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PROVERS PROGRAM OBJECTIVES

Develop automated, scalable formal methods tools that are integrated into@raditionaDsoftware

development pipelines.
, DEFENSE & AEROSPACE

Enable@raditionaDsoftware developers to incrementally produce and maintain high-assurance national
security systems.

S& RTX

Adoption of formal methods in Defense Industrial Base development processes
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HIGH ASSURANCE CYBER
MILITARY SYSTEMS (HACMS)
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INSPECTA : HIGHLIGHTS

= Our workflow and tools will address the entire software development stack from requirements and system
models, to component source code, through build and deployment on the sel4 secure microkernel, linked by
formal verification at each level.

= We will achieve scalability for complex defense systems through compositional reasoning at the system level and
automated analysis of components based on powerful, cloud-based solvers.

= We will achieve the highest levels of assurance by building upon the best available technologies and leveraging
our experience from recent research programs as a starting point.

= QOur tools will be integrated with current Collins workflow automation processes and applied to defense and
aerospace products currently under development to demonstrate their usability, practicality, and effectiveness.

= Formal verification will be made accessible to non-formal methods experts through automated analysis with
streamlined user feedback and generalized proofs that are robust to changes, augmented by automated repair
tools.

= Our framework is adaptable and extendable to allow incorporation of results from other researchers, including
other specification languages, other source code languages, and other operating system targets.

= Our access to critical defense and aerospace products in both commercial and military domains served by Collins
will serve as the basis for compelling demonstrations of INSPECTA technologies.
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INSPECTA TEAM

Technology Area 1 — Proof Engineering

- Collins: System requirements, model-based
compositional reasoning, workflow integration and
assurance gathering, user feedback and measurement

- CMU: Software component analysis, scalable SAT/SMT
analysis, Rust software verification environment

- KS State Univ: Model-based build framework, formal
model of AADL, code generation for seL4 and other OS

- Proofcraft: Robust and generalized proofs, selL4
verification

- UNSW Sydney: Push-button verification of seL4
microkit, seL4 OS components

- Univ of KS: Component software synthesis, Al-
Enhanced proof repair, lifecycle attestation for workflow
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Technology Area 2 — Platform Development

- Collins: Provide platforms for demonstration of TA1

tools, requirements changes to evaluate tool
effectiveness, including US Army (Air) Launched Effects

DornerWorks: Develop open demonstration platform
based on Army SBIR with Collins, UAS mission software
running on selL4
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INSPECTA : TA1 TOOLS

Requirements

PROOF OPS (9)

A

p

Compositional reasoning
AGREE / SMT

Automated reasoning & verification
SMT, VERUS, LEAN

Architecture | .  Collins Aerosppce
AADL, SYSML @

v Component and
. . subsystem contracts Carnegie
Applications — Manual 1 Mell o
Rust @) Univgrqil

Applications — Synthesized P
@

Yy

HAMR Gen. API & Infrastructure

C, Rust @

selL4 Core Platform
C, Rust

G

| Verified synthesis of RUST component
KUKANSAS Cog, HOL4

S

AADL run-time spec I

formalized semantics

KIANS'A[S STATE

Formalized AADL run-time semantics
HAMR, SMT

UI"IVE\-R—S!T‘.’

CBAC,

N

DORNERWORKS C

sel4 Kernel

Proof update - iFi ;
| Proofupdate "_U” %Wush button verslll:;lt_:ratlon of selL4 CP
y Port to other |

platforms i Proof generalization/repair
®® - /{Proo raft, ISABELLE

\_ BUILDOPS ®

® Linked to Innovative Claim N Binary

W .
%ﬂé Collins Aerospace

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.

for a verified future
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INSPECTA : TA1 WORKFLOW
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TA2 PLATFORM DEVELOPMENT

Open Platform Restricted Platform

- Developed and supported by Dorner\Works - Collins Air Launched Effects (ALE) Mission Computer

- Unrestricted UAV mission software, system - Tube-launched air vehicle, payload(s), & mission
model with formal properties, multiple VMs, system applications for autonomously delivery of
Rust software components, selL4 kernel kinetic or non-kinetic effects

- Xilinx Zynq UltraScale+ MPSoC-based - RapidEdge provides mission computing for ALE,
development board (equivalent to RapidEdge) supporting autonomous functionality, and includes

radios for communication and handling multiple levels

e e of classified data

Cyber Monitor
Ardupilot 2nd Alert
Container | Container Rouling |« —» SNORT —» Component <> Data

Container Engine j I I l

‘ virtio-net virtio-net | ‘ETH Dnver‘ ‘ virtio-net

- Based on same computer hardware family as Open
Platform

VMM T VMM

Xilinx Zynq UltraScale+ MPSoC Dev Board
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(AIR) LAUNCHED EFFECTS

Distrinution ASEpproved for public release: gistribation unlimited

https://youtu.be/SpnGE2CCx2w https://youtu.be/0OosofuUsbaRc

Both air and ground launched options supporting a wide variety of missions
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RESTRICTED DEMO PLATFORM

Collins ALE Mission Computer

- RapidEdge provides mission computing for ALE, supporting autonomous
functionality, and includes radios for communication and handling
multiple levels of classified data

https://youtu.be/SwPIHmzQMaM

Collins RapidEdge™ Mission System

S Collins Aerospace https://ale.collins.ixperiential.com
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COLLINS : ARCHITECTURE MODEL AND
COMPOSITIONAL REASONING

- Develop language abstractions to simplify contract
specification in AGREE

Enhance graphical interface for AGREE that enables simubior

Variables View

engineers to walk through generated counterexamples \

Simulator

Controls Graphical

Display

more intuitively Status View

Establish traceability to proof obligations at the source
code level

— Achieved through tighter coupling with KSU’s GUMBO contract m
language

Integrate AGREE into DevOps workflow

- Compositional reasoning for SysMLv2

— OMG Real-Time Embedded Safety Critical Systems working
group

HAMR
code gen
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HAMR - tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded
systems (developed by Kansas State University and Galois)

Leveraging analyses from AADL
community

Modeling, analysis, and
verification in the AADL
modeling language

Component development T o - C

and verification in { 90 §__E___QE i « Slang (developed at Kansas State)
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HAMR - tool chain for [H]igh [A]ssurance [M]odeling and [R]apid engineering for embedded
systems (developed by Kansas State University and Galois)

Modeling, analysis, and
verification in the AADL
modeling language

Component development
and verification in
multiple languages

Deployments aligned
with AADL run-time on
multiple platforms
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Generation

HAMR instantiation for Rust based development on seL4 microkernel using selL4 microkit
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PROOFCRAFT : SEL4 KERNEL PROOF JP
GENERALIZATION AND REPAIR rOOfchf:(_]

- Goal: make sel4 proofs less dependent on experts for maintenance and extensions

— Automated Verification for Platform Ports

- Proof parametrization, proved once against sufficient conditions

- For each new platform: automatic extraction of configuration parameters & check against conditions
— More Agile and Generic Proofs Arm

- Split generic architecture-independent part from architecture-dependent part =

- Extend verification to latest major feature: MCS selL4

- Impact: scalable access to formal methods Putire
- Reduced cost and reliance on experts for maintenance and extensions
- Increased assurance robustness against anticipated change . o
- Increased features for verified foundation 32bit 64bit

x86
64bit

selL4 verified on more platforms, with more features, for less cost and less expertise
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UNSW SYDNEY : LIONS OPERATING SYSTEM &
COMPONENT VERIFICATION

- Lions OS: new sel4-based OS developed from scratch at UNSW
- Highly-componentized, verification-friendly, yet high performance
- Simplicity & adaptability by use-case-specific, swappable policies

0S
Networking File System
= NIC
Stack Driver
Microkit

Qs Microkernel
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KANSAS (KU) : AI-BASED PROOF REPAIR AND
COMPONENT SYNTHESIS

- ML-Enhanced Proof Repair
— Maintain evidence over design, requirements and environmental changes
— Update and replay proofs, retake measurements, replay testing

- Evidence Protocols
— Update and generalize Copland attestation protocols for general-purpose evidence gathering

— Develop canonical techniques for parametric adaptation, refinement and abstraction, protocol
synthesis

— Reuse MAESTRO attestation environment for general evidence gathering
- Verified Synthesis
— Enable working at the requirements level
— Synthesis of Rust from requirements language retargeting Coq to CakeML synthesis
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SUMMARY

- Workflow and tools address the entire software development stack

- Building upon the best available technologies and leveraging our experience
from recent research programs as a starting point

- Integrate new formal methods tools with Collins workflow automation
processes

- Applied to ALE mission computer to demonstrate usability, practicality, and
effectiveness

- Formal verification will be made accessible to non-formal methods experts
through automated analysis with streamlined user feedback and generalized
proofs that are robust to changes, augmented by automated repair tools

INSPECTA
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