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Abstract. The Assume Guarantee Reasoning Environment (AGREE)
is a compositional analysis tool for systems modeled in the Architecture
Analysis and Design Language (AADL). It is compositional in that it can
be used to prove properties about each layer of the architecture using
properties of its components, continuing down the model hierarchy. The
compositional analysis is performed in terms of assume-guarantee con-
tracts that are attached to each component. Assumptions describe the ex-
pectations that a component has about its environment, while guarantees
describe bounds on the behavior provided by the component. AGREE
uses k-induction model checking as its underlying analysis algorithm. In
this paper we describe the AGREE annex for adding assume-guarantee
behavior contracts to AADL models. We demonstrate the capabilities
of the AGREE analysis tool by using it to verify key properties of the
command authorization logic for an unmanned helicopter.

1 Introduction

Commercial and military aircraft rely on complex collections of distributed real-
time embedded software. This software is critical to the safe operation of the
aircraft, and so presents many challenges for the organizations that develop it.

Model-based design (MBD) tools are commonly used to implement avionics
software functions, but system-level design tools for specifying the interactions
of distributed components, resource allocation decisions, and communication
mechanisms are less mature. This has made it difficult to apply formal methods
effectively at the system level. One of our goals has been to create a system
modeling methodology that would incorporate existing practices and artifacts
and be compatible with tools and processes used in industry.

The work described in this paper directly addresses this goal by using mod-
eling tools that accurately capture the system architecture and support the in-
tegration of formal analysis tools, as well as generation of flight software from
the same model. This work deeply embeds formal verification into the design
process to enable correct-by-construction development of systems that work the
first time. The use of components with formally specified contracts, design pat-
terns that provide formally guaranteed properties, and an architectural modeling
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language with a well-defined semantics ensures that the system design is known
to meet its requirements even before it is implemented.

In previous work [11], we have successfully applied model checking to software
components that have been created using model-based development (MBD) tools
such as Simulink [8]. Our objective in developing the AGREE tool was to build
on this success and extend the reach of model checking to system design models.
In doing so, it is necessary to be able to deal with large, complex system models.
Approaches that flatten the system model by elaborating each component and
including its implementation in the same language used for the system model
suffer from limited scalability. Instead, we have taken a compositional approach,
attempting to exploit the verification effort and artifacts that are already part of
existing software component verification processes. We do this through the use of
formal assume-guarantee contracts that correspond to the requirements for each
component. Each component in the system model is annotated with a contract
that includes the requirements and constraints that were specified and verified as
part of its development process. We then reason about the system-level behavior
based on the interaction of the component contracts. The use of contracts can
also be extended to architectural design patterns that have been formally verified
[3]. This approach allows us to leverage our existing MBD process for software
components and provides a scalable way to reason about the system as a whole.

Much work on the development of AGREE was conducted as part of the High-
Assurance Cyber Military Systems (HACMS) project [2]. One of the main goals
of HACMS was to show that formal methods are both practical and effective for
producing safe and secure embedded software. Part of accomplishing this goal
was to demonstrate the use of HACMS technologies on a real military aircraft.
We applied our technologies to an unmanned helicopter produced by one of
our HACMS collaborators. This vehicle can be used for a variety of missions,
including remote surveillance, logistical resupply, and medical evacuation.

We modeled the software architecture of the helicopter in the Architecture
Analysis and Design Language (AADL), formally verified key aspects of the
design, and generated flight software from the AADL model. Formal methods
were used to verify the software architecture, specify and verify software com-
ponents, and prove the complete functional correctness of the seL4 secure kernel
used in the mission computer. The resulting software was flown in the helicopter
and was able to successfully withstand cyber-attacks conducted in-flight. Fur-
ther information about the vehicle, HACMS technologies, and cyber-security
demonstrations can be found in [1].

Section 2 of this paper provides background on AADL. Section 3 provides
more details on the AGREE language and verification tool. Section 4 describes
how we used AGREE to verify part of the command authorization logic in the
unmanned helicopter, which is critical for both its safety and security.
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2 Background

The Architecture Analysis and Design Language (AADL) has been developed to
capture the important design concepts in real-time distributed embedded sys-
tems [5]. AADL is therefore well-suited for modeling avionics systems architec-
tures, and provides an excellent mechanism for capturing the important details
of the system design. The AADL language can capture both the hardware and
software architecture in a hierarchical format. It provides hardware component
models including processors, buses, memories, and I/O devices, and software
component models including threads, processes, and subprograms. Interfaces for
these components and data flows between components can also be defined. The
language offers a high degree of flexibility in terms of architecture and compo-
nent detail. This supports incremental development where the architecture is
refined to increasing levels of detail and where components can be refined with
additional details over time. AADL models can be built and managed using the
Eclipse-based Open Source AADL Development Environment (OSATE) [12].
OSATE includes a number of tools for checking model characteristics, such as
schedulability and data flows.

In AADL, the architectural model includes component interfaces, connec-
tions, and execution characteristics, but not their implementation. It describes
the interactions between components and their arrangement in the system, but
the components themselves are “black boxes.” The component implementations
are described separately using model-based specification languages or traditional
programming languages, which are included by reference in the architecture
model. This separation of implementation and architecture is an important fac-
tor in achieving scalability for the analysis tools that we have developed.

One of our core innovations is to structure verification arguments by follow-
ing the AADL descriptions of the system. We do this through the use of formal
assume-guarantee contracts that correspond to the behavioral requirements for
each subsystem or component. Assume-guarantee contracts [9] provide an ap-
propriate mechanism for capturing the information needed from other modeling
domains to reason about system-level properties. Each component in the system
model is annotated with a contract that includes the requirements and con-
straints that are specified and verified as part of its development process. In
this formulation, guarantees correspond to the component requirements. These
guarantees are verified separately as part of the component development pro-
cess, either by formal or traditional means. Assumptions correspond to the envi-
ronmental constraints that were used in verifying the component requirements.
For formally verified components, they are the assertions or invariants on the
component inputs that were used in the proof process. We then reason about
the system-level behavior based on the interaction of the component contracts.
Contracts provide a layer of abstraction, allowing architectural-level reasoning
to be done in a top-down fashion: before a component is even implemented, its
contract can be used in reasoning about how the component interacts with its
environment.
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3 Overview of AGREE

AGREE is a language and a tool for compositional verification of AADL models.
The behavior of a model is described by contracts specified for each component.
A contract contains a set of assumptions about the component’s inputs and a set
of guarantees about the component’s outputs. The guarantees of a component
must be true provided the component’s assumptions are true. The goal of the
analysis is to prove that a component’s contract is entailed by the contracts of
its subcomponents. Contracts of a leaf-level component must be verified to hold
by its implementation.

AADL contains special syntax elements called annexes that can be used to
extend the language. The syntax for a component’s contract exists in an AGREE
annex placed inside of the component type. AGREE syntax can also be placed
inside of annexes in a component implementation or an AADL Package. Syntax
placed in an annex in an AADL Package can be used to create libraries that can
be referenced by other components.

AGREE is implemented as an Eclipse plug-in and is distributed with the
OSATE AADL modeling environment. AGREE makes use of either JKind or
Kind 2 for model checking, and can be configured to use several different SMT
solvers. Source code for AGREE can be downloaded from http://github.com/smaccm.
A complete description of the AGREE grammar can be found at [6]. Here, we
identify selected AGREE statements that are used in this work.

– Guarantee Statement: Guarantee statements are proven by the guaran-
tees present in subcomponent contracts. They in turn are used to prove the
guarantees of a components one step above them in the model hierarchy.

– Assume Statement: Assume statements are used to prove the guarantees
of the contract as well as the assumptions of the subcomponent contracts.

– Initially Statement: Initially statements are used to constrain the values
of the component outputs and intermediate variables before the components
clock ever ticks. This is very subtle and only matters in models that are not
synchronous. The purpose of these statements will become clear when we
explain how we modeled the unmanned helicopter requirements in Section 4.

– Assert Statement: Assert statements make unchecked statements about
how the component behaves. For the purpose of analysis, assertions are
treated just like system assumptions. However, unlike subcomponent as-
sumptions, AGREE never verifies that assertions actually hold. Assert state-
ments can also be used to refer to subcomponent variables in contracts higher
up in the model hierarchy. We show examples of this in Section 4.

– Lemma Statement: Lemma statements are proven just like guarantees.
These are used to help the model checker learn facts to improve its ability to
prove other properties. They differ from guarantees in that subcomponent
lemmas are not used to prove other subcomponent guarantees or system
guarantees.

AGREE was originally developed to reason about systems that execute syn-
chronously. These systems have straightforward translations to Lustre, a syn-
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chronous dataflow language interpreted by the model checkers used by AGREE.
However, many systems that are modeled in AADL do not behave synchronously.
Ideally one can implement a communication protocol between components, such
as Physically Asynchronous Logically Synchronous (PALS) [10], that allows the
abstraction of synchronous communication to be sound. However, for many sys-
tems this is not the case.

The value of a component’s clock affects its state in the following way:

– When a component’s clock transitions from false to true (or is set to true
in the initial state) the component’s inputs are “latched”. That is, from the
component’s perspective its inputs do not change until the next time its
clock transitions from false to true.

– When a component’s clock transitions from true to false, its state may
change. The next state depends on the values of its current state, its latched
input values, and the constraints given by its guarantees (provided that its
assumptions have been historically satisfied).

In order to model non-synchronous systems, we have added additional fea-
tures to the tool to allow users to place components on different clock domains.
Users can then specify constraints to dictate when a component’s clock may tick.
Specifically, the following types of statements have been added to the language:

– Synchrony Statement: Synchrony statements describe the order in which
the subcomponents execute. The synchrony statement expects an integer
value, which indicates the number of times a subcomponent’s clock can tick
since any other clock has ticked. In place of a single integer, a minimum
and maximum value can be provided to specify the possible range of ticks
that can occur. The keywords simult or no simult can optionally be
placed at the end of the statement to indicate that any two subcomponent
clocks respectively must or must not tick simultaneously. The latter would
be used when specifying multiple threads that are scheduled to run on a sin-
gle processor, for example. The asynchronous statement indicates that a
component’s clock is unconstrained with respect to the clocks of other com-
ponents. The latched statement indicates that components record their
inputs on the rising edge of the clock and then transition their state on
the falling edge. The latched synchrony mode is useful for modeling systems
where components do not have a globally consistent view of their inputs.

– Calendar Statement: Calendar statements comprise a comma-delimited
list of subcomponents, arranged by order of their execution.

4 Application: Unmanned Helicopter

The mission computer software architecture of the unmanned helicopter appli-
cation is illustrated in Figure 1. Some of the important security properties are
related to proper handling of requests from ground control stations. The ground
control station uses the Standardization Agreement (STANAG) 4586 protocol
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for controlling both the vehicle and its surveillance camera payload. The mission
computer software includes two Vehicle Specific Modules (VSM) that handle re-
quests from the ground. The Flight VSM is responsible for control of the aircraft
and the Camera VSM is responsible for operation and positioning of the surveil-
lance camera. The ground station is referred to as the Common Unmanned
Control Station (CUCS).

Fig. 1. Software Architecture of the Unmanned Helicopter

For this application, we will only discuss the behavior of the Encrypt/Decrypt
authentication components (authin and authout), the Level of Interoperabil-
ity (LOI) component (loi), the Input component (input), and the Flight Con-
trol Computer (FCC) component (fcc). These five components are responsible
for the following tasks:

1. authin: The authentication in component receives incoming STANAG 4586
messages. If the message is determined to be “valid” (it decrypts and passes
authentication) then the message is forwarded to the loi component.

2. authout: The authentication out component receives STANAG 4586 mes-
sages from loi component and forwards them to a ground station.

3. loi: The LOI component receives STANAG 4586 messages from various
components and forwards them to other components based on rules defined
in the STANAG 4586 protocol.

4. input: The Input component receives STANAG 4586 messages, parses them,
and then sends relevant information to the fcc component.

5. fcc: The FCC component is responsible for sending information to the FCC,
and relaying status information from the FCC to other components.

4.1 Modeling Assumptions

AADL is a very complex language, and defining a formal semantics for all of its
constructs is exceedingly difficult. AGREE tries to strike a balance by using the
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scaffolding provided by AADL to constrain the communication paths between
components. AGREE requires the user to specify more complex notions about a
model that are hard to generally infer from AADL models. For example, AGREE
assumes by default that connections between components indicate equality be-
tween the variables on the source and destination of the connection. However,
AGREE does not automatically generate constraints about how threads in a
system are scheduled. It is up to the user to explicitly list these constraints in
the form of assertions in a component’s implementation.

AGREE is also limited by the specification language it generates (Lustre)
and the model checkers that it uses to prove properties. To tractably model the
behavior of the helicopter software, we made several assumptions about software
generated from an AADL model. These assumptions are captured by assertions
that we introduced to model the execution of the software’s threads:

1. Threads do not produce new outputs until they have completed executing.
2. Threads do not preempt each other.
3. Serialization and deserialization of messages between components is imple-

mented correctly.
4. Data sent between components is not queued. If a new message is received,

it overwrites the previous message.

The first assumption is acceptable for this model because the components
that we are modeling only produce a single output event per dispatch. We do
not need to consider executions where a component’s outputs are produced at
different times during execution because a component will only ever produce a
single output during execution.

The second assumption is actually false since all of the components in this
model run at the same priority, and the OS will switch between them. However,
this assumption is sound with respect to the properties that we attempt to
prove for this model. Specifically, we prove bounds on the amount of time it
takes for events to propagate through the system. Because the execution time of
each component in the model is orders of magnitude smaller than its period, we
do not believe that the model is over-constrained enough to eliminate concrete
counterexamples to these properties. If we increase the worst case execution time
of each component in our model to be the sum of the worst case execution time
of all threads and we are still able to prove the properties of interest, then the
properties should hold for the actual software.

The third assumption allows us to more easily reason about the types of
data that are transmitted between components. Because the mission software
flattens STANAG 4586 messages into arrays before transmitting them between
components, it is difficult for AGREE to reason about the structure of the data.
Instead we place assertions in the main component implementation to constrain
the source and destination values of these messages to be the same. These as-
sertions are shown in Figure 2.

The final assumption is due to a current limitation of AGREE. A separate
timing analysis is necessary to ensure that data is not queued in the real system.
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--constrain the interfaces between components 

assert loi.auth_in = authin.auth_in; 

assert loi.mid = authin.stanag_mid; 

assert input.stanag_mid = loi.mid; 

assert loi.to_auth_stanag_mid = authout.stanag_mid; 

assert input.sender_mid = loi.from_sender_mid; 

Fig. 2. Constraints to force variables representing fields of incoming and outgoing data
the same between components

4.2 Scheduling Constraints

Typically, when a binary is generated from an AADL model, certain annota-
tions in the form of AADL properties are used to determine how to schedule
the threads present in the model. However, AGREE does not use these annota-
tions to automatically generate constraints for the clocks associated with each
thread. Instead the user must manually assert constraints about how the system
executes. There are two reasons why AGREE does not automatically generate
these constraints:

– The exact semantics of the system may be difficult or impossible to model
accurately in AGREE. This is primarily true for components that have more
than one dispatch. AGREE implicitly assumes that each AADL component
has a single thread of execution.

– A user may wish to express a set of constraints that is more abstract than
the true scheduling semantics. This can make it easier to prove properties
that are true for both the abstraction and the concrete executions of the
model.

The constraints shown in Figures 3 and 4 were used to model the scheduling
semantics of the components running on the mission computer. In order to sim-
plify the specification we introduced Boolean variables with suffix clk rise
and clk fall to represent when the clock of a component has a rising or
falling edge.

The node rise defined in the AgreeTypes package evaluates to true if and
only if its input was false on the previous step and true on the current step.
Similarly the node fall defined in the AgreeTypes package evaluates to true
if and only if its input was true on the previous step and false on the current
step. On the initial state rise evaluates to true if its input is true and fall
evaluates to true if its input is false.

Figure 3 shows the constraints that we used to dictate when a component
may begin executing (when its clock rises). Threads modeled in AADL may
dispatch under two conditions: 1) the thread receives an event on an input event
(or event data) port or 2) the thread is dispatched by a periodic timer. The first
assertion in Figure 3 constrains the loi thread to begin executing if and only if
the authin component sends a STANAG 4586 message to the loi component
or the input component sends a STANAG 4586 message to the loi component.
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The second assertion constrains the authout component to only begin executing
when it receives a STANAG 4586 message from the loi component. The third
assertion forces the authin component to run periodically with a constant time
bound. This bound is the assumed frequency of incoming messages. The final
two assertions constrain the input and fcc components to run periodically at
a rate of 100ms.

 

--    non-periodic components 

assert loi_clk_rise =  

  ((event(authin.stanagout) and authin_clk_fall) or 

    (event(input.sender) and input_clk_fall)  

  ); 

assert authout_clk_rise = (event(loi.loi2auth) and loi_clk_fall); 

 

--    periodic components 

assert condition authin_clk_rise occurs each VSMPkg.commsec_bound; 

assert condition input_clk_rise occurs each 100000.0; 

assert condition fcc_clk_rise occurs each 100000.0; 

 

Fig. 3. Constraints about when a component may begin executing

The constraints in Figure 3 assert that the components must run when certain
events occur (either a periodic dispatch occurs or an event arrives on an input).
To model the components’ minimum and maximum execution times we make
the additional assertions shown in Figure 4.

 

assert whenever input_clk_rise occurs input_clk_fall occurs during [10.0, 50.0]; 

assert whenever fcc_clk_rise occurs fcc_clk_fall occurs during [10.0, 50.0]; 

assert whenever authin_clk_rise occurs authin_clk_fall occurs during [10.0, 50.0];    

assert whenever authout_clk_rise occurs authout_clk_fall occurs during [10.0, 50.0]; 

assert whenever loi_clk_rise occurs loi_clk_fall occurs during [10.0, 50.0]; 

assert whenever authout_clk_rise occurs authout._CLK holds during [0.0, 10.0); 

assert whenever loi_clk_rise occurs loi._CLK holds during [0.0, 10.0); 

 

Fig. 4. Constraints about when a component may stop executing

The first five assertions guarantee that a component will complete execution
during the interval specified by its minimum and maximum execution times.
However, for the authout and loi components we must also assert that their
clocks remain high until at least their minimum execution time. This is because
the semantics of the pattern used in this assertion does not constrain the second
event to only occur during the specified interval. However, for the input, fcc,
and authin components the periodic constraints listed in Figure 3 implicitly
prevent the clock from rising again before its minimum execution time.
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4.3 Component Contracts

Next we describe the assume-guarantee contracts for several critical components.

The LOI component. The AGREE annex in the LOI component houses the
most detailed contract. The assumptions and guarantees that are present in the
process were derived primarily from the STANAG 4586 specification. The LOI
component is responsible for keeping track of the current LOI and the ground
station that is in control of the vehicle. It is also responsible for forwarding
STANAG 4586 messages to the correct components in the system.

In total, the LOI component makes three guarantees:

1. If no message is received, or the message that is received is not an autho-
rization request, then all of the LOI state variables remain the same. This
property is likely implicit to any software implementation of the compo-
nent, but we must make it explicit or else the model checker will choose
non-deterministic values for these variables.

2. If a message is received and it is an authorization request, then it is handled
according to the STANAG 4586 specification. Specifically, this guarantee
covers the following scenarios:

(a) If the CUCS who is in control is relinquishing control, then no one is
overriding control, no one is in control, and the LOI is set to zero.

(b) If a CUCS is requesting control or attempting to override control and
the previous LOI is 3 and the requested LOI is greater than 3, then the
CUCS is granted control.

(c) If a CUCS is requesting control and no CUCS is currently overriding
control, then the CUCS is granted control.

(d) If a CUCS is attempting to override control and no CUCS is currently
overriding control, then the CUCS overrides control.

3. If the message is received and the current LOI is approved for the message
type, then it is forwarded to the appropriate VSM. If the LOI is 3 and the
control station is set to the camera VSM, then the message is forwarded to
the camera VSM. Otherwise, the message is forwarded to the flight VSM. If
no message is received or if the message is not approved at the current LOI
then the message is not forwarded to either VSM.

These guarantees could possibly be broken out into smaller requirements
rather than large nested “if-then-else” blocks. This is more of a choice of style and
readability. The LOI component assumes that the data fields for authorization
messages are in their correct ranges. This assumption should be satisfied by
guarantees from the authin component.

The Authentication In component. The contract for the authin compo-
nent is shown in Figure 5. The component guarantees that it only produces a
STANAG 4586 messages on its output if it received a commsec message on its
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input. This restricts the component to only output STANAG 4586 messages if
it just received a commsec message. The component also guarantees that any
authorization message that it passes on to the LOI component has valid data.
By valid data we mean that specific fields in an authorization message are within
the ranges specified by the STANAG 4586 specification. This is needed to prove
the assumption listed in the loi component. We use an initially statement
to say that before the component’s clock ticks it has no events being sent on its
STANAG 4586 output.

We represented different STANAG 4586 message types by including multiple
subcomponents within the STANAG 4586 message data implementation. Imple-
menting the message data this way is similar to how someone would implement
it as a structure in the C language using a union for different structures over
the message data field. In the contract for the authin component we use the
variable auth in to specifically reference this portion of the STANAG 4586
message data field.

eq auth_in : AgreeTypes::STANAG_4586_message.cucs_auth_req; 

eq stanag_mid : int; 

    

initially: 

  not event(stanagout); 

      

guarantee "we only send a message out if we get one in" : 

  event(stanagout) => event(commsecin);  

     

guarantee "valid auth data" : 

  (0 < auth_in.rloi and auth_in.rloi <= 5 and 

   0 <= auth_in.csm and auth_in.csm <= 2 and  

   0 < auth_in.cucsid and auth_in.cucsid < 255 and 

   --right now we model just two control stations  

   0 <= auth_in.cs and auth_in.cs <= 1); 

Fig. 5. The contract of the authin component

The Input component. The input component is responsible for decoding
STANAG 4586 messages and forwarding commands to the FCC component. It
also determines which “mode” the vehicle is in. The input component transi-
tions to various modes based on the different STANAG 4586 messages it receives
from the loi component and information it receives about the state of the ve-
hicle from the FCC. The input component also reports some status messages
back to the ground station via the loi component.

The contract of the input component is shown in Figure 6. We have in-
troduced AGREE variables in the input component’s contract to model the
message ID of incoming STANAG 4586 messages, the vehicles mode, a status
flag indicating whether or not a waypoint was sent to the fcc component, the
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--TODO fill in the logic of this component 

agree_input stanag_mid : int; 
eq mode : int; 
eq waypoint_sent_to_fcc : bool; 
eq sender_mid : int; 
eq route_accepted : bool; 
   

initially: 
  mode = VSMPkg.NO_MODE and 

  not waypoint_sent_to_fcc; 
   

  guarantee "initially the vehicle starts in NO_MODE": 
    (mode = VSMPkg.NO_MODE) -> true;  
     

  guarantee "the vehicle never transtions back to NO_MODE": 
    true -> not pre(mode = VSMPkg.NO_MODE) => not (mode = VSMPkg.NO_MODE); 
   

  --this guarantee just abstracts the meaning of a waypoint being sent to the fcc 

  guarantee "a waypoint message is only sent to the fcc if something is sent to the fcc" : 
    waypoint_sent_to_fcc => event(send2fcc); 
   

  guarantee "whenever a waypoint is sent to the fcc an acknowledgement is sent to the loi" : 
    waypoint_sent_to_fcc => sender_mid = 900 and event(sender); 
     

  guarantee "a received route is always accepted" : 
    route_accepted = (event(loi2vehicle) and stanag_mid = 801); 

   

  guarantee "if we transition to MANUAL WAYPOINT MODE it is because we saw certain message ids" : 
    true -> (mode != pre(mode) =>  
      (event(loi2vehicle) and stanag_mid = 42) or 
       mode = VSMPkg.WAYPOINT_MODE and pre(mode) = VSMPkg.LAUNCH_MODE); 

Fig. 6. The contract for the input component

message id of outgoing STANAG 4586 messages, and a status flag indicating
whether or not an uploaded route is accepted.

The guarantees of the component contract describe the state transitions that
the component makes as well as when information is forwarded to the fcc and
loi components.

The FCC and Authentication Out components. The contracts for the fcc
and authout components do not contain any assumptions nor any guarantees.
However, we have defined several AGREE variables in the contracts to represent
state variables of the components. This allows us to specify guarantees in the top
level contract about when data is sent from and arrives at these components.

4.4 Properties

Provable Guarantees. The first property that we prove about the system is
that “whenever an authorization message is received and the current LOI is 3
the vehicle accepts the message within a specified latency.” The formalization of
this property is shown in Figure 7. An authorization message is STANAG 4586
message with a message ID of 1. We define the time in which an authorization
message is received as the time that the authin finishes executing and forwards
a STANAG 4586 message to the LOI component with a message ID of 1. The
current LOI is the value of the current LOI in the LOI component at the time
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the authorization message is received. We consider an authorization message to
be accepted if the LOI component changes the current LOI and the ID of the
CUCS in control to be the values requested in the authorization message. In
order to prove this property we set the specified latency to 200ms.

guarantee "loi greater than three always gets control" : 

  whenever 

    received_auth_message_3 

  occurs 

    acted_on_auth_message 

  occurs during [0.0, VSMPkg.system_latency]; 

Fig. 7. The guarantee that LOI greater than 3 always gets control.

guarantee "Do not accept NAV commands with loi less than 4": 

  vehicle_received_stanag and  

  vehicle_stanag_mid >= 800 and 

  vehicle_stanag_mid < 1000 => 

  current_loi >= 4; 

Fig. 8. The guarantee that NAV commands with loi less than 4 are not accepted.

The second property that we prove is shown in Figure 8. This guarantee
states that if a navigation command reaches the input component then the
current LOI is 4. The LOI component guarantees that a navigation message is
only forwarded to the input component if the LOI is 4.

Figure 9 shows properties that depend only on the state machine described
by the guarantees of the input component. The state of the mode variable in
the input component depends on the previous mode and any STANAG 4586
messages that are received. Currently we do not have a complete description of
the state machine so we are only able to prove two of the properties. To prove
the latter two properties we would need to strengthen the contract of the input
component to describe in more detail how state transitions occur.

Possible Counterexamples. There were several properties that we assumed
were true about this model, but for which the tool was able to produce coun-
terexamples. The first of these properties is shown in Figure 10. The guarantee
states that the vehicle cannot transition into MANUAL WAYPOINT MODE unless
the current LOI is 4 or 5. Intuitively this should be true because in order to
transition into MANUAL WAYPOINT MODE the LOI component must forward a
STANAG 4586 message that requires an LOI of at least 4.

However, the tool produces a counterexample for the following scenario:

13



guarantee "The aircraft is initially in NO_MODE" : 
  (mode = VSMPkg.NO_MODE) -> true; 
         

guarantee "The aircraft never transitions back into NO_MODE" : 
  true -> mode != pre(mode) => mode != VSMPkg.NO_MODE; 

guarantee "The aircraft can only enter SLAVE2SENSOR mode from WAYPOINT or LOITER mode" : 
  true ->  
    (mode = VSMPkg.SLAVE2SENSOR_MODE and not pre(mode = VSMPkg.SLAVE2SENSOR_MODE) => 

      pre(mode = VSMPkg.WAYPOINT_MODE) or 
      pre(mode = VSMPkg.LOITER_MODE)); 

guarantee "The aircraft can only enter MANUAL_WAYPOINT mode from WAYPOINT or LOITER mode": 
  true ->  
    (mode = VSMPkg.MANUAL_WAYPOINT_MODE and not pre(mode = VSMPkg.MANUAL_WAYPOINT_MODE) => 
      pre(mode = VSMPkg.WAYPOINT_MODE) or 
      pre(mode = VSMPkg.LOITER_MODE)); 

Fig. 9. Guarantees about the state machine in the input component.

guarantee "The aircraft requires LOI of 4 or 5 in order to transition into MANUAL_WAYPOINT_MODE": 
  true -> mode != pre(mode) and mode = VSMPkg.MANUAL_WAYPOINT_MODE =>  
    current_loi = 5 or 
    current_loi = 4; 

Fig. 10. A guarantee about mode transitions under a certain LOI

1. The current LOI is 4 and the LOI component receives a STANAG 4586
message with ID #42. Because the current LOI is 4 this message is forwarded
to the input component.

2. The input component receives this STANAG 4586 message with ID #42
message and begins transitioning its mode.

3. Before the input component finishes the loi component receives a request
to relinquish control (setting LOI to 0).

4. The input component completes execution and the vehicle is now transi-
tions to MANUAL WAYPOINT MODE with LOI 0.

While this counterexample does not seem spurious, it might instead illustrate
an error in our formalization of the property. We probably do not care about the
value of the LOI the instant that the mode transition occurs. Instead we care
that the mode transition occurs in response to a STANAG 4586 message that
was received while the LOI was 4 or 5.

The other property that produces a counterexample is shown in Figure 11.
The tool produces a counterexample where the following scenario occurs:

1. The authin component receives a STANAG 4586 message and forwards it
to the loi component.

2. The loi component has LOI of 4 and forwards the message to the input
component.

3. The loi component forwards a message to the authout component. This
“erases” the event signal from the loi component to the input component.

4. The input component executes without receiving the route message.
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The reason that the tool produces this counterexample is because we do
not accurately model the queuing behavior of the real software. In our AGREE
model previous messages are overwritten by new messages.

eq route_message_received : bool =        
  stanag_message_received and 
  (current_loi = 4 or current_loi = 5) and 
  (incoming_stanag_mid = 801); 
 
guarantee "A route can be uploaded to the aircraft regardless of state (but correct LOI)": 
  whenever 
    route_message_received 
  occurs 

    input_accepts_route 
  occurs during [0.0, VSMPkg.system_latency]; 

Fig. 11. A guarantee about routes being uploaded to the aircraft

5 Conclusion and Future Work

In this paper we have described the AGREE language and tool for compositional
analysis of systems modeled in AADL. AGREE translates a system architecture
model annotated with assume-guarantee contracts into a collection of model
checking problems, proceeding through all the layers of a hierarchical system
model. The compositional “divide and conquer” approach allows us to analyze
large and complex avionics systems. Embedding our approach in AADL allows
us to integrate with existing MBD tools for software component development
[7], and permits system software to be generated directly from the models that
have been verified.

To demonstrate the practicality and effectiveness of our approach, we have
demonstrated its use on an unmanned military helicopter. We modeled the soft-
ware architecture of the helicopter in AADL and used AGREE to verify part
of the command authorization logic used for communicating with the ground
station. Flight software for the helicopter was generated from the verfied AADL
model and was flown in the helicopter, successfully withstanding cyber-attacks
in-flight.

We are continuing development of AGREE as part of DARPA’s Cyber As-
sured Systems Engineering program (CASE). The goal of CASE is to develop
the necessary design, analysis and verification tools to allow system engineers to
design-in cyber resiliency and manage tradeoffs as they do other nonfunctional
properties when designing complex embedded computing systems. We are using
AGREE to verify architectural patterns and components for that address cyber-
security requirements. We are integrating AGREE with assurance cases that are
captured using the Resolute tool for embedding assurance cases in AADL mod-
els [4]. We are also implementing a number of language extensions to AGREE,
including support for array data and information flow.
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10. J. Meseguer and P. C. Ölveczky. Formalization and correctness of the pals archi-
tectural pattern for distributed real-time systems. Theor. Comput. Sci., 451:1–37,
Sept. 2012.

11. S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model checking takes off.
Commun. ACM, 53(2):58–64, Feb. 2010.

12. The Software Engineering Institute. OSATE: Plug-ins for front-end processing of
AADL models, 2013.

16


	The Assume Guarantee Reasoning Environment with Application to an Unmanned Helicopter 

