
A Formal Approach to Constructing Secure
Air Vehicle Software

Darren Cofer, Andrew Gacek, John Backes, Rockwell Collins Advanced Technology
Center

Michael W. Whalen, University of Minnesota, Dept. of Computer Science

Lee Pike, Adam Foltzer, Michal Podhradsky, Galois Inc.

Gerwin Klein, Ihor Kuz, June Andronick, Gernot Heiser, Data61, CSIRO and University
of New South Wales

Douglas Stuart, Boeing Research and Technology

Current approaches to cyber-resiliency for vehicle software rely on
patching systems after a vulnerability is discovered. What is needed is a
clean-slate, mathematically-based approach for building secure software.
Our team has developed new tools based on formal methods for building
software for unmanned air vehicles (UAVs) that is provably secure against
many classes of cyber-attack.

Researchers (and hackers) have shown that all kinds of networked embedded systems are
vulnerable to remote cyberattack. Researchers at University of Washington and
University of California San Diego demonstrated the ability to completely control an
unmodified automobile from a remote location1. Security researchers Charlie Miller and
Chris Valasek have recently extended this work. Other researchers2,3,4 have been probing
for vulnerabilities in the communication and avionics systems of commercial aircraft,
though with questionable success. The consequences of a successful cyber-attack against
an aircraft include loss of life or denial of military capabilities, above and beyond the
compromise of classified information.

As part of the High-Assurance Cyber Military Systems (HACMS) research program,
our team conducted actual cyberattacks on a military aircraft during flight5. Our “before”
and “after” attacks demonstrated the effectiveness of technologies developed during the
HACMS program to construct air vehicles that are resilient against cyberattacks. Cyber-
resiliency means that the system is tolerant to cyberattacks in the same way that safety-
critical systems are tolerant to random faults—they recover and continue to execute their
mission without interruption.

The traditional approach to cybersecurity is reactive, responding to cyberattacks after
they occur by identifying a vulnerability and developing a software patch to eliminate
that specific vulnerability. This is a cycle that repeats itself with each newfound
vulnerability. Even virus-scanning software cannot keep up with the pace of newly
created malware, and in fact, often introduces new vulnerabilities that can be exploited.
The situation is even worse for embedded software because it is often difficult to patch
due to logical issues or certification constraints.

The HACMS program focused on vehicle control systems because of their complexity,
criticality, and significance for the military and civilian worlds. The goal of our research

was to break the cycle of “patch and pray” by preventing security vulnerabilities from
being introduced during the development process. Achieving this goal requires a
fundamentally different approach from what has been pursued by software community to
date. We have adopted a clean-slate, formal methods-based approach to enable semi-
automated code synthesis from executable, composable, formal specifications which are
subject to analytic verification.

To assess the security of the software produced, we worked with a Red Team of
professional penetration testers who evaluated our software and attempted to identify
vulnerabilities. The Red Team had access to all design documentation, models, analysis
results, source code and binaries. Throughout the project we engaged the Red Team as
“friendly adversaries” who would assess systems and identify any issues discovered so
that our systems could be improved in the next development iteration. However, the
cyber-resiliency of our software follows primarily from the formal verification effort, not
from the subsequent testing and evaluation.

Our project in the HACMS program, Secure Mathematically-Assured Composition of
Control Models (SMACCM), brings together four main concepts based on formal
methods: (1) modeling the system architecture and formal verification of its key security
and safety properties, (2) synthesis of software components using languages that
guarantee important security properties, (3) use of a formally verified microkernel to
guarantee enforcement of communication and separation constraints specified in the
architecture, and (4) automatically building the final system from the verified architecture
model and component specifications.

To show that this approach is both practical and effective, we applied it to two
unmanned air vehicles (UAVs). We first developed the technologies on a modified
commercial quadcopter which we have called the SMACCMcopter. We then applied the
same technologies to Boeing's Unmanned Little Bird (ULB), a full-sized optionally-
piloted helicopter capable of autonomous flight. Successful flight demonstrations and
security evaluations by the Red Team show that our approach can be used to build real
systems that are resilient against cyberattacks.

Requirements
To define meaningful security requirements, we started from two assumptions about the
system and potential attackers. First, we assume that an authorized user has the authority
to issue any command to the UAV, including commands that would crash or otherwise
destroy it. It would be a mistake to a priori limit what a legitimate user may choose to do
with a military UAV, so we must assume that all commands sent by an authorized user
are legitimate. Thus, the primary focus of our attention is on whether messages (and their
associated commands) are well-formed, and whether the encryption that we are using is
sufficient to distinguish well-formed from malformed messages. If an attacker can co-opt
an authorized user’s identity, no straightforward mitigation is possible.

The second assumption relates to the wireless communication. Because we cannot
10limit access to the radio spectrum, attackers will always be able to launch a denial-of-
service (DoS) attack, by either jamming the physical link or overwhelming the UAV
receiver with well-formed messages (even if they fail authorization). This means it is not
possible to provide absolute guarantees about reception and execution of commands from
authorized users. However, we can require the UAV to reject any commands lacking

authorization. We can also require the UAV to execute commands from authorized users
in a timely fashion, assuming no DoS attack on the radio link. In addition, when a DoS
attack is detected, our requirements can specify what actions the UAV should take to
keep itself safe or avoid compromising its mission (if possible).

To construct requirements, we focused on a variety of known concrete attacks drawn
from the Common Attack Pattern Enumeration and Classification list
(http://capec.mitre.org). First, we ensured generic security principles such as user
identification and authorization, secure network access and communication, secure
storage, content security, and availability. From those principles, we created system-level
security requirements for our UAVs. For example:

• The UAV executes only well-formed commands from the ground station.
• If an air-ground communication link fails, the UAV will execute its no-

communication behavior.

We also approached the problem bottom-up, eliminating common weaknesses known to
be important to many attacks, such as those related to authentication and authorization,
system partitioning, maintenance, boot and configuration, overflow or underflow,
encryption, and memory safety. The Common Weakness Enumeration website
(http://cwe.mitre.org) maintains a large list of such weaknesses.

Approach
In this section we present an overview of the four main technologies developed in the
project and how they have been integrated into a development process to produce
systems that are functionally correct and free from security vulnerabilities. Each
technology provides the basis for one of four key elements of architecture-driven
assurance.
The architecture model is correct: The architecture model specifies the overall
organization of the system and defines the interfaces for each subsystem and component,
how they interact, and what data they share. We verify both structural or behavioral
properties of the model to demonstrate security. Behavioral properties are specified as
formal assume-guarantee contracts.
The components are correct: We must also establish that the components specified in the
architecture have been implemented correctly. This means that they must satisfy their
requirements as specified in behavioral contracts and that they must be free from
vulnerabilities that could be exploited by cyber-attackers.
The system execution semantics matches the model: The architecture model makes both
explicit and implicit statements about how the system should execute: execution times
and periods for tasks, bindings for threads and processes to CPUs, connections between
components and their routing on communication busses. In addition, if there are not
connections defined between components, then no data should ow between these
components.
The system implementation corresponds to the model: We must also have confidence that
the system implementation preserves the properties that have been established for the
architecture model and components. We automatically generate all of the code and
configuration data needed to build the system directly from the architecture and

component models.

Analyzable Architecture
Developers must have high confidence that the system they eventually build accurately
reflects the characteristics of the system design that they reason about. Our tools
accomplish this by:

• Allowing developers to model the system that they intend to build in a language
with clear syntax and semantics

• Analyzing this model to verify that it meets user defined specifications
• Generating the software that runs on the target platform directly from this model

The Architecture Analysis and Design Language (AADL) has been developed to capture
the important design concepts in real-time distributed embedded systems6. The AADL
language can capture both the hardware and software architecture in a hierarchical
format. It provides hardware component models including processors, buses, memories,
and I/O devices, and software component models including threads, processes, and
subprograms. Interfaces for these components and data flows between components can
also be defined. The language offers a high degree of flexibility in terms of architecture
and component detail.

This supports incremental development where the architecture is refined to increasing
levels of detail and where components can be refined with additional details over time. In
AADL, the architectural model includes component interfaces, interconnections, and
execution characteristics, but not their implementations. Component implementations are
described separately using model-based specification languages or traditional
programming languages which are included by reference in the architecture model. This
separation of implementation and architecture is an important factor in achieving
scalability for the analysis tools that we have developed.

We have developed two different analysis tools to reason about AADL models. The
Assume-Guarantee Reasoning Environment (AGREE) 7 is a compositional verification
tool that proves behavioral properties about AADL models using modern Satisfiability
Modulo Theories (SMT)-based model checkers. The second tool, Resolute8, generates
assurance cases from information embedded in the AADL models. Resolute allows us to
construct arguments about properties that are more difficult to formalize, and to integrate
heterogeneous sources of evidence about the system.

Assume Guarantee Reasoning Environment
AGREE is used to reason about past-time temporal logic behavioral contracts in AADL
architectural components. These contracts consist of assumptions about the component
environment and guarantees about how the component state evolves over time. A
contract specifies precisely the information that is needed to reason about the
component’s interaction with other parts of the system. Furthermore, the contract
mechanism supports a hierarchical decomposition of the verification process that follows
the natural hierarchy in the system model. Unlike other compositional reasoning tools
(such as OCRA9), AGREE is fully integrated with AADL so that the embedded
implementation can be automatically generated from the verified system model.

Given a top-level component that is composed of several subcomponents, AGREE

attempts to prove that the top-level component contract holds, given the top-level
contract assumptions and assuming that the contracts of its subcomponents are true. The
reasoning is performed using a state-of-the-art inductive model checker called JKind10.
This decomposition can be performed for any number of architectural layers, allowing
compositional reasoning across a large-scale system architecture. The proof rests on
“leaf-level” contracts over individual threads or processes, which must be discharged by
other means (such as model checking or coverage-based testing). If AGREE is unable to
produce a proof, then it produces a counterexample that illustrates a scenario in which the
system-level contract guarantee does not hold, given the system-level assumptions and
subcomponent contracts.

As an example, we used AGREE to verify the correct implementation in the ULB of a
distributed protocol (STANAG 4586) for controlling interactions among multiple ground
stations and UAVs. STANAG 4586 defines messages that request various levels of
control over the UAV, such as setting new waypoints or controlling an onboard camera.
These messages require different authority, called levels of interoperability (LOI), to
interact with the vehicle. It is crucial that the vehicle not act upon messages sent by a
ground station with an inadequate LOI. Likewise it is important that a UAV only grant an
LOI to a ground station that is appropriate based on the current state of the vehicle and
the permissions decided upon at the beginning of the mission. We used AGREE to model
and verify these properties.

Resolute
Traditional assurance cases are informal arguments for the correctness of a system, such
as the Goal Structuring Notation11. Each claim in the argument is supported by other sub-
arguments or evidence, resulting in a tree structure. Resolute formalizes and extends this
notion, allowing assurance cases to be attached to AADL models. First, the dependency
of each argument on its sub-arguments and evidence is formalized into rules. Second,
these rules can be parameterized by the architecture of the system (e.g. iterating over all
components). Finally, Resolute instantiates these rules for a particular AADL architecture
using a Datalog-style proof search algorithm. Resolute assurance cases are automatically
updated as the architecture model evolves, and they never fall out of sync with the model.
An approach to apply and evolve assurance cases as part of system design is found in12,
which is similar to the process we have used with Resolute.

Consider an assurance case for the claim “The UAV executes only unmodified
commands from the ground station.” We can decompose this claim into two arguments:
one about the correctness of our encryption algorithm and one about the data-flows
between the Decrypt component and the eventual execution of commands. The latter
property is particular interesting for Resolute since it relies on the architecture of the
system. We formalize it with a recursive rule which describes when a component receives
properly decrypted messages. Resolute traverses the architecture to track how messages
move through the system and compute the validity of the claim.

Correct Components
The next aspect of our approach requires that software components specified in the
architecture model, such as threads or functions, be correctly implemented. C or C++ are
still the most common languages for embedded system development given the low-level
control they provide in terms of memory usage and timing behavior. Unfortunately, these

languages provide little support for creating high assurance software. Used on their own,
they are not memory safe and difficult to analyze.

To address this problem, our team developed an embedded domain-specific language
(EDSL) called Ivory. This language was used to re-implement all of the flight control
functions in the SMACCMcopter research vehicle and critical control and
communication functions in the ULB.

Ivory13 follows in the footsteps of other “safe C” programming languages, like
Cyclone, BitC, and Rust—languages that avoid many of the pitfalls of C, particularly
related to memory safety and undefined behavior, while being suitable for writing low-
level code (e.g., device drivers), and having minimal run-time systems. Our main
motivation for not using those languages is our desire for an EDSL providing convenient,
Turing-complete, type-safe macro-language (Haskell) to improve productivity.

Ivory is particularly designed for safety-critical embedded programming. Such a
language should guarantee memory safety, prevent most undefined behaviors, and
provide integrated testing and verification tools. Typical C coding conventions for safe
embedded systems, such as those in use at NASA’s Jet Propulsion Laboratory14, are
enforced by Ivory's type system. In line with these conventions, Ivory has been built with
some limitations to simplify generating safe C programs. Ivory does not support heap-
based dynamic memory allocation (but global variables can be defined). Arrays are fixed-
length. There is no pointer arithmetic. Pointers are non-nullable. Union types are not
supported. Unsafe casts are not supported: casts must be to a strictly more expressive
type (e.g., from an unsigned 8-bit integer to an unsigned 16-bit integer) or a default value
must be provided for when the cast is not valid. The most common unsafe C cast is not
possible: no void-pointer type exists in Ivory.

In practice, Ivory has proven to be a tremendously productive language, both in spite
of and due to these restrictions and limitations. Ivory programmers get the full power of
using Haskell as a macro system, while being reassured by the type system that their
programs are safe. For example, the extended Kalman filters used for state estimation on
the SMACCMcopter were generated from a high-level description of the algorithm in
terms of linear algebra operations, but produced safe C code nearly identical to hand-
unrolled loops. Meanwhile, the very lowest levels of detail in the SMACCMcopter board
support package were developed using distinct types for register flags and addresses,
eliminating the mismatches that are common when dealing with bit masks and hardware
addresses directly.

Execution Semantics and Operating System
Once we are satisfied that the architecture has been correctly specified and the software
components correctly implemented, the correct execution of the components, isolation
between components, and enforced communication between components must be
guaranteed. This is ensured by the underlying operating system (OS).

Each of our UAVs includes two computers: A flight control computer for hard real-
time control tasks, and a mission computer for communicating with the outside world
(the ground station, in particular) and hosting onboard payloads such as a video camera.
These computers have very different requirements and run different operating systems.

The OS used on the mission computers of both of our UAVs is the seL4 microkernel.
The seL4 microkernel builds on the strengths of the L4 microkernel architecture, such as
small size, high performance, and policy freedom, and extends it with a built-in capability

model, which provides a mechanism to enforce security guarantees at the operating
system and application levels. The seL4 microkernel has undergone extensive formal
verification, from full functional correctness down to binary level, to strong high-level
security properties including confidentiality and integrity15. This means that seL4’s
executable implementation is formally proved correct relative to its specification using
mathematical machine-checked proofs in the Isabelle/HOL theorem prover16. Its security
properties, also proved in Isabelle/HOL, imply that isolation is enforced; i.e. that seL4
does enforce the controlled communication defined in the component configuration of the
architectural specification. The isolation and controlled communication enforcement is
the key to showing that the AADL architecture model is properly implemented.

On the flight control computers, the focus is on ensuring timely execution and
scheduling of flight tasks, leading to use of a real-time operating system (RTOS). On the
SMACCMcopter we have used eChronos, a formally verified RTOS developed by
Data61 that runs on highly resource-constrained hardware.

On the ULB we have used the VxWorks RTOS. Use of this commercial RTOS was
necessary because of the particular flight computer hardware in the ULB. While not
optimal, use of an RTOS without the assurance provided by formal verification was
deemed acceptable since the flight computer is isolated from contact with the outside
world by the mission computer running seL4.

Trusted Build
Finally, we must ensure that the guarantees designed in to the architectural models,
software components, and OS are preserved in the actual system implementation. To
ensure conformance, we built tools to automatically generate the system image directly
from the architectural model, software components, and OS code. For both vehicles, the
AADL architecture model was detailed enough to support generation of “glue code” and
all configuration information needed to construct a system image that could be loaded
directly onto the target platform.

We developed the Trusted Build (TB) tool to generate system images from AADL
models. From AADL models, TB can generate the OS configuration information,
process/thread priorities and scheduling information, and all process/thread
communication primitives. In fact, it is also possible to automatically generate
communication primitives between operating systems, as happens with virtual machines.
TB allowed single-source models to target the VxWorks, eChronos, seL4, or Linux
operating systems, depending on the needs of the specific platform. The final system
images generated for both vehicles were generated directly from the AADL architecture
descriptions using TB. While the majority of the TB tool was not formally verified, the
communications primitives used for IPC in seL4 were verified using Isabelle/HOL.

Application and Demonstration
We demonstrated our approach on two different UAVs: the SMACCMcopter quadcopter,
and the Boeing Unmanned Little Bird helicopter (Figure 1). This section describes our
experiences with both platforms.

Figure 1. Demonstration Aircraft: SMACCMcopter and Unmanned Little Bird

SMACCMcopter Demonstration
The SMACCMcopter was developed as an open experimentation platform that would be
available for use by researchers without restriction. It is based on commercially available
hardware components and open source software. It mimics the architecture and features
of the ULB in a number of ways, and has been a practical way to develop, refine, and test
new technologies.

The airframe for the SMACCMcopter is the IRIS+ quadcopter produced by 3D
Robotics. The IRIS+ uses a Pixhawk flight control computer which runs the hard real-
time control software and includes integrated sensors for vehicle acceleration and
attitude. A separate mission computer has been mounted on top of the IRIS+ body. The
mission computer is based on an ARM Cortex-A15 CPU and communicates with the
flight control computer over a CAN bus.

It hosts functions for encryption/decryption, the CAN interface to the flight computer,
and ground station communication. To demonstrate mixed-security architectures
involving commercial software, the camera software represents an untrusted component
that runs in a Linux virtual machine (VM) hosted by seL4. It receives video data from
the camera, detects and computes bounding boxes for objects of a specified color, and
sends video data to the ground station.

All of the SMACCMcopter software was written using the approach described in
Section 3. The secure Ivory software components, secure seL4 operating system, and
verified AADL software architecture result in a quadcopter design in which most
common security vulnerabilities have been eliminated. A simplified diagram of the
architecture is shown in Figure 2.

Figure 2. Simplified software architecture for SMACCMcopter showing verified OS
(blue), Ivory synthesized components (green), and untrusted components (orange), and
the WiFi cyberattack (red).

During the course of the HACMS program, we conducted flight tests to demonstrate
the effectiveness of our approach and tools applied to the SMACCMcopter. The final
demonstration consisted of two scenarios illustrating the difference between an unsecure,
unverified version of the SMACCMcopter software and the final secure, verified version
of the software. In each scenario, the SMACCMcopter was commanded by the ground
control station while a separate team of “attackers” launched cyber-attacks on the vehicle,
attempting to take over its telemetry and flight control via a WiFi connection to the VM
hosting the unverified camera software. In the first scenario, the cyber-attack was
successful. The attackers were able to remotely access memory containing encryption
keys for the control/telemetry radio link and take control of the vehicle. In the second
scenario, the formally verified SMACCMcopter was resilient against the same attack and
completed its mission unhindered. A video of this demonstration is available online17.

Unmanned Little Bird Demonstration
The ULB is an optionally-piloted helicopter based on the H-6, a 32 foot long, 4700 pound
rotorcraft. The ULB adds an autonomous capability to the basic H-6. Though the ULB is
capable of fully autonomous flight, for flight testing it carries a safety pilot who can
disable and override the autonomous functionality.

Like the SMACCMcopter, the ULB avionics includes a flight control computer (FCC)
for real-time tasks and a mission computer (called the Vehicle Specific Module, or VSM)
for communication with the ground station and managing a video camera payload. The
original ULB VSM was implemented in 87K lines of C++ source code, with an
executable size of approximately 80 MB, running on Gentoo Linux on an x86 processor.
The original ULB FCC was written in 20K lines of C code, with a 2MB executable, using
a monolithic cyclic executive running at 50 Hz on a PowerPC platform. During the
HACMS program the Boeing ULB program ported the FCC software to VxWorks, which
increased the code size to approximately 40K lines. The ULB implements the STANAG
4586 protocol for communication between ground stations and UAVs. The protocol
permits any compliant ground station to control any compliant UAV.

Over the course of the three phases of the HACMS program, new technologies were
progressively applied to the ULB to create a high-assurance cyber military system. In
Phase 1, the VSM architecture was modeled in AADL, and seL4 was added as a
hypervisor to host the baseline software running on Linux as a guest OS. In Phase 2, the
Ivory language was used to re-implement a portion of the VSM software, along with new
authentication and LOI components. A more detailed AADL model of the VSM software
architecture was developed and used with the Trusted Build tool to generate code for the
VSM. In Phase 3, the FCC software architecture was modeled using AADL, and the
outer loop control and input/output components of the FCC were implemented in Ivory.
In this case the existing VxWorks RTOS was retained as the operating system. A
simplified version of the final ULB HACMS architecture is shown in Figure 3.

Figure 3. ULB Final Architecture showing verified OS (blue), Ivory synthesized
components (green), and unmodified/untrusted components (orange), and the two
cyberattacks demonstrated (red).

Several ULB flight tests were conducted to demonstrate that the vehicle with updated
cybersecure software retained all of its original functionality. As with the
SMACCMcopter, we flew several sorties that included targeted cyber-attacks. In the first
attack, a compromised maintenance device was connected to the USB socket on the ULB
that normally hosts a USB drive used for the data logging. This device injected a virus
which attempted to access memory in the other VSM software and disable the payload
camera. In the second attack, a simulated supply chain attack originating in the 3rd-party
camera software attempted to change ULB waypoints and cause it to violate (simulated)
airspace restrictions. In the final upgraded version of the ULB both of these attacks were
contained by the verified software and system design, allowing the aircraft to continue
operation.

The technologies described here were applied to the ULB by Boeing engineers (with
some support from the technology researchers). Significantly, this included engineers
from Boeing Defense Systems, as well as those from Boeing Research and Technology.
Together, this represents nontrivial evidence that these technologies are effective in
improving system cybersecurity, can do so for real aircraft without compromising the
required real-time performance, and are usable by the developers of military systems.

Conclusion
Over the course of the HACMS program, a number of formal methods technologies were
developed and applied, first to the SMACCMcopter research vehicle, and then to the
Boeing Unmanned Little Bird helicopter.

In the beginning of the program, the Red Team performed baseline assessments of
both our unmodified Pixhawk-based hobby quadcopter and the original ULB software. In
both baselines, the Red Team had little difficulty in attacking the vehicles. The
quadcopter was trivially compromised in several ways (e.g. hijack of unencrypted
communications, message flooding, and several other issues) and the ULB was
compromised within an hour due to configuration and memory issues involving third-
party components. Over the three phases of the project, our new technologies and
software assumed more and more of the of control of the vehicles until, in Phase 3, they
formed the entirety of the SMACCMcopter and the majority of the ULB.

These technologies were successfully demonstrated on both aircraft during flight,
including the successful defeat of attacks based on several of common attack vectors. The
SMACCMcopter withstood attacks via a remote data link, while the ULB withstood
attacks via a compromised USB device and compromised third-party software for an
onboard payload.

After each phase, the Red Team performed a security assessment of the upgraded
portions of the vehicle software and performed penetration testing. After Phase 1, their
evaluation and penetration testing focused on remote attacks on the vehicles. In later
phases this expanded to include attacks launched from non-critical components onboard
the vehicles themselves. The Red team assessments did not find any exploitable
vulnerabilities in the re-engineered portions of either aircraft.

At the end of the project, the Red Team final report concluded:

HACMS technologies have made revolutionary advances in the resilience available to developers of
autonomous vehicles. The final vehicles delivered under the HACMS program, even as research
prototypes, proved to be resilient against most forms of attack to a degree rarely seen even in hardened,
fielded systems. Of all the final, formally verified components assessed under the final phase of the
program, no memory corruption failures, mathematical operation faults, or security isolation
compromises were identified.

In this project we have demonstrated the use of formal methods to dramatically
improve the cybersecurity of the embedded software in two aircraft. In addition to
security assessments, these aircraft underwent flight testing to show that their real-time
performance had not been impacted. Furthermore, all of the modification and re-
engineering of the ULB software was conducted by Boeing engineers. Thus, the formal
methods technologies presented here are both practical and effective in enhancing the
cyber-resiliency of real aircraft.

More information, including the final report, models, software, and tools developed as
part of the project, is available at http://loonwerks.com/projects/hacms.html.

Acknowledgments
This work was funded by DARPA contract FA8750-12-9-0179. The views, opinions and/or findings expressed are those
of the authors and should not be interpreted as representing the official views or policies of the Department of Defense
or the U.S. Government.

References
1. Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl

Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno. Comprehensive experimental analyses
of automotive attack surfaces. In 20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12,
2011, Proceedings, 2011.

2. Hugo Teso. Aircraft hacking: Practical aero series, 2013.
https://conference.hitb.org/hitbsecconf2013ams/hugo-teso/ (accessed 8-15-2018).

3. Kim Zetter. Feds say that banned researcher commandeered a plane, 2015.
https://www.wired.com/2015/05/feds-say-banned-researcher-commandeered-plane/ (accessed 8-15-2018).

4. Ruben Santamarta, Last Call for SATCOM Security. Black Hat, Las Vegas, NV, August 4-9, 2018.

5. Graham Warwick. DARPA Blocks Cyberattacks on Unmanned Little Bird In Flight. Aerospace Daily &
Defense Report May 02, 2017.

6. P. Feiler and D. Gluch. Model-Based Engineering with AADL: An Introduction to the SAE Architecture
Analysis & Design Language. Addison-Wesley Professional, 1st edition, 2012.

7. Michael W. Whalen, Andrew Gacek, Darren D. Cofer, Anitha Murugesan, Mats Per Erik Heimdahl, and
Sanjai Rayadurgam. Your “what” is my “how”: Iteration and hierarchy in system design. IEEE Software,
30(2):54-60, 2013.

8. A. Gacek et. al. Resolute: An assurance case language for architecture models. In HILT 2014, pages 19-28,
New York, NY, USA, 2014. ACM.

9. Alessandro Cimatti, Michele Dorigatti, Stefano Tonetta. OCRA: A tool for checking the refinement of
temporal contracts. In ASE 2013: 702-705.

10. Andrew Gacek, John Backes, Mike Whalen, Lucas G. Wagner, Elaheh Ghassabani. The JKind Model
Checker. CAV (2) 2018: 20-27.

11. GSN Working Group. GSN community standard version 1.
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf, November 2011 (accessed 8-15-
2018).

12. P. Graydon, J. Knight, and E. Strunk. Assurance based development of critical systems. In 2007 International
Symposium on Dependable Systems and Networks (DSN), June 2007.

13. P. Hickey et. al. Building embedded systems with embedded DSLs (experience report). In Intl. Conference
on Functional Programming (ICFP). ACM, 2014.

14. NASA Jet Propulsion Laboratory. JPL institutional coding standard for the C programming language.
Technical Report JPL DOCID D-60411, Jet Propulsion Laboratory, 2009. Available at https://lars-
lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf (accessed 8-15-2018)

15. G. Klein et. al. Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer
Systems, 32(1):2:1-2:70, February 2014.

16. T. Nipkow et. al. Isabelle/HOL – A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, Heidelberg, 2002.

17. Darren Cofer, Andrew Gacek, John Backes, and Konrad Slind. Video: High-assurance cyber military systems
(HACMS), 2017. https://insights.rockwellcollins.com/2017/07/06/video-high-assurance-cyber-military-
systems-hacms/ (accessed 8-15-2018).

Darren Cofer is a Fellow in the Rockwell Collins Advanced Technology Center. His research interests
include formal methods and tools for verification and certification of high-integrity systems. Cofer received
a PhD in Electrical and Computer Engineering from the University of Texas at Austin and is a senior
member of the IEEE. Contact him at cofer@ieee.org.

mailto:cofer@ieee.org

Andrew Gacek is a researcher in the Rockwell Collins Advanced Technology Center. His research interests
include connecting users with formal verification through tool development and research. Gacek received
a PhD in Computer Science from the University of Minnesota. Contact him at andrew.gacek@gmail.com.

John Backes is a researcher at the Rockwell Collins Advanced Technology Center. His research interests
include SMT solvers, model checking, and verification of software for embedded systems. He earned his
PhD from the Department of Electrical and Computer Engineering at the University of Minnesota. Contact
him at john.backes@gmail.com.

Michael W. Whalen is the Director of the University of Minnesota Software Engineering Center. His
research interests involve improving the scalability and the usability of model checking and automated
test generation. He holds a PhD from the University of Minnesota and is a Senior Member of the IEEE.
Contact him at mwwhalen@umn.edu.

Lee Pike is a member of the technical staff at Groq, Inc. Previously, he directed the Cyber-Physical
Systems group at Galois, Inc., where the research reported herein was completed. His research interests
include formal methods, functional programming, and high-assurance systems. He received a PhD from
Indiana University. Contact him at leepike@gmail.com.

Adam Foltzer, previously at Galois, Inc., is now a senior software engineer at Fastly, working at the
intersection of compilers, performance, and security. He has a MS in Computer Science from Indiana
University specializing in programming language theory and implementation. Contact him at
acfoltzer@acfoltzer.net.

Michal Podhradsky is a Software Engineer at Galois Inc, and holds a PhD in Electrical and Computer
Engineering from Portland State University. His research is focused on high-assurance Cyber Physical
Systems, in particular Unmanned Aerial Vehicles. Contact him at mpodhradsky@galois.com.

Gerwin Klein is a Chief Research Scientist at Data61, CSIRO, and conjoint Professor at USNW, Sydney,
Australia. His research is on formal software verification, in particular in operating systems, on interactive
theorem proving, and programming languages. He received a PhD in Computer Science from
Technische Universität München. Contact him at gerwin.klein@data61.csiro.au.

Ihor Kuz is a Principal Research Engineer in the Trustworthy Systems group at Data61, CSIRO, and a
conjoint Associate Professor at UNSW Sydney. His research interests are in secure systems, in
particular secure operating systems and componentized systems. He holds a PhD from TU Delft and is a
member of the IEEE and ACM. Contact him at ihor.kuz@data61.csiro.au.

June Andronick is a Principal Research Scientist at Data61, CSIRO, and conjoint Associate Professor at
UNSW Sydney. She is the leader of the Trustworthy Systems group, known for the formal verification of
the seL4 operating system microkernel. June's research interests are in formal verification of concurrent
operating system code. Contact her at june.andronick@data61.csiro.au.

Gernot Heiser (gernot@unsw.edu.au) is Scientia Professor and John Lions Chair of Computer Science at
UNSW Sydney, and a Chief Research Scientist at Data61, CSIRO. His research is on operating systems,
especially microkernel-based systems for safety- and security-critical uses, cyber security, real-time
systems, and architectural support for operating systems. He holds a PhD from ETH Zurich and is a
Fellow of the ACM, the IEEE, and the Australian Academy of Technology and Engineering (ATSE).
Contact him at gernot@unsw.edu.au.

mailto:andrew.gacek@gmail.com
mailto:john.backes@gmail.com
mailto:mwwhalen@umn.edu
mailto:leepike@gmail.com
mailto:acfoltzer@acfoltzer.net
mailto:mpodhradsky@galois.com
mailto:gerwin.klein@data61.csiro.au
mailto:ihor.kuz@data61.csiro.au
mailto:june.andronick@data61.csiro.au
mailto:gernot@unsw.edu.au

Douglas Stuart is a researcher in Boeing Research and Technology. His research interests include cyber-
physical systems development, verification, and cybersecurity. He holds a Ph. D. from the University of
Texas at Austin. Contact him at douglas.a.stuart@boeing.com.

mailto:douglas.a.stuart@boeing.com

	A Formal Approach to Constructing Secure Air Vehicle Software
	Requirements
	Approach
	Analyzable Architecture
	Assume Guarantee Reasoning Environment
	Resolute

	Correct Components
	Execution Semantics and Operating System
	Trusted Build

	Application and Demonstration
	SMACCMcopter Demonstration
	Unmanned Little Bird Demonstration

	Conclusion
	Acknowledgments

	References
	Darren Cofer is a Fellow in the Rockwell Collins Advanced Technology Center. His research interests include formal methods and tools for verification and certification of high-integrity systems. Cofer received a PhD in Electrical and Computer Engineer...
	Andrew Gacek is a researcher in the Rockwell Collins Advanced Technology Center. His research interests include connecting users with formal verification through tool development and research. Gacek received a PhD in Computer Science from the Universi...
	John Backes is a researcher at the Rockwell Collins Advanced Technology Center. His research interests include SMT solvers, model checking, and verification of software for embedded systems. He earned his PhD from the Department of Electrical and Comp...
	Michael W. Whalen is the Director of the University of Minnesota Software Engineering Center. His research interests involve improving the scalability and the usability of model checking and automated test generation. He holds a PhD from the Univers...
	Lee Pike is a member of the technical staff at Groq, Inc. Previously, he directed the Cyber-Physical Systems group at Galois, Inc., where the research reported herein was completed. His research interests include formal methods, functional programmin...
	Adam Foltzer, previously at Galois, Inc., is now a senior software engineer at Fastly, working at the intersection of compilers, performance, and security. He has a MS in Computer Science from Indiana University specializing in programming language th...
	Michal Podhradsky is a Software Engineer at Galois Inc, and holds a PhD in Electrical and Computer Engineering from Portland State University. His research is focused on high-assurance Cyber Physical Systems, in particular Unmanned Aerial Vehicles. Co...
	Gerwin Klein is a Chief Research Scientist at Data61, CSIRO, and conjoint Professor at USNW, Sydney, Australia. His research is on formal software verification, in particular in operating systems, on interactive theorem proving, and programming langua...
	Ihor Kuz is a Principal Research Engineer in the Trustworthy Systems group at Data61, CSIRO, and a conjoint Associate Professor at UNSW Sydney. His research interests are in secure systems, in particular secure operating systems and componentized sys...
	June Andronick is a Principal Research Scientist at Data61, CSIRO, and conjoint Associate Professor at UNSW Sydney. She is the leader of the Trustworthy Systems group, known for the formal verification of the seL4 operating system microkernel. June's ...
	Gernot Heiser (gernot@unsw.edu.au) is Scientia Professor and John Lions Chair of Computer Science at UNSW Sydney, and a Chief Research Scientist at Data61, CSIRO. His research is on operating systems, especially microkernel-based systems for safety- a...
	Douglas Stuart is a researcher in Boeing Research and Technology. His research interests include cyber-physical systems development, verification, and cybersecurity. He holds a Ph. D. from the University of Texas at Austin. Contact him at douglas.a.st...

