering

- Collins: System requirements, model-based
compositional reasoning, workflow integration and
assurance gathering, user feedback and measurement

- CMU: Software component analysis, scalable SAT/SMT
analysis, Rust software verification environment

- KS State Univ: Model-based build framework, formal
model of AADL, code generation for seL4 and other OS

- Proofcraft: Robust and generalized proofs, selL4
verification

- UNSW Sydney: Push-button verification of seL4
microkit, seL4 OS components

- Univ of KS: Component software synthesis, Al-
Enhanced proof repair, lifecycle attestation for workflow

W .
%ﬂé Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

Technology Area 2 — Platform Development

- Collins: Provide platforms for demonstration of TA1

tools, requirements changes to evaluate tool
effectiveness, including US Army (Air) Launched Effects

DornerWorks: Develop open demonstration platform
based on Army SBIR with Collins, UAS mission software
running on selL4

Darren Cofer

Y"eShani Principal Investigator Sara Kramer
Wijesekera - Collins Aerospace -1 contracts Manager
Program Manager Isaac Amundson David Hardin Collins Aerospace
Collins Aerospace

Junaid Babar Karl Hoech
[
I I |
4 B N\ 4 | | N\
Marijn Heule Gerwin Klein Gernot Heiser
Principal Investigator Principal Investigator Principal Investigator
Carnegie Mellon Univ Proofcraft UNSW Sydney
Bryan Parno June Andronick
Ruben Martin Rafal Kolanski
be a.tl S afal Kolans
Jeremy Avigad S Y,
\)| - <
- N John Hatcliff
Perry Alexander Pl ez Robert VanVossen
- . Kansas State University - .
Principal Investigator Principal Investigator
University of Kansas RObby DornerWorks

N J J

INSPECTA : TA1 TOOLS

Requirements

PROOF OPS (9)

A

p

Compositional reasoning
AGREE / SMT

Automated reasoning & verification
SMT, VERUS, LEAN

Architecture | . Collins Aerosppce
AADL, SYSML @

v Component and
. . subsystem contracts Carnegie
Applications — Manual 1 Mell o
Rust @) Univgrqil

Applications — Synthesized P
@

Yy

HAMR Gen. API & Infrastructure

C, Rust @

selL4 Core Platform
C, Rust

G

| Verified synthesis of RUST component
KUKANSAS Cog, HOL4

S

AADL run-time spec I

formalized semantics

KIANS'A[S STATE

Formalized AADL run-time semantics
HAMR, SMT

UI"IVE\-R—S!T‘.’

CBAC,

N

DORNERWORKS C

sel4 Kernel

Proof update - iFi ;
| Proofupdate "_U” %Wush button verslll:;lt_:ratlon of selL4 CP
y Port to other |

platforms i Proof generalization/repair
®® - /{Proo raft, ISABELLE

_ BUILDOPS ®

® Linked to Innovative Claim N Binary

W .
%ﬂé Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

for a verified future

Agile and generic proofs
time- and space-isolation, seL4, MCS, ARM

_i
I
I
I
I
I
I
I
1

I [
THE UNIVE SIKOSF

Al-based proof repair
Coq, LLM, selL4, Rust

3
a

—

® J\Q @)©

Evidence for Assurance Dashboard

INSPECTA : TA1 WORKFLOW

/
1
/
© ,
1
f 1 -
1
Tool l ,W— ;[-' |_ 7(; _t_
Updates Commit orkflow Conta
p : e [,
TOOL PRODUCT l ,I,
DEVELOPER ENGINEER ~._._(—_I._ M
/
1
—————— —

TA1 (Qj@'
1)

TA2 %ﬁf
{«>)

AN

User

Feedback Results

Analysis

G

W .
%ﬂé Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

Datﬁbase Contai

(
|
|
—

L S,
/

INSPECTA Assurance Dashboard

DevOps Status

Proof Ops

Build Ops

Test Ops

Cert Ops

Review Ops

Doc Ops

Tool Ops

%:’é Collins Aerospace

View [Architecture] [Application

| [overatingsystem | | Build |

) Compile passing
) RefMan passing
| Farty€nstied s gnsred on A4 O XML

passing

(w] F'rn:meync: failing
) sel4Test failing

) Trigger passing

Certification Objectives

= Satisfied = Partial = Unsatisfied

[Assurance Dashboard

Explainable Cert
| I I Analysis Objective
I l Results Coverage

\
Feature Trends |
Branch Metrics Metrics |
Integration Usage | _-
Branch Metrics Metrics | e
/-7

—— —

TA2 PLATFORM DEVELOPMENT

Open Platform Restricted Platform

- Developed and supported by Dorner\Works - Collins Air Launched Effects (ALE) Mission Computer

- Unrestricted UAV mission software, system - Tube-launched air vehicle, payload(s), & mission
model with formal properties, multiple VMs, system applications for autonomously delivery of
Rust software components, selL4 kernel kinetic or non-kinetic effects

- Xilinx Zynq UltraScale+ MPSoC-based - RapidEdge provides mission computing for ALE,
development board (equivalent to RapidEdge) supporting autonomous functionality, and includes

radios for communication and handling multiple levels

e e of classified data

Cyber Monitor
Ardupilot 2nd Alert
Container | Container Rouling |« —» SNORT —» Component <> Data

Container Engine j I I l

‘ virtio-net virtio-net | ‘ETH Dnver‘ ‘ virtio-net

- Based on same computer hardware family as Open
Platform

VMM T VMM

Xilinx Zynq UltraScale+ MPSoC Dev Board

W .
%ﬂé Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

(AIR) LAUNCHED EFFECTS

Distrinution ASEpproved for public release: gistribation unlimited

https://youtu.be/SpnGE2CCx2w https://youtu.be/0OosofuUsbaRc

Both air and ground launched options supporting a wide variety of missions

NV

%n& Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

RESTRICTED DEMO PLATFORM

Collins ALE Mission Computer

- RapidEdge provides mission computing for ALE, supporting autonomous
functionality, and includes radios for communication and handling
multiple levels of classified data

https://youtu.be/SwPIHmzQMaM

Collins RapidEdge™ Mission System

S Collins Aerospace https://ale.collins.ixperiential.com

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

COLLINS : ARCHITECTURE MODEL AND
COMPOSITIONAL REASONING

- Develop language abstractions to simplify contract
specification in AGREE

Enhance graphical interface for AGREE that enables simubior

Variables View

engineers to walk through generated counterexamples \

Simulator

Controls Graphical

Display

more intuitively Status View

Establish traceability to proof obligations at the source
code level

— Achieved through tighter coupling with KSU’s GUMBO contract m
language

Integrate AGREE into DevOps workflow

- Compositional reasoning for SysMLv2

— OMG Real-Time Embedded Safety Critical Systems working
group

HAMR
code gen

W .
%ﬂé Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

Simulation

Properties View

4349V

OognNo

CM

l Synthesi

Same
familiar
language
(Rust++)

J : RUST COMPONENT VERIFICATION

Test Cases

Specs

]

1ze

A

Rust
Code

Proofs

NV

%n& Collins Aerospace

« Compatible with Rust Continuous
ecosystem analysis/optimization

e Condenses 10+ years
sys. verif. experience
Modular code and proofs

Near-instant feedback e Sound back-end
orchestration
e Custom proof library
support
Verus

/

N

—| 9VI\|
THEOREM PROVER = l

[0 B8 [os

stabilization Telemetry

Source-level
feedback

Proactive proof

HAMR - tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded
systems (developed by Kansas State University and Galois)

Leveraging analyses from AADL
community

Modeling, analysis, and
verification in the AADL
modeling language

Component development T o - C

and verification in { 90 §__E___QE i « Slang (developed at Kansas State)

e s | 3_3. —=¢ | » high integrity subset of Scala

‘~---‘ = = 6--« « contract verification framework
________ « translates to C

Deployments aligned £ = &

with AADL run-time on & B Linux g

multiple platforms d o {m 8 o oo o
: G rr—"

verified micro-kernel

HAMR - tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded
systems (developed by Kansas State University and Galois)

Modeling, analysis, and
verification in the AADL
modeling language

Component development
and verification in
multiple languages

Deployments aligned
with AADL run-time on
multiple platforms

-

JVM Deployment

L

_______ \ . C

————

Levera

comm PROVERS: Aad SysMLv2 prototype

.o~ PROVERS: Enhanced support for
contracts, verification, property-
| based testing

A
A Fﬂ A

PROVERS: Add code- and

=—=0_ " . Slang (developed = contract-generation, and

—— ——— e —————

Linux Deployment

« high integrit, Property-based testing for Rust

« contract verification framework
e translates to C

= gl

> verified micro-kernel

PROVERS: Retarget to selL4
m/¢r0-kit (Core Platform)

ecurity. Performance. Proof.

selL4 Deploymen

Generation

HAMR instantiation for Rust based development on seL4 microkernel using selL4 microkit

TempControlProcess.i*
r L B} -t:m-Ps-en:oT* ------ .‘ _ ------ t:m-p‘c-oﬁr;‘* -------- " r L 8 B} -f;* ----- 1
: ______ “hanged tempChar fanCmd fanCmd "
1 T S (">
I 0 [["'}*':"5 [0!
[" Qe 0 =mTemp currentTe ______ 0 fanAck fanack p@ 9"
.—-t = |

-------------- t
o o Q_—a o
------ ~ =] Application code in Rust Platform-independent

because it only talks to AADL RT APIs

2 . AADL
= & Thread
U —
structure
2 onted
Configure

system
pa_rtltlonlng Partition specified as a Communication specified
;silc?glfitem microkit Component using microkit

1]
%
>
=5y
|

PROOFCRAFT : SEL4 KERNEL PROOF JP
GENERALIZATION AND REPAIR rOOfchf:(_]

- Goal: make sel4 proofs less dependent on experts for maintenance and extensions

— Automated Verification for Platform Ports

- Proof parametrization, proved once against sufficient conditions

- For each new platform: automatic extraction of configuration parameters & check against conditions
— More Agile and Generic Proofs Arm

- Split generic architecture-independent part from architecture-dependent part =

- Extend verification to latest major feature: MCS selL4

- Impact: scalable access to formal methods Putire
- Reduced cost and reliance on experts for maintenance and extensions
- Increased assurance robustness against anticipated change . o
- Increased features for verified foundation 32bit 64bit

x86
64bit

selL4 verified on more platforms, with more features, for less cost and less expertise

W .
%ﬂé Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

UNSW SYDNEY : LIONS OPERATING SYSTEM &
COMPONENT VERIFICATION

- Lions OS: new sel4-based OS developed from scratch at UNSW
- Highly-componentized, verification-friendly, yet high performance
- Simplicity & adaptability by use-case-specific, swappable policies

0S
Networking File System
= NIC
Stack Driver
Microkit

Qs Microkernel

W .
%ﬂé Collins Aerospace

KANSAS (KU) : AI-BASED PROOF REPAIR AND
COMPONENT SYNTHESIS

- ML-Enhanced Proof Repair
— Maintain evidence over design, requirements and environmental changes
— Update and replay proofs, retake measurements, replay testing

- Evidence Protocols
— Update and generalize Copland attestation protocols for general-purpose evidence gathering

— Develop canonical techniques for parametric adaptation, refinement and abstraction, protocol
synthesis

— Reuse MAESTRO attestation environment for general evidence gathering
- Verified Synthesis
— Enable working at the requirements level
— Synthesis of Rust from requirements language retargeting Coq to CakeML synthesis

W .
%ﬂé Collins Aerospace

SUMMARY

- Workflow and tools address the entire software development stack

- Building upon the best available technologies and leveraging our experience
from recent research programs as a starting point

- Integrate new formal methods tools with Collins workflow automation
processes

- Applied to ALE mission computer to demonstrate usability, practicality, and
effectiveness

- Formal verification will be made accessible to non-formal methods experts
through automated analysis with streamlined user feedback and generalized
proofs that are robust to changes, augmented by automated repair tools

INSPECTA

W .
%ﬂé Collins Aerospace

NV

%n& Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

	Slide Number 1
	PROVERS program objectives
	High assurance cyber �military systems (HACMS)
	Cyber assured Systems �engineering (CASE)
	INSPECTA : highlights
	INSPECTA TEAM�
	INSPECTA : TA1 tools
	INSPECTA : TA1 workflow
	TA2 Platform Development
	(Air) Launched Effects
	Restricted demo platform
	Collins : architecture model and compositional reasoning
	CMU : Rust component verification
	KSU : HAMR
	KSU : HAMR
	HAMR Code Generation
	Proofcraft : sel4 kernel proof generalization and repair
	UNSW Sydney : Lions operating system & component verification
	Kansas (KU) : AI-based proof repair and component synthesis
	Summary
	END

