
Run-Time Assurance for Learning-Enabled
Systems

Darren Cofer1, Isaac Amundson1, Ramachandra Sattigeri1, Arjun Passi1,
Christopher Boggs1, Eric Smith2, Limei Gilham2, Taejoon Byun3, and Sanjai

Rayadurgam3

1 Collins Aerospace, Minneapolis MN
2 Kestrel Institute, Palo Alto CA

3 University of Minnesota, Dept. of Computer Science, Minneapolis MN

Abstract. There has been much publicity surrounding the use of ma-
chine learning technologies in self-driving cars and the challenges this
presents for guaranteeing safety. These technologies are also being in-
vestigated for use in manned and unmanned aircraft. However, systems
that include “learning-enabled components” (LECs) and their software
implementations are not amenable to verification and certification us-
ing current methods. We have produced a demonstration of a run-time
assurance architecture based on a neural network aircraft taxiing appli-
cation that shows how several advanced technologies could be used to
ensure safe operation. The demonstration system includes a safety archi-
tecture based on the ASTM F3269-17 standard for bounded behavior of
complex systems, diverse run-time monitors of system safety, and formal
synthesis of critical high-assurance components. The enhanced system
demonstrates the ability of the run-time assurance architecture to main-
tain system safety in the presence of defects in the underlying LEC.

1 Introduction

Significant advances are being made in the development of autonomous sys-
tems that employ learning and adaptation algorithms. It is therefore inevitable
that learning-enabled components (LEC) will begin to find their way into safety-
critical applications, including manned and unmanned vehicles. However, the
technologies being applied – machine learning, deep neural networks, probabilis-
tic languages – are not amenable to verification using traditional methods. This
essentially precludes use of these technologies in many safety-critical aerospace
applications. Our team is developing technologies to overcome these limitations,
thus expanding opportunities for autonomous systems to be safely deployed in
critical environments.

Aircraft systems have legal requirements for airworthiness certification that
present barriers to the use of LECs. In a typical LEC, much of the complexity
and design information resides in its training data rather than in the actual code
produced. For example, one of the key principles of avionics software certification
(covered in DO-178C [9]) is the use of requirements-based testing along with



2 D. Cofer et al.

structural coverage metrics. These objectives not only demonstrate compliance
with functional requirements, but are intended to show the absence of unintended
functionality. However, complete structural coverage can be achieved for a typical
neural network with a single test case, providing almost no confidence in its
correctness. Showing that a component or system is correct and does no harm
through behaviors that were unintended by designers or unexpected by operators
is a critical aspect of the certification process.

Since it is difficult to demonstrate assurance by examining the LEC itself
(as is assumed by existing certification processes) other approaches are needed.
In this paper we report on the use of a run-time assurance architecture based
on the ASTM F3269-17 standard for bounded behavior of complex systems [1],
also known as a simplex architecture [10]. The standard provides guidance for
mitigating unintended functionality (such as may be present in a LEC) through
the use of run-time monitors. When a violation of system safety properties or
an unsafe LEC output is detected, the architecture switches to a verified backup
controller to continue safe operation. The main idea is that system performance
is provided by the complex system or LEC while system safety is guaranteed by
high-assurance components (though with lower performance). Our implementa-
tion of the standard includes:

– System architecture modeled using the Architecture Analysis and Design
Language (AADL) [6]

– Formal verification of system behaviors using the Assume Guarantee Rea-
soning Environment (AGREE) [11]

– Architecture-based assurance case for showing correct implementation using
Resolute [5]

– Diverse run-time monitors for system safety, integrity, and availability
– Synthesis from formal specifications with proof of correctness for critical

high-assurance components

The purpose of this paper is to show the effectiveness of a run-time assurance
architecture for bounding the behavior of an autonomous system to maintain its
safety requirements. In this example, surface movement of a general aviation
class aircraft is controlled during taxi based on a position estimate computed by
an LEC. Our work illustrates the general effectiveness of the run-time assurance
approach and demonstrates some of the tools and methods that can be applied in
a real system. However, each specific application will require different monitors
and backup safety functions, depending on requirements and variables that can
be monitored. We discuss some of the challenges and limitations in Section 4.

2 Demonstration

The “TaxiNet” demonstration system is shown in Figure 1. The bottom row
of boxes in the figure show the baseline system, consisting of the aircraft (or
simulation), the guidance LEC, a controller for steering the aircraft, and the
Vehicle Management System (VMS) which manages actuators on the aircraft



Run-Time Assurance for Learning-Enabled Systems 3

Fig. 1. TaxiNet Demonstration System with Run-Time Assurance Architecture

and integrates other autonomy functionality. The LEC is implemented as a deep
neural network (DNN) trained to estimate the cross-track error (CTE) of the
aircraft (position left or right of the runway centerline) based on images from
a forward-looking camera on the aircraft. An equivalent high-fidelity simulation
environment is also available for testing and demonstrations. Six different LECs
trained in various lighting and weather conditions are available. This allows
faulty behaviors to be simulated by operating an LEC in conditions other than
those for which it was trained. This autonomy framework was developed by the
Boeing Research and Technology (BR&T) organization and is being used as a
demonstration platform in DARPA’s Assured Autonomy program [3].

The run-time assurance architecture adds components in the top row of Fig-
ure 1. This includes four different run-time monitors (three for system safety,
one for LEC confidence), a Monitor Selector for choosing which monitor to use
at any time, and a Contingency Manager that determines when intervention is
needed to maintain safety and what action should be taken. In this example,
the safety actions available (via the VMS) are to reduce the commanded aircraft
speed or to use the brakes to halt the aircraft.

The goal of the run-time assurance architecture is to ensure that the LEC
does not result in violation of aircraft safety requirements. While the LEC is
responsible for performance (tracking the center line), the safety requirements
for this application are to ensure that 1) the aircraft does not deviate too far
from the center line and leave the runway and 2) unnecessary stopping on the
runway is minimized. In the baseline system, the LEC cannot be verified using
traditional means and is considered the complex or untrusted component in the
architecture. The run-time safety monitors, PID controller, and the VMS are
either based on existing verified algorithms or have been developed using tra-
ditional methods compatible with DO-178C. The Monitor Selector and Contin-
gency Manager are high-assurance components that are synthesized and verified
using formal methods.



4 D. Cofer et al.

3 Approach

The three elements of our run-time assurance approach are the architecture
itself, the run-time monitors, and the safety components that manage switching
of behaviors.

3.1 Architecture

The assurance architecture has been modeled using AADL. AADL is targeted
at distributed, real-time-embedded systems and provides sufficiently rigorous
semantics to support formal analysis of system safety properties. We use an
extension of AADL called AGREE to annotate the model with formal assume-
guarantee contracts for components and subsystems. AGREE uses k-induction
model checking to verify the top-level contracts of the system using a compo-
sitional approach [11]. Verification of the safety property in our demonstration
system relies on the correctness of the monitors and other safety components,
and establishes system safety for each state of the architecture.

The AADL model also includes an assurance case embedded in the archi-
tecture using the Resolute language [5]. Resolute assurance cases are linked to
architectural components and formal evidence produced by other tools, and can
be continuously re-evaluated during system development to check for errors. We
have used Resolute to produce an assurance case showing that the run-time
assurance architecture has been used correctly and has not been compromised
by other elements of the system design. It also addresses the goal of minimiz-
ing unnecessary stopping through the use of independent monitors to maximize
availability.

In other projects we have demonstrated how the implementation can be built
from the verified AADL model for execution on the formally verified seL4 kernel
[2]. While outside the scope of the current project, the isolation provided by seL4
adds assurance that a malfunctioning LEC does not have any computational side
effects (memory or execution time) on the rest of the system.

3.2 Run-Time Monitors

The assurance architecture includes three independent monitors of system safety
and one monitor that assesses confidence in the current operation of the LEC.

The first monitor uses global positioning system (GPS) signals to compute
the aircraft position relative to a virtual runway centerline. This provides the
primary estimate of CTE (with an error bound) to assess aircraft safety. Starting
from a known position, the monitor integrates GPS velocity signals (delta range)
to estimate the current position. It executes with low overhead and makes use
of existing code and verification techniques.

The second monitor processes camera images and detects the runway center-
line using traditional computer vision (CV) algorithms. It provides a secondary
estimate of CTE in case the GPS monitor becomes unavailable or its error bound
grows too large. The CV monitor can also be used to reset the GPS initial



Run-Time Assurance for Learning-Enabled Systems 5

position when it has a lower error bound. It uses an edge detection algorithm
to identify the strongest lines in the image. It also uses a pattern identification
algorithm to detect the dashed center-line. Finally, the detected center-line is
transformed to the aircraft frame of reference to compute CTE. This monitor
makes use of existing algorithms, but requires fairly large computing overhead,
making full use of two CPU cores.

The third monitor uses high-integrity inertial reference system (IRS) mea-
surements to compute aircraft position. It provides coverage when both the GPS
and CV monitors are unavailable. This monitor uses acceleration data from IRS
to propagate the last CTE estimate and error bound from the GPS or CV mon-
itors. It also make use of existing code and traditional verification techniques,
and executes with low overhead.

The final monitor is used to determine if the LEC is operating in a region
of competence relative to its training data. It is not a trusted component and
is therefore not used to enforce system safety, but only as an additional check
on LEC performance. It uses a Variational Autoencoder (VAE), a pair of neural
networks that are learned in an unsupervised way to capture the complicated
distribution of the training dataset in a compact representation space. The pair
of neural networks—an encoder and a decoder—maps the input data to and
from the representation. When an input deviates from the training data dis-
tribution, the encoder cannot find an accurate representation, and the decoder
consequently fails to reconstruct the input faithfully. The monitor then captures
the magnitude of reconstruction error as a signal for a lack of confidence [4]. We
used this monitor to allow the Contingency Manager to recover from a transient
SLOW or HALT action if the current safety monitor output returns to normal
and the LEC appears to be in its region of competence. The monitor is relatively
expensive, requiring time from both the CPU and GPU.

3.3 Safety Components

The Monitor Selector and Contingency Manager are critical for safe operation
(single instance, no backup) and so have been implemented as high-assurance
components using formal synthesis. They provide inputs to the VMS that de-
termine the control action to be taken to guarantee system safety.

The Monitor Selector must choose which of the three safety monitors should
be used at each time step. If GPS and CV are both available, it chooses the one
with the smallest error bound (subject to minimum switching time). If neither
GPS nor CV is available, it uses the IRS monitor. If no monitor is available, this
will cause the Contingency Manager to trigger a halt.

The Contingency Manager determines whether control should be based on
LEC outputs (NORMAL) or one of the contingency actions (SLOW or HALT).
SLOW is selected if the current CTE exceeds the ‘slow’ threshold or the predicted
stopping position based on the current speed is too close to the runway edge.
HALT is selected if the current CTE exceeds ‘halt’ threshold or the predicted
stopping position is too close to runway edge. Recovery from SLOW or HALT



6 D. Cofer et al.

is allowed if the LEC confidence monitor output is above its threshold and a
specified time limit has not been exceeded.

Both the Monitor Selector and the Contingency Manager are synthesized
with proof of correctness from formal tabular specifications in ACL2 using the
Automated Program Transformations (APT) toolkit [7]. A table specifies the
behavior of a component declaratively as a set of cases corresponding to the
columns of the table. Each case specifies the outputs and next state as a function
of the inputs and current state. Proofs checked by ACL2 ensure that each table
is complete and unambiguous (in every input scenario, exactly one case applies).
A generic function to apply the table is specialized by the APT simplify
transformation to create by partial evaluation a large, provably-equivalent set of
if-then-else expressions. These conditional expressions are quite fast to execute
but would be tedious and error prone to define by hand. The proofs done by the
simplify transformation ensure that it correctly encodes the decision logic
specified declaratively in the table.

4 Results

To evaluate performance of the run-time assurance architecture, testing was per-
formed using all six LEC variants in a variety of environomental conditions with
and without the assurance architecture components. Faulty LECs were simu-
lated by operating in conditions outside of the LEC training data set. In all we
evaluated 46 different scenarios. This allowed us to assess baseline performance,
intervention of the assurance architecture in the presence of LEC errors, and
absence of unnecessary intervention (false alarms). A screenshot of the demon-
stration video including the synoptic display of the monitor outputs is shown in
Figure 2.

We found that the architecture performed in accordance with expectations in
all scenarios. In every case where the faulty LEC caused the aircraft to deviate
from the required center-line tracking performance, the assurance architecture
detected the condition and slowed or halted the aircraft. At no time was the
aircraft allowed to depart from the paved runway. Furthermore, the architecture
never intervened when the aircraft was performing within requirements.

For example, in one scenario the LEC trained with morning-only data is
tested in clear conditions at 1600. This leads to the aircraft departing from the
runway after approximately two minutes. When the scenario is repeated with
the run-time assurance architecture active, the aircraft is first slowed when it
begins to deviate from the centerline, then briefly halted, and then allowed to
resume normal operation using the LEC guidance. Later, at a runway crossing,
the aircraft deviates more severely and is halted to prevent it from leaving the
runway. AADL models for the run-time assurance architecture, the Resolute
assurance case, and videos of the demonstration are available at the project
website [8].



Run-Time Assurance for Learning-Enabled Systems 7

Fig. 2. Simulation Results and Display

5 Conclusion

In this project we have explored run-time monitors that observe LEC inputs,
outputs, and internal state, and also monitors that directly observe system safety
(as shown here in the TaxiNet demo). The run-time assurance approach works
best when it is possible to clearly distinguish requirements for system safety and
performance, and the functions responsible for each. For example, a complex
planning system may be used to compute a desired vehicle trajectory, but if
safety is defined by staying within a prescribed geofence, this is simple to mon-
itor using GPS. However, it is not always possible to monitor the variables or
conditions needed to detect safety violations. And in some cases it is not obvious
how to create a safe backup function that is less complex (and easier to verify)
than the complex function to be bounded. But where the necessary conditions
are satisfied, run-time assurance architectures based on ASTM F3269-17 can be
a useful means for safely bounding LEC behavior.

Acknowledgments. The authors wish to thank our colleagues James Paunicka,
Matthew Moser, Alex Chen, and Dragos Margineantu for their support during
integration and testing on the BR&T autonomy platform. This work was funded
by DARPA contract FA8750-18-C-0099. The views, opinions and/or findings ex-
pressed are those of the author and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S. Government.



8 D. Cofer et al.

References

1. ASTM F3269-17. Standard practice for methods to safely bound flight behavior
of unmanned aircraft systems containing complex functions, 2017.

2. D. Cofer, A. Gacek, J. Backes, M. W. Whalen, L. Pike, A. Foltzer, M. Podhradsky,
G. Klein, I. Kuz, J. Andronick, G. Heiser, and D. Stuart. A formal approach to
constructing secure air vehicle software. IEEE Computer Magazine, 51, Nov. 2018.

3. DARPA. Assured Autonomy. https://www.darpa.mil/program/assured-
autonomy.

4. T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan, and S. Vernekar. Im-
proving reconstruction autoencoder out-of-distribution detection with mahalanobis
distance. CoRR, abs/1812.02765, 2018.

5. A. G. et. al. Resolute: An assurance case language for architecture models. In
HILT 2014, pages 19–28, New York, NY, USA, 2014. ACM.

6. P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL: An Intro-
duction to the SAE Architecture Analysis and Design Language. Addison-Wesley
Professional, 1st edition, 2012.

7. Kestrel Institute. APT: Automated Program Transformations.
https://www.kestrel.edu/home/projects/apt/, 2019.

8. Loonwerks. AAHAA: Architecture and Analysis for High-Assurance Autonomy.
http://loonwerks.com/projects/aahaa.html.

9. RTCA DO-178C. Software considerations in airborne systems and equipment cer-
tification, 2011.

10. L. Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28, 2001.
11. M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. P. Heimdahl, and

S. Rayadurgam. Your “what” is my “how”: Iteration and hierarchy in system
design. IEEE Software, 30(2):54–60, 2013.


	Run-Time Assurance for Learning-Enabled Systems 

