
Run-Time Assurance for Learning-Based
Aircraft Taxiing

Darren Cofer, Isaac Amundson,
Ramachandra Sattigeri,

Arjun Passi, Christopher Boggs
Collins Aerospace

first.last@collins.com

Eric Smith,
Limei Gilham
Kestrel Institute

{eric.smith, gilham}@kestrel.edu

Taejoon Byun,
Sanjai Rayadurgam

University of Minnesota
{taejoon, rsanjai}@umn.edu

Abstract—Aircraft systems that include learning-enabled com-
ponents (LECs) and their software implementations are not
amenable to verification and certification using current methods.
We have produced a demonstration of a run-time assurance ar-
chitecture based on a neural network aircraft taxiing application
that shows how several advanced technologies could be used to
ensure safe operation.

Index Terms—machine learning, run-time assurance

I. INTRODUCTION

Significant advances are being made in the development
of autonomous systems that employ learning and adaptation
algorithms. It is therefore inevitable that learning-enabled
components (LEC) will begin to find their way into safety-
critical applications, including manned and unmanned vehi-
cles. However, the technologies being applied — machine
learning, deep neural networks, probabilistic languages —
are not amenable to verification using traditional methods.
This essentially precludes use of these technologies in many
safety-critical aerospace applications. Our team is developing
technologies to overcome these limitations, thus expanding
opportunities for autonomous systems to be safely deployed
in aerospace applications.

Aircraft systems have legal requirements for airworthiness
certification that present barriers to the use of LECs. In a
typical LEC, much of the complexity and design information
resides in its training data rather than in the actual code
produced. For example, one of the key principles of avionics
software certification (covered in DO-178C [20]) is the use
of requirements-based testing along with structural coverage
metrics. These activities not only demonstrate compliance with
functional requirements, but are intended to show the absence
of unintended functionality. However, it can be difficult to
precisely state requirements for LECs, especially those im-
plementing perception functions. Even when requirements are
available, it is usually not possible to associate any particular
lines of code with a specific requirement. Furthermore, com-
plete structural coverage can be achieved for a typical neural
network with a single test case, but this provides almost no
confidence in its correctness. Showing that a component or
system is correct and does not do harm because of behaviors
that were unintended by designers or unexpected by operators
is a critical aspect of the certification process. Additional

details regarding certification challenges posed by learning-
based systems can be found in [3].

Since it is difficult to demonstrate assurance by examining
the LEC itself (as is assumed by existing certification pro-
cesses) other approaches are needed. In this paper we report
on the use of a run-time assurance architecture based on the
ASTM F3269-17 standard for bounded behavior of complex
systems [2], also known as a simplex architecture [21]. The
standard provides guidance for mitigating unintended function-
ality (such as may be present in a LEC) through the use of run-
time monitors. When a violation of system safety properties or
an unsafe LEC output is detected, the architecture switches to a
verified backup controller to continue safe operation. The main
idea is that system performance is provided by the complex
system or LEC while system safety is guaranteed by high-
assurance components (though with lower performance). Our
implementation of the standard includes:

• System architecture modeled using the Architecture Anal-
ysis and Design Language (AADL) [11]

• Formal verification of system behaviors using the Assume
Guarantee Reasoning Environment (AGREE) [22]

• Architecture-based assurance case for showing correct
implementation using Resolute [10]

• Diverse run-time monitors for system safety, integrity,
and availability

• Synthesis from formal specifications with proof of cor-
rectness for critical high-assurance components

The purpose of this paper is to show the effectiveness of
a run-time assurance architecture for bounding the behavior
of an autonomous system to maintain its safety requirements.
In this example, surface movement of a general aviation class
aircraft is controlled during taxi based on a position estimate
computed by an LEC. Our work illustrates the general effec-
tiveness of the run-time assurance approach and demonstrates
some of the tools and methods that can be applied in a
real system. However, each specific application will require
different monitors and backup safety functions, depending on
requirements and variables that can be monitored. We discuss
some of the challenges and limitations in Section V.



Fig. 1: TaxiNet Demonstration System with Run-Time Assurance Architecture

II. DEMONSTRATION

The “TaxiNet” demonstration system is shown in Figure 1.
The bottom row of boxes in the figure show the baseline
system, consisting of the aircraft (or simulation), the guidance
LEC, a controller for steering the aircraft, and the Vehicle
Management System (VMS) which manages actuators on the
aircraft and integrates other autonomy functionality. The LEC
is implemented as a deep neural network (DNN) trained to
estimate the cross-track error (CTE) of the aircraft (position
left or right of the runway centerline) based on images from
a forward-looking camera on the aircraft. Since the images
are 360x200 pixels, the resulting LEC is larger than can be
analyzed by current formal methods tools for DNNs, such as
Marabou [13].

The system can run on a small single-engine aircraft us-
ing the LEC for autonomous taxiing. An equivalent high-
fidelity simulation environment is also available for testing
and demonstrations. This is based on a detailed 6 degree-
of-freedom physics simulation and the Xplane program for
visualization.

Six different LECs trained in various lighting and weather
conditions were created for testing. The training data for the
six LECs are as follows:

1) All environmental conditions without data augmentation
effects (blurring, lens effects, etc.)

2) All environmental condition with data augmentation
3) Conditions presenting in the earlier morning
4) Conditions presenting in the late afternoon
5) Clear day conditions
6) Overcast day conditions
Thus, LEC 2 is the most general and robust, while LECs

3-6 have specific limitations. This allows faulty behaviors to
be simulated by operating an LEC in conditions other than
those for which it was trained.

This autonomy framework was developed by the Boeing
Research and Technology (BR&T) organization and is being
used as a demonstration platform in DARPA’s Assured Au-
tonomy program [8].

The run-time assurance architecture adds components in the
top row of Figure 1. This includes four different run-time
monitors (three for system safety, one for LEC confidence),
a Monitor Selector for choosing which monitor to use at
any time, and a Contingency Manager that determines when
intervention is needed to maintain safety and what action
should be taken. In this example, the safety actions available
(via the VMS) are to reduce the commanded aircraft speed or
to use the brakes to halt the aircraft.

The goal of the run-time assurance architecture is to ensure
that the LEC does not result in violation of aircraft safety
requirements. While the LEC is responsible for performance
(tracking the center line), the safety requirements for this
application are to ensure that 1) the aircraft does not deviate
too far from the center line and leave the runway and 2) unnec-
essary stopping on the runway is minimized. In the baseline
system, the LEC cannot be verified using traditional means
and is considered the complex or untrusted component in the
run-time assurance architecture. The run-time safety monitors,
PID controller, and the VMS are either based on existing
verified algorithms or have been developed using traditional
methods compatible with DO-178C. The Monitor Selector and
Contingency Manager are high-assurance components that are
synthesized and verified using formal methods.

III. APPROACH

The three elements of our run-time assurance approach are
the architecture itself, the run-time monitors, and the safety
components that manage selection of behaviors.

A. Architecture

The assurance architecture has been modeled using AADL.
AADL is targeted at distributed, real-time-embedded systems
and provides sufficiently rigorous semantics to support formal
analysis of system safety properties. We use an extension
of AADL called AGREE to annotate the model with formal
assume-guarantee contracts for components and subsystems.



Fig. 2: AADL Model of Run-Time Assurance Architecture

AGREE uses the JKind k-induction model checker [12] to ver-
ify the top-level contracts of the system using a compositional
approach [22].

AADL includes both textual and graphical syntax. A dia-
gram of the run-time assurance architecture for the demon-
stration system is shown in Figure 2. The diagram shows
the baseline aircraft systems on the bottom right, the run-
time monitors on the top left, and the high-assurance monitor
selection and contingency manager components on the top
right. AGREE contracts for each component are specified in
the textual representation of the model.

Verification of the safety properties in our demonstration
system relies on the correctness of the monitors and other
safety components, and establishes system safety for each state
of the architecture. Figure 3 provides an example of one of the
system safety properties specified in AGREE. This property
states that if none of the run-time monitors are available, then
the aircraft will be commanded to halt. The AGREE model
checker is able to verify that this property holds under all
conditions.

The AADL model also includes an assurance case em-
bedded in the architecture using the Resolute language [10].
Resolute assurance cases are linked to architectural compo-
nents and formal evidence produced by other tools, and can be
continuously re-evaluated during system development to check
for errors. We have used Resolute to produce an assurance case
showing that the run-time assurance architecture has been used
correctly and has not been compromised by other elements of

Fig. 3: Example safety property specified in AGREE

the system design. It also addresses the goal of minimizing
unnecessary stopping through the use of independent monitors
to maximize availability.

The Resolute assurance case for part of the demonstration
system is shown in Figure 4. This portion of the assurance
case focuses on evidence derived from the run-time assurance
architecture. Major branches of the argument can be seen in the
figure, corresponding to the use of multiple diverse monitors,
formal synthesis of high-assurance components, and selection
of contingency actions to minimize unnecessary stopping.

In other projects we have demonstrated how the imple-
mentation can be built from the verified AADL model for
execution on the formally verified seL4 kernel [7]. While
outside the scope of the current project, the isolation provided
by seL4 adds assurance that a malfunctioning LEC does not
have any computational side effects (memory or execution
time) on the rest of the system.



Fig. 4: Assurance Cases for AADL model generated using Resolute

B. Run-Time Monitors

The assurance architecture includes three independent mon-
itors of system safety and one monitor that assesses confidence
in the current operation of the LEC.

The first monitor uses Global Positioning System (GPS)
signals to compute the aircraft position relative to a virtual
runway centerline. Specifically, high precision carrier phase
(CP) signals from a GPS receiver [19] are differenced in time
to generate very accurate GPS velocity measurements1.The
initial conditions for the system require that the aircraft be
positioned on the runway centerline. That is, its cross-track
deviation from the centerline is small and it is aligned with
the centerline.

Prior to beginning to taxi, the aircraft position on the runway
is latched. As the aircraft moves down the runway, the high
accuracy GPS velocity measurements are integrated over time
to compute the position change of the aircraft relative to the
starting location. The accuracy of this relative position solution
is on the order of centimeters, with an error that grows at
the rate of few mm/second driven primarily by satellite clock
rate drift. The relative position is computed in the local-
level coordinate plane (North-East-Down axes). The relative
position in the local-level coordinate frame is transformed
to a runway coordinate frame to compute translation along
and lateral to the runway centerline (CTE). Runway database
information in the form of runway start and end coordinates
and runway width, are assumed to be available with high
accuracy and integrity, to perform this position transformation.

In addition to the estimate of CTE, the GPS monitor also
provides a high confidence error bound for the estimate. This

1Some GPS receivers don’t output CP measurements, but they can output
delta-range measurements which are internally computed inside the receiver
as time-differenced CP signals.

bound captures the effect of all error sources including the
GPS sensor errors, ability of the pilot or autopilot to follow
the centerline, and initial positioning errors. This approach
executes with low overhead with a solution update rate of 1 Hz.
Software development was based on standard verification and
validation techniques. Note that the GPS monitor may become
unavailable due to its growing error bound or in case of poor
satellite geometry leading to a solution with large errors (errors
that are the magnitude of the safety thresholds defined for the
centerline tracking problem).

The second monitor processes camera images and detects
the runway centerline using traditional computer vision (CV)
algorithms. It can be used if GPS is unavailable or monitor
error becomes too high. The CV monitor approach is based on
the highly structured and regulated nature of runway markings
(e.g., repeating dashed line pattern of known dimensions). It
tracks these features in the image sequence as the aircraft
taxis down the runway. The algorithm receives as inputs the
high-resolution images from the same camera used by the
LEC. In also receives the aircraft attitude from the onboard
navigation system at the instant of image acquisition and the
camera calibration parameters. The output of this algorithm is
a secondary estimate of CTE with an error bound.

The CV monitor output is also used to periodically reset
the GPS monitor solution when the CV monitor error bound
is smaller than the corresponding error bound of the GPS
monitor. This stops the growth in the error of the GPS monitor
solution and allows the GPS monitor to become available for
longer periods of time.

The centerline detection algorithm is outlined below:

1) Receive algorithm inputs: image, attitude from onboard
navigation system, camera position and orientation, and
calibrated camera model.



Fig. 5: Illustration of Centerline Detection by CV Monitor

2) Compute transform from aircraft heading frame of ref-
erence to camera frame of reference.

3) Extract candidate line segments from image using
Hough transform.

4) Test each line segment as a candidate edge of the dashed
runway centerline:

a) Extrapolate candidate line segment to edges of
image and find its endpoints

b) Inverse-project the endpoints to obtain 3D points
in the aircraft heading frame.

c) Construct candidate 3D centerline dash-gap square
wave patterns corresponding to different phases
and project into the camera frame.

d) Compute the correlation between detected lines
and projected square wave patterns for each phase.

e) Select the best phase and the best line to use for
the aircraft position estimate, subject to detection
thresholds.

f) The detected line is transformed to the aircraft
heading frame to compute CTE.

An illustration of the centerline detection result is shown in
Figure 5. There are periods of time when the CV solution
is not available due to the centerline being obscured by skid
marks or the centerline pattern not being detected reliably due
to illumination changes or aircraft heading. The CV monitor
makes use of existing algorithms, but requires fairly large
computing overhead. Running at 1 Hz, it makes full use of
two CPU cores.

The third monitor uses the high-integrity inertial reference
system (IRS) measurements to compute aircraft position. It
provides coverage when both the GPS and CV monitors are
unavailable. This monitor uses acceleration and attitude data
from the IRS to propagate the most recent CTE estimate and
error bound from the GPS or CV monitors. The IRS data
also ensures continuity of the monitoring solution at high rate

(50 Hz) between consecutive primary sensor updates or in
the presence of measurement drop-outs. It also makes use
of existing code and traditional verification techniques, and
executes with low overhead.

The three safety monitors above are implemented using
sensors that are typically installed on aircraft (GPS, IRS,
camera). The monitors are complementary in their nature. If
one of the primary monitors is lost, perhaps due to large GPS
errors or CV failing to detect the centerline due to skid marks
or low visibility, they work together to enhance overall mon-
itoring availability. This minimizes unnecessary interventions
by the run-time assurance architecture in nominal (fault-free)
conditions and helps ensure correct intervention when the LEC
outputs steer the aircraft away from the centerline.

The final monitor is used to determine if the LEC is
operating in a region of competence by assessing the novelty
of the input image relative to the training data. The rationale
behind this approach is that the LEC being monitored may
produce incorrect output more frequently for novel (out-of-
distribution) inputs since it was not trained on them. However,
the underlying probability distribution of the high-dimensional
data—such as images—is unknown, making it impossible to
compute the exact likelihood of an input given the training
data. In this work, we adpoted a learning-enabled approach
called Variational Autoencoder (VAE) [9] which can estimate
this underlying distribution, and leverage it for detecting the
novelty of the input.

VAE is an unspupervised learning technique for obtaining a
compact representation of the training data along with an en-
coder and a decoder which map the input data to and from the
latent representation space. A typical VAE consists of a pair of
neural networks—1) a probabilistic encoder which compresses
an input data to a latent code distribution, and 2) a decoder
which can reconstruct an input image from a given latent code.
The two networks are connected through a bottleneck which



forces the necessary information for the generative model to be
compressed and passed over to the decoder. During training,
these two networks are jointly optimized towards two goals—
1) minimize the difference between the original input and
the reconstructed (encoded and then decoded) input, and 2)
regularize the distribution of the latent code towards a pre-
imposed prior distribution so that the underlying distribution
of the input data is modeled as a tractable distribution. The
outcome of this optimization is a latent space from which new
inputs can be synthesized along the training data distribution.

The intuition behind utilizing VAE for novelty detection is
to either harness the limited capability of the decoder—as it
can only generate inputs that are similar to the training data—
or use the distribution of the latent space for determining the
typicality of an encoding [1], [4]. Several approaches have
been proposed [6], [18], and their performance may vary
depending on the task that LEC performs and the type of
novelty—adversarial vs. non-adversarial—one aims to detect.
In this work, we adopted a simple reconstruction-based novelty
detection which computes the score based on the pixel-wise
difference between the input image and the reconstructed
image.

One may question the assurance of using yet another LEC
for monitoring an LEC, as the VAE-based monitor is not
a trusted component. Indeed, they may seem to suffer from
the same mode of failure since both are trained on the same
data. However, VAE monitor is capable of detecting an input
that drifts away from the known data, and it works especially
well when the novel input is visually distinct. The LEC being
monitored, on the other hand, does not have such a capability
of signaling the unknowns and keeps on producing incorrect
outputs silently even when it is incapable of handling such
inputs.

Since this monitor is not a trusted component, it was not
used to enforce system safety, but rather as an additional check
on LEC performance. We used it to allow the Contingency
Manager to recover from a transient SLOW or HALT action
if the current safety monitor output returns to normal and the
LEC appears to be in its region of competence. The monitor
can be relatively expensive when running on a CPU alone
because of the inference time required for the neural network,
with one encoding and decoding per input. However, much
performance can be gained by using a GPU. It is also much
less computationally intensive than other alternatives such as
estimating uncertainty directly from the LEC using Monte-
Carlo simulation [5].

C. Safety Components

The Monitor Selector and the Contingency Manager are
critical for safe operation (single instance, no backup) and
so have been implemented as high-assurance components
using formal synthesis. They provide inputs to the VMS that
determine the control action to be taken to guarantee system
safety.

The Monitor Selector must choose which of the three safety
monitors should be used at each time step. If GPS and CV

are both available, it chooses the one with the smallest error
bound (subject to minimum switching time). If neither GPS
nor CV is available, it uses the IRS monitor.

The Contingency Manager determines whether control
should be based on LEC outputs (NORMAL) or one of the
contingency actions (SLOW or HALT). Roughly speaking,
SLOW speed is selected if the current CTE exceeds the ‘slow’
threshold or the predicted stopping position based on the cur-
rent speed is too close to the runway edge. HALT is selected
if the current CTE exceeds ‘halt’ threshold or the predicted
stopping position is too close to runway edge. Recovery from
SLOW or HALT is allowed if the LEC confidence monitor
output is above its threshold and a specified time limit has not
been exceeded.

Both the Monitor Selector and the Contingency Manager
are synthesized from formal specifications with proofs of
correctness of their core functionality. The synthesis is done
in the ACL2 theorem prover using the Automated Program
Transformations (APT) toolkit. ACL2 (A Computational Logic
for Applicative Common Lisp) is a software system consisting
of a logic, a programming language, and an automatic theorem
prover [17]. The APT toolkit is a software synthesis system
built on top of ACL2 [14]. Specifications written in ACL2 are
often high-level and should formalize the requirements for the
software components. They may be unexecutable, requiring
refinement to executable versions. The APT toolkit includes
automated transformations which can be used to refine high-
level specifications to low-level, executable, efficient, and
provably correct implementations. Each APT transformation
represents a single design choice, such as the selection of a
divide-and-conquer algorithm or the application of an opti-
mization such as incrementalization. Each application of an
APT transformation to a specification generates a new (lower-
level) specification and a proof of correctness. Applying a
sequence of APT transformations to a formal specification
results in ACL2 code that provably satisfies the requirements
of the software component.

After analyzing the functional requirements for the Monitor
Selector and the Contingency Manager, we chose to specify
these components in terms of tables. A table specifies the
behavior of a component declaratively as a set of cases
corresponding to the columns of the table. Each case specifies
the values of input expressions to match and the values of
outputs to set following a match.

For example, Figure 6a shows a small stateful table spec-
ifying how the Monitor Selector stabilizes the ISSM1 input
signal (a flag indicating that whether the GPS monitor has
a smaller error bound than the CV monitor). This prevents
rapid switching between the GPS monitor (M1) and the
CV monitor (M2). In this table, each case contains values
of three input expressions: Current State, ISSM1, and
timestamp ≥ EarliestSwitch and three output expres-
sions for the outputs: next state, Earliest Switch,
and ISSM1stable. A special symbol “−” in a table cell
denotes “don’t care” and matches anything. In ACL2, a table
is formally defined as a constant containing a set of input



(a) ISSM1 table (b) Define the ISSM1 table in ACL2

Fig. 6: Table specification for high-assurance synthesis

variables, a list of case-expressions over the input variables, a
list of output variables, and a list of cases. Each case contains
two parts: a list of values for the case expressions and a list
of output expressions over the input variables.

We assign meaning to the tables by defining in ACL2 a
generic apply-table function that takes two arguments:
an input map from input variables to their values and a
table constant. This function computes the values of the
case expressions for the given table using the given input
map. It examines the cases in the table, looking for a match
with the computed case expressions, computes the output
expressions for the matching case, and returns the outputs.
A macro def-table is used to define and to check tables.
It defines the ACL2 constant for the table and a specialized
variant of apply-table that naively applies the given table
to generate the outputs from the inputs. It also calls the
ACL2 theorem prover to show that the table is complete
and unambiguous (in every input scenario, exactly one case
applies). Figure 6b shows the ACL2 def-table macro for
defining and checking the table in Figure 6a. To support very
wide tables, the :cases in the call to def-table are given
in rows, not columns. Another slight difference from Figure 6a
is the use of t and nil, indicating true and false outputs,
rather 1 and 0.

The formal ACL2 specification for each component is
defined via the specialized apply-table function.

To derive optimized ACL2 code from the formal specifi-
cation for each component, we apply the APT simplify
transformation. This unrolls and expands the specialized
apply-table function that iterates over the cases to look
for a match. The result of this partial evaluation is a large nest
of if-then-else expressions, corresponding to the logic encoded
in the particular table given to apply-table, together with
a proof of equivalence. These nested conditional expressions
are quite fast to execute but would be tedious and error
prone to define by hand. The proofs done by the simplify
transformation ensure that it correctly encodes the decision
logic specified declaratively in the table.

The generated versions of the Monitor Selector and Contin-
gency Manager are represented as executable ACL2 code (a

subset of Common Lisp). We connect them to the rest of the
system using hand-written wrapper code.

We have also generated Java code for the components by
applying a Java code generator for ACL2 to the optimized
and verified ACL2 code derived via APT transformations. The
generated Java code is not yet verified. We are considering
two approaches to verify the Java code. One is formalizing
the semantics of Java and constructing a proof along with the
code. The other is compiling the Java code to bytecode and
then lifting the bytecode into logic and proving equivalence
using Kestrel’s Axe toolkit [15].

The formal synthesis approach we have taken to construct
the safety components has the following advantages:

• The high-level specifications are concise and declarative.
They formalize the requirements of the components.

• The generated ACL2 code is efficient and provably cor-
rect.

• With this approach we can easily adapt to changes to the
requirements. First we modify the high-level specification
to capture the changes to the requirements. Then we
re-apply the APT transformations to the changed spec-
ification. This will automatically generate new provably
correct code that satisfies the updated requirements.

IV. RESULTS

To evaluate performance of the run-time assurance archi-
tecture, testing was performed using all six LEC variants
in a variety of environmental conditions with and without
the assurance architecture components. Faulty or degraded
LECs were simulated by operating in conditions outside of
the LEC training data set. Data was collected for the following
configurations:

1) Nominal LECs without run-time assurance software.
This is the baseline configuration.

2) Faulty LECs performance without run-time assurance
software. These tests expose scenarios in which a faulty
LEC results in unsafe system behavior.

3) Nominal LECs with run-time assurance software. These
tests are intended to identify false alarms (unnecessary
intervention) from the run-time assurance architecture.



Fig. 7: Simulation Results and Monitor Synoptics Display

4) Faulty LECs with run-time assurance software. These
tests are intended to determine whether the run-time
architecture maintains system safety in the presence of
a degraded LEC.

In all we evaluated 46 different scenarios. This allowed us
to assess baseline performance, intervention of the assurance
architecture in the presence of LEC errors, and absence of
unnecessary intervention (false alarms). A screenshot of the
demonstration video including the synoptic display of the
monitor outputs is shown in Figure 7. In addition to the LEC
camera input and a chase view of the aircraft, outputs from the
run-time monitors and the current contingency manager action
are displayed. On the left side, the current CTE estimate and
error bound is displayed for each monitor. The right side shows
the predicted stopping position of the aircraft given its current
speed and braking performance, as computed by each monitor.

We found that the architecture performed in accordance with
expectations in all scenarios. In every case where a faulty
LEC caused the aircraft to deviate from the required center-
line tracking performance, the assurance architecture detected
the condition and slowed or halted the aircraft. At no time
was the aircraft allowed to depart from the paved runway.
Furthermore, we did not observe any false alarms, meaning
that the architecture never intervened when the aircraft was
performing within requirements and correctly tracking the
runway centerline.

For example, in one scenario the LEC trained with morning-
only data was tested in clear conditions at 4:00 p.m. This led
to the aircraft departing from the runway after approximately
two minutes. When the scenario was repeated with the run-
time assurance architecture active, the aircraft was first slowed

when it began to deviate from the centerline, then briefly
halted, and then allowed to resume normal operation using
the LEC guidance. Later, at a runway crossing, the aircraft
deviated more severely and was halted to prevent it from
leaving the runway.

It is important to remember that there are scenarios in which
a false alarm may be expected. If the runway markings are
obscured for an extended period (by water or skid marks,
for example), then the CV monitor will not be able to reset
the GPS monitor, and its error bound will continue to grow
until it no longer has confidence in the position of the aircraft.
This will trigger a slow or halt action, regardless of the actual
position of the aircraft. However, under these conditions the
LEC itself is unlikely to be performing very well.

AADL models for the run-time assurance architecture, the
Resolute assurance case, and videos of the demonstration are
available at the project website [16].

V. CONCLUSION

In this project we have explored run-time monitors that
observe LEC inputs, outputs, and internal state, and also
monitors that directly observe system safety (as shown here
in the TaxiNet demo). We constructed a run-time assurance
architecture with multiple monitors to enhance availability.
The monitors were based on independent sensors already
present on the aircraft: GPS, IRS, and video camera. We also
included high-assurance safety components synthesized from
formal specifications that select the best monitor and compute
any required safety intervention. The system was tested with a
variety of LECs under a wide range of operating conditions to
demonstrate the ability of our run-time assurance architecture



to maintain safety without unnecessary intervention (false
alarms).

The run-time assurance approach works best when it is
possible to clearly distinguish requirements for system safety
and performance, and the functions responsible for each.
For example, a complex planning system may be used to
compute a desired vehicle trajectory, but if safety is defined by
staying within a prescribed geo-fence, this is simple to monitor
using GPS. However, it is not always possible to monitor the
variables or conditions needed to detect safety violations. And
in some cases it is not obvious how to create a safe backup
function that is less complex (and easier to verify) than the
complex function to be bounded. But where the necessary
conditions are satisfied, run-time assurance architectures based
on ASTM F3269-17 can be a useful means for safely bounding
LEC behavior.

Acknowledgments.: The authors wish to thank our col-
leagues James Paunicka, Matthew Moser, Alex Chen, and
Dragos Margineantu for their support during integration and
testing on the BR&T autonomy platform. This work was
funded by DARPA contract FA8750-18-C-0099. The views,
opinions and/or findings expressed are those of the author and
should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

REFERENCES

[1] J. An and S. Cho. Variational autoencoder based anomaly detection
using reconstruction probability. 2015.

[2] ASTM F3269-17. Standard practice for methods to safely bound flight
behavior of unmanned aircraft systems containing complex functions,
2017.

[3] S. Bhattacharyya, D. Cofer, D. Musliner, J. Mueller, and E. Engstrom.
Certification considerations for adaptive systems. In 2015 International
Conference on Unmanned Aircraft Systems (ICUAS), pages 270–279,
2015.

[4] T. Byun and S. Rayadurgam. Manifold for machine learning assurance,
2020.

[5] T. Byun, V. Sharma, A. Vijayakumar, S. Rayadurgam, and D. Cofer.
Input prioritization for testing neural networks. In 2019 IEEE Inter-
national Conference On Artificial Intelligence Testing (AITest), pages
63–70, 2019.

[6] R. Chalapathy and S. Chawla. Deep learning for anomaly detection: A
survey, 2019.

[7] D. Cofer, A. Gacek, J. Backes, M. W. Whalen, L. Pike, A. Foltzer,
M. Podhradsky, G. Klein, I. Kuz, J. Andronick, G. Heiser, and D. Stuart.
A formal approach to constructing secure air vehicle software. IEEE
Computer Magazine, 51, Nov. 2018.

[8] DARPA. Assured Autonomy. https://www.darpa.mil/program/assured-
autonomy.

[9] C. Doersch. Tutorial on variational autoencoders, 2016.
[10] A. G. et. al. Resolute: An assurance case language for architecture

models. In HILT 2014, pages 19–28, New York, NY, USA, 2014. ACM.
[11] P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL: An

Introduction to the SAE Architecture Analysis and Design Language.
Addison-Wesley Professional, 1st edition, 2012.

[12] A. Gacek, J. Backes, M. Whalen, L. G. Wagner, and E. Ghassabani.
The jkind model checker. In H. Chockler and G. Weissenbacher, editors,
Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture
Notes in Computer Science, pages 20–27. Springer, 2018.

[13] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and
C. W. Barrett. The marabou framework for verification and analysis
of deep neural networks. In I. Dillig and S. Tasiran, editors, Computer
Aided Verification - 31st International Conference, CAV 2019, New York

City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of
Lecture Notes in Computer Science, pages 443–452. Springer, 2019.

[14] Kestrel Institute. APT: Automated Program Transformations.
https://www.kestrel.edu/home/projects/apt/, 2020.

[15] Kestrel Institute. Axe. https://www.kestrel.edu/home/projects/axe/, 2020.
[16] Loonwerks. AAHAA: Architecture and Analysis for High-Assurance

Autonomy. http://loonwerks.com/projects/aahaa.html.
[17] Matt Kaufmann and J Strother Moore. ACL2 Version 8.3.

http://www.cs.utexas.edu/users/moore/acl2/, 2020.
[18] E. Nalisnick, A. Matsukawa, Y. W. Teh, and B. Lakshminarayanan.

Detecting out-of-distribution inputs to deep generative models using
typicality, 2019.

[19] Petovello, Mark. Inside GNSS: What is the Carrier Phase Measurement.
http://www.insidegnss.com/auto/julaug10-solutions.pdf, 2010.

[20] RTCA DO-178C. Software considerations in airborne systems and
equipment certification, 2011.

[21] L. Sha. Using simplicity to control complexity. IEEE Software,
18(4):20–28, 2001.

[22] M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. P. Heimdahl,
and S. Rayadurgam. Your “what” is my “how”: Iteration and hierarchy
in system design. IEEE Software, 30(2):54–60, 2013.


