
Towards Explainable Compositional Reasoning
Isaac Amundson, Amer Tahat, David Hardin, and Darren Cofer

Applied Research and Technology, Collins Aerospace, USA
{first.last}@collins.com

Abstract—Formal verification tools such as model checkers
have been around for decades. Unfortunately, despite their ability
to prove that mission-critical properties are satisfied in both
design and implementation, the aerospace and defense industry
is still not seeing widespread adoption of these powerful tech-
nologies. Among the various reasons for slow uptake, difficulty
in understanding analysis results (i.e., counterexamples) tops the
list of multiple surveys. In previous work, our team developed
AGREE, an assume-guarantee compositional reasoning tool for
architecture models. Like many other model checkers, AGREE
generates potentially large counterexamples in a tabular format
containing variable values at each time step of program execution
up to the property violation, which can be difficult to interpret,
especially for novice formal methods users. In this paper, we
present our approach for achieving explainable compositional
reasoning using AGREE in combination with generative AI. Our
preliminary results indicate this technique works surprisingly
well, and have encouraged us to expand this approach to other
areas in explainable proof engineering.

DISTRIBUTION STATEMENT A. Approved for public
release: distribution unlimited.

I. INTRODUCTION

Formal methods provides a mathematically rigorous means
of verification that one would expect for the development
of high-assurance systems such as those in the aerospace
and defense industries. Certification guidance has even been
published on how formal methods can be used to satisfy air-
worthiness objectives for airborne software in commercial air-
craft [1]. However, despite the effectiveness of these powerful
proof techniques, their adoption into traditional development
processes has been slow and uneven. Reasons for slow uptake
include scalability limitations of the underlying algorithms,
poorly designed user interfaces and other tool usability factors,
and the need for formal training to properly use them [2].

The DARPA Pipelined Reasoning of Verifiers Enabling
Robust Systems (PROVERS) program was recently launched
with the goal of producing scalable and usable formal methods
tools that can be integrated into traditional aerospace and
defense development processes. Specifically, a key outcome
of the program is that product engineers with minimal for-
mal methods background will be able to benefit from these
powerful technologies, further driving their adoption while
simultaneously improving product dependability.

To address these challenges, our team is developing the
Industrial-Scale Proof Engineering for Critical Trustworthy
Applications (INSPECTA) framework1. INSPECTA consists

1https://loonwerks.com/projects/inspecta.html

of ProofOps and BuildOps tools and methods that integrate
with current aerospace DevOps pipelines and achieve provably
correct design and implementation at each level of the system
hierarchy. In order to address the key objectives of PROVERS,
we pay particular attention to addressing scalability and ex-
plainability concerns with respect to the proof tools in our
framework.

Within the ProofOps workflow, INSPECTA uses the
Assume-Guarantee Reasoning Environment (AGREE) [3], a
formal compositional reasoning tool for Architecture Analysis
and Design Language (AADL) [4] models. Compositional
reasoning partitions the formal analysis of a complex system
architecture into verification tasks corresponding to the archi-
tecture’s decomposition. By partitioning the verification effort
into proofs about each subsystem within the architecture, the
analysis will scale to handle large system designs.

Although AGREE does not suffer from some of the scal-
ability issues inherent in other formal methods frameworks
due to the compositional nature of the analysis, generated
counterexamples can still be difficult to understand, especially
for formal methods novices when the counterexamples contain
several steps, each consisting of multiple variables. This prob-
lem is not unique to AGREE, but is common to most model
checkers in use today [5]. Recently, however, a novel approach
to producing explainable counterexamples has emerged in the
form of generative AI.

Research on applying generative AI to formal reasoning has
already gained significant attention. For instance, OpenAI re-
searchers conducted pioneering work in 2020, leveraging large
language models (LLMs) for mechanical theorem proving [6].
This resulted in the development of GPT-f, a proof assistant
for Metamath, which achieved a 56% success rate and proved
200 theorems [7]. Other studies have explored LLMs for proof
generation and repair. First et al. achieved a 50% success
rate in proof repair for Isabelle/HOL [8], using Minerva [9],
a model based on Google’s PaLM [10]. Research has also
examined GPT-3.5 and GPT-4 for Coq theorem proving [11],
primarily focusing on diagnosing failed proofs. LLMs have
further been applied to discover program invariants [12], [13]
and support automated reasoning, as seen in the Clover project
by Stanford and VMware, which emphasizes verifiable code
generation [14].

In previous work [15], [16], Tahat et al. developed a copilot
for large-scale proof repair using multi-shot conversational
learning. The approach achieved a 97% success rate across
58 theorems from a repository containing 20,000 lines of
Coq code from the Copland proofbase. Additionally, they



introduced an evaluation framework to assess the convergence
of dialogues toward predefined proof sets.

In this paper, we present our current work on using genera-
tive AI to provide clear and concise explanations of counterex-
amples generated by AGREE. Although using generative AI
for explainable formal verification has been explored in other
works (e.g., [17]), to the best of our knowledge, this is the
first application of applying generative AI for producing ex-
plainable counterexamples from compositional reasoning over
architecture models. Our initial results indicate this approach
is well-suited for providing clear explanations of root cause,
as well as suggestions for addressing the contract violations.

II. EXPLAINABLE AGREE

A. Overview

AGREE provides a formal contract language for specifying
assumptions (i.e., expectations on a component’s input and the
environment) and guarantees (i.e., bounds on a component’s
behavior). Because AGREE is implemented as an AADL
annex in the Open Source AADL Tool Environment (OSATE),
the contracts are specified directly on components in the
AADL model. AGREE then uses a k-induction model checker
to prove properties about one layer of the architecture using
properties allocated to subcomponents. The analysis proves
correctness of (1) component interfaces, such that the output
guarantees of each component must be strong enough to satisfy
the input assumptions of downstream components, and (2)
component implementations, such that the input assumptions
of a system along with the output guarantees of its sub-
components must be strong enough to satisfy its output
guarantees.

When a contract violation is found (i.e., when an assumption
is determined to be invalid or a guarantee is unsupported),
AGREE produces a counterexample consisting of values
for each system variable at each execution step. A sample
counterexample is depicted in Figure 1. Currently, OSATE
includes the AADL Simulator tool that can accept an AGREE
counterexample as input and walk through the trace in the
graphical editor, but it is of limited help when it comes to
identifying the root cause of the contract violation.

B. Making Counterexamples Actionable

We therefore desire AGREE counterexamples that are ac-
tionable; that is, an explanation of the violation in terms
that will quickly lead to a passing analysis (e.g., by making
changes to the model or formal contract). To achieve this,
we implemented an interactive conversational copilot powered
by GPT-4o (omni) multi-modal generative AI, specifically
developed to assist AGREE users in identifying the root causes
of counterexamples and to support the subsequent model repair
process. It was designed to be user-friendly and integrates with
the OSATE IDE (see Figure 2).

In the remainder of this section, we detail our methodology
and present our key findings using the Integer_Toy and
Car models included with the AGREE distribution.

Fig. 1: AGREE counterexample generated from the Car
model.

C. Contextual Prompt Constraints Problem

The GPT-4o generative multi-modal model exhibits signif-
icant power in translating human instructions into code and
vice versa, particularly when the language in question has
been part of its pre-training data and there exists a substantial
open-source code base, such as C or Python. However, this
capability comes with the drawback of potential hallucinations.
Since AGREE is not as widely adopted as languages like C or
Python, this problem is exacerbated. Consequently, the lack
of relevant context is a significant challenge for generating
explainable AGREE counterexamples.

To mitigate the contextual prompt constraints problem,
we implemented a dynamic Retrieval-Augmented Generation
(RAG) system, allowing it to adjust its context based on user
inquiries.

Despite GPT-4o’s 128k token capacity, which we estimate
can accommodate several thousand lines of AADL in a
single prompt, uploading an entire repository’s contents can
be prohibitively expensive and may well exceed the prompt
token limitations. We therefore implemented a practical two-



Fig. 2: AGREE copilot in OSATE provides an explanation for a counterexample generated on the Car model.

step optimization technique to meet our current needs.
First, the RAG system reads the top-level AADL file. It

then parses the file’s import chain, extracting only the files
in the model workspace that are specified on this chain. This
step significantly reduces the initial prompt size. The second
optimization addresses another practical requirement: handling
parts of the repository that may have been included in the
model’s pre-training data, such as core libraries. To manage
this, the RAG system applies a filtering technique to the file
names, guiding the system to ignore certain files, such as
standard libraries, and retain user-defined files. This approach
further reduces the initial prompt size to include only files that
the model has not previously encountered. Finally, user inputs
are automatically incorporated into the extracted context from
the current file and its import chain, allowing for more accurate
responses to user inquiries.

This approach significantly mitigates contextual constraint-
based hallucinations that can arise from the absence of AADL
model specifications. However, it does not address the absence
of the counterexample itself or the lack of guidance on the
critical system requirements that should be preserved during
the model repair process.

D. Model Repair Problem

Given that counterexamples are generated interactively and
may not be included in the initial context, we dynamically
extend the RAG system. This allows users to upload an
exemplar AADL/AGREE model along with a corresponding
counterexample (in text or CSV format). Upon submission,
the copilot provides a detailed, step-by-step explanation of

Fig. 3: Refined explanation using a requirements file for the
Integer_Toy model.

the counterexample, identifies its root cause(s), and suggests
potential solutions, as shown in Figure 2.

However, a significant challenge encountered was that these
explanations and suggested alternatives could include two
types of hallucinations, both syntactic and semantic. The
former are typically minor and can be detected and resolved
using a multi-shot approach. The latter are more problematic,
as the copilot might suggest altering a component’s guarantee,
which could successfully remove the counterexample but
risk violating core system requirements that should remain
unchanged. We refer to this as the Model Repair Problem.

1) Requirements for Counterexample Explanations: To mit-
igate the Model Repair Problem, we configured the tool to
generate solutions that conform to a predefined set of system
requirements written in natural language, which are uploaded
via a CSV file or directly included in the context.

As a result, the tool was able to more accurately identify
the root cause and suggest appropriate solutions, as demon-
strated in Figure 3. This refinement significantly enhanced the
accuracy of the recommendations.



E. Preliminary Results and Conversational Quality Assess-
ment Problem

Our initial evaluations were conducted manually, focusing
on the copilot’s ability to accurately identify the root cause of
the counterexamples, repair the model, and ensure compliance
with the requirements. The system was evaluated on two case
studies. The first case study involved the Integer_Toy
model, while the second dealt with a larger model that imports
several files, totaling 7 files and approximately 380 lines of
AADL. The copilot successfully identified the root cause of
all counterexamples for the specified guarantees (13 out of 13)
on the first attempt, demonstrating a high degree of accuracy.
However, these manual evaluations highlight the need for
greater automation; consequently, we plan to develop a more
automated evaluation system to enable testing on more realistic
and complex use cases.

We are in the process of selecting a golden set of examples
from a formally verified library we developed previously, and
constructing a testing set by introducing deliberate violations.
These examples will be used by the copilot to evaluate its
ability to correctly identify the root causes. While we have
demonstrated initial success in this area, model repair remains
a more complex challenge. This is because repairing models
can result in multiple solutions, particularly for more intricate
use cases. One of the key limitations is the tool’s ability to
consistently remove counterexamples while ensuring compli-
ance with the specified requirements. To address these issues,
we are developing a toolset aimed at measuring convergence
towards the correct semantics of the golden examples, within a
few-shot learning context. This remains an ongoing challenge
that we will address in our future work.

III. CONCLUSION

In an effort to make AGREE results more explainable, we
have developed a generative AI-based tool that produces natu-
ral language explanations from (potentially complex) AGREE
counterexamples. Although initial results are encouraging,
we will continue to evaluate our approach on increasingly
complex models and formal specifications. In addition, we
believe usability of other AGREE features can also benefit
from generative AI. The most obvious candidates are the
formalization of AGREE contracts from natural language
requirements and the modification of models to conform to
their contracts.

Our prototype implementation is currently loosely coupled
with AGREE and OSATE. In order to truly address AGREE
usability, tighter tool integration is required, and will be the
focus of upcoming work as we continue to refine the tool.
We envision an integrated copilot that smartly parses the
model abstract syntax tree, interacts with the user, and makes
automated updates to the AGREE contracts and AADL model
by using features provided by the IDE.

INSPECTA includes a DevOps Assurance Dashboard for
displaying development status, analysis results, and progress
towards achieving assurance goals. The explainable counterex-
amples will be accessible from the dashboard, and therefore

a mechanism will need to be implemented to retrieve them
from the modeling workspace and display them properly. The
dashboard will also capture and display tool usage metrics
to help us better understand the degree to which a more
explainable counterexample aids the user in addressing a
requirement or design issue (e.g., by tracking the number
of times the model is modified or AGREE is run before
producing a passing result). Metrics analysis will in turn drive
new usability enhancements in AGREE. We look forward to
sharing the outcome of these efforts in the near future.

IV. ACKNOWLEDGMENT

This work was funded by DARPA contract FA8750-24-9-
1000. The views, opinions and/or findings expressed are those
of the authors and should not be interpreted as representing
the official views or policies of the Department of Defense or
the U.S. Government.

REFERENCES

[1] RTCA, DO-333: Formal Methods Supplement to DO-178C and DO-
278A, December 2011.

[2] J. A. Davis, M. Clark, D. Cofer, A. Fifarek, J. Hinchman, J. Hoffman,
B. Hulbert, S. P. Miller, and L. Wagner, “Study on the barriers to the
industrial adoption of formal methods,” in Formal Methods for Industrial
Critical Systems, C. Pecheur and M. Dierkes, Eds. Springer Berlin
Heidelberg, 2013, pp. 63–77.

[3] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaValley, and L. Sha,
“Compositional verification of architectural models,” in NASA Formal
Methods, A. E. Goodloe and S. Person, Eds. Springer, 2012, pp. 126–
140.

[4] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012.

[5] A. P. Kaleeswaran, A. Nordmann, T. Vogel, and L. Grunske, “A system-
atic literature review on counterexample explanation,” Information and
Software Technology, vol. 145, 2022.

[6] S. Polu and I. Sutskever, “Generative language modeling for automated
theorem proving,” arXiv preprint arXiv:2009.03393, 2020.

[7] N. Megill and D. A. Wheeler, “Metamath: A computer language for
mathematical proofs,” 2019.

[8] E. First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” arXiv preprint
arXiv:2303.04910, 2023.

[9] A. Lewkowycz, A. Andreassen, D. Dohan et al., “Solving quan-
titative reasoning problems with language models,” arXiv preprint
arXiv:2206.14858, 2022.

[10] A. Chowdhery, S. Narang, J. Devlin et al., “Palm: Scaling language
modeling with pathways,” arXiv preprint arXiv:2204.02311, 2022.

[11] S. Zhang, E. First, and T. Ringer, “Getting more out of large language
models for proofs,” arXiv preprint arXiv:2305.04369, 2023.

[12] K. Pei, D. Bieber, K. Shi et al., “Can large language models reason about
program invariants?” Proceedings of the 40th International Conference
on Machine Learning, July 2023.

[13] H. Wu, C. Barrett, and N. Narodytska, “Lemur: Integrating large
language models in automated program verification,” arXiv preprint
arXiv:2310.04870, 2023.

[14] C. Sun, Y. Sheng, O. Padon, and C. Barrett, “Clover: Closed-loop
verifiable code generation,” arXiv preprint arXiv:2310.17807, 2024.

[15] A. Tahat, D. Hardin, A. Petz, and P. Alexander, “Proof repair utilizing
large language models: A case study on the copland remote attestation
proofbase,” in Proceedings of International Symposium On Leveraging
Applications of Formal Methods Verification and Validation (AISolA),
2024.

[16] ——, “Metrics for large language model generated proofs in a high-
assurance application domain,” in High Confidence Software and Sys-
tems Conference (HCSS’24), 2024.

[17] R. Martins, “Transforming logic into language: Bridging the gap with
large language models,” in 2nd International Workshop on Explainability
of Real-time Systems and their Analysis (ERSA’23), December 2023.


