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Abstract—On the DARPA Cyber Assured Systems Engineering
(CASE) program, our team has developed BriefCASE, an open-
source model-based engineering environment for cyber-resilient
system design. BriefCASE is comprised of tools that emit evidence
of correctness, which is maintained by the framework and can
be used to substantiate assurance claims. In this paper, we
describe hierarchical cyber-resiliency assurance patterns, which
BriefCASE instantiates with the system under development.
Evidence collected by the framework is automatically evaluated
in the resulting assurance case to determine whether cyber-
resiliency goals have been acceptably satisfied.
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I. INTRODUCTION

Developers of safety-critical embedded systems have be-
come increasingly aware that their products are vulnerable
and subject to cyber attacks similar to those common in large
enterprise networks. In response, efforts are underway to in-
corporate cyber-resiliency into system design. Cyber-resiliency
means that the system is tolerant to cyber attacks just as safety-
critical systems are tolerant to random faults: they recover and
continue to execute their mission function, or safely shut down,
as requirements dictate. Unfortunately, systems engineers are
currently given few development tools to help answer even
basic questions about potential vulnerabilities and mitigations,
and instead rely on process-oriented checklists and guidelines.

The DARPA Cyber Assured Systems Engineering (CASE)
program was launched to research new methods and tools for
design, analysis, and verification that enable systems engi-
neers to design-in cyber-resiliency for complex cyber-physical
systems. Our team developed BriefCASE, a framework for
designing and assuring cyber-resilient embedded systems ac-
cording to the CASE workflow depicted in Fig. 1. BriefCASE
provides a development environment for modeling system
architectures in AADL [1], analyzing the models for cyber-
vulnerabilities, mitigating those vulnerabilities by applying
automated model transformations, formally verifying security
properties in the model, generating high-assurance component
code from model specifications, building the system to a secure
kernel target, and finally, generating a system cyber-resiliency
assurance case.

For the development of high-assurance systems, multiple
stakeholders must be convinced of the system’s dependability
prior to deployment. First and foremost, the developer must
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Fig. 1. Cyber Assured Systems Engineering workflow.

be confident that the system operates correctly with respect
to the intent of the specification. Next, the certification or
accreditation authority (where applicable) must be convinced.
Finally the customer, end user (and often other stakeholders in
between) will need assurance that the system will behave as
intended. Assurance is defined as the “planned and systematic
actions necessary to provide adequate confidence and evidence
that a product or process satisfies given requirements” [2],
and different stakeholders may require different means of
assurance.

A structured assurance argument is one method for convey-
ing assurance. In order to be effective, the argument should
be well-formed, complete, and substantiated with evidence.
Arguments can be constructed manually or based on assurance
patterns, in which generic arguments are defined (ideally
arrived at through consensus by a body of experts), then instan-
tiated with a concrete system instance [3]. This is the approach
taken by BriefCASE, which includes a collection of hierarchi-
cal cybersecurity assurance patterns that are instantiated with
the system under development and incorporate evidence from
artifacts generated by the framework. The assurance patterns
are hierarchical in that the argument embodied in one pattern
may be used to help substantiate the claim made by another
pattern. The patterns are represented as modules that can be
composed into larger, comprehensive patterns for addressing
specific dependability concerns.

In this paper, we present a comprehensive collection of
hierarchical CASE assurance patterns covering the generation
and ingestion of cyber requirements, requirement satisfaction
in the model, and requirement satisfaction in the realization
of the model. In addition, we describe the mechanisms by
which evidence generated as part of the BriefCASE workflow
is incorporated into an instantiated assurance case.

The remainder of this paper is organized as follows. In
Section II, we describe related research on cybersecurity
assurance patterns and frameworks. In Section III, we present



an overview of the BriefCASE framework and workflow.
Section IV describes our assurance patterns with respect to
the workflow. Specifically, we focus on arguments for cy-
bersecurity requirement correctness, model correctness, and
implementation correctness. We provide concluding remarks
and discuss future directions in Section V.

II. RELATED WORK

Patterns for assurance case argumentation have been consid-
ered in [4], [5], [3], and [6]. An approach to apply and evolve
assurance cases as part of system design is found in [7], which
is similar to the process we use in BriefCASE. The high-level
structure of our CASE assurance patterns is inspired in part by
the D-MILS argument pattern [8], in which system depend-
ability properties are assured via modules arguing component,
compositional, and implementation correctness. Similar to
BriefCASE, the authors demonstrate how to instantiate the D-
MILS pattern from an AADL system model; however, they
accomplish this via specification of an additional weaving
model, which is not necessary in BriefCASE due to the tight
coupling between the modeling environment and assurance
tool.

The VERDICT [9] framework was also developed on the
CASE program and has some similarities with BriefCASE.
Although VERDICT does generate and evaluate assurance
arguments based on analyses performed as part of the tool
workflow, the assurance arguments are only fragments of a
comprehensive cybersecurity case, and focus primarily on
whether applicable Common Attack Pattern Enumeration and
Classification (CAPEC) [10] entries have been addressed in
the design. In contrast, our CASE assurance patterns consider
vulnerability mitigations in the system design and the imple-
mentation, and include arguments for several other aspects of
cyber-resiliency assurance as well.

The Architecture-driven Multi-concern and Seamless
Assurance and Certification of Cyber-Physical Systems
(AMASS) [11] framework incorporates a workflow similar to
BriefCASE, but has a scope that encompasses assurance for all
types of dependability properties, and a more ambitious goal
of driving down certification costs for high-assurance systems
development. AMASS supports tools and processes for system
design, verification and validation activities, and assurance
generation, among others. It is extensible and has a growing
ecosystem supported by a European consortium of researchers
and practitioners. In contrast, BriefCASE is targeted at the
development of provably cyber-resilient embedded systems,
and although it does support analysis and assurance of other
classes of dependability properties, the assurance patterns
presented in this paper strictly focus on providing confidence
in the cyber-resiliency of the system under development.

III. CYBER ASSURED SYSTEMS ENGINEERING WITH
BRIEFCASE

In this section, we provide an overview of the tools that
comprise BriefCASE, as well as describe the built-in mecha-
nism for automated assurance generation. BriefCASE is pred-

icated on a model-based systems engineering (MBSE) process
in which models are the primary vehicle for communication
and understanding among the parties tasked with designing
the system. The BriefCASE architecture is shown in Fig. 2.
It is implemented as a collection of plugins in the Eclipse-
based Open Source AADL Tool Environment (OSATE) !, the
reference AADL modeling tool maintained by the Software
Engineering Institute (SEI) at Carnegie Mellon University.

A. BriefCASE Architecture

BriefCASE provides access to two architecture analysis
tools, GearCASE [12] and DCRYPPS [13], that analyze
AADL models for potential cyber vulnerabilities and gen-
erate cyber requirements for mitigation. Systems engineers
are presented with a Requirements Management interface for
viewing the generated requirements and importing them into
the model so they can be addressed. Some requirements can
be formalized as assume-guarantee contracts, enabling formal
verification. Such a requirement will be imported into the
model with an associated formal contract. BriefCASE main-
tains a log detailing which requirements have been imported
and which were omitted, and prompts the engineer to provide
rationale for the omitted requirements. The log is used in part
to provide assurance evidence that the CASE workflow was
properly followed (see Section IV).

To address a new cyber requirement, the architecture will
need to be transformed in such a way as to harden the
design against the vulnerability. BriefCASE provides an exten-
sible library of model transformations for addressing common
cyber vulnerabilities. The transformations are automated by
the BriefCASE tool, resulting in a hardened model that is
correct-by-construction. For example, the requirement that
a component shall only receive well-formed messages can
be satisfied by the insertion of a high-assurance filter. A
BriefCASE transform wizard helps to configure the filter
component properties, including the filter behavioral specifi-
cation, which is represented as an assume-guarantee contract.
BriefCASE then inserts a new filter component into the model,
sets the component properties, and establishes the appropriate
connections to source and destination components. The filter
behavioral contract is also added to the model, enabling formal
analysis of the model as well as providing the behavioral
specification for a provably correct synthesis of the filter
component implementation. The transformation also updates
the assurance case with new evidential statements indicating
how the associated goal has been satisfied, including the
strategy used and context needed for assurance case evaluation.

The Assume Guarantee Reasoning Environment
(AGREE) [14], is a compositional, assume-guarantee-
style model checker for AADL models. AGREE attempts to
prove properties about one layer of the architecture using
properties allocated to subcomponents. The composition is
performed in terms of assumptions and guarantees that are
provided for each component. Once the system architecture

Uhttps://www.osate.org
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Fig. 2. BriefCASE architecture. Tools and artifacts in the BriefCASE workflow are shown in blue.

has been modeled in AADL and component assume-guarantee
contracts have been specified, the AGREE model checker is
used to verify the consistency of these contracts. AGREE
results are automatically incorporated as evidence into the
BriefCASE assurance case.

Each high-assurance component inserted by a BriefCASE
transformation must conform to its AGREE contract. This
obligation is addressed by formal synthesis, using the Seman-
tic Properties of Language and Automata Theory (SPLAT)
tool [15]. SPLAT generates code to implement the AGREE
contract and then proves that its implementation exactly
preserves the meaning of the contract all the way down to
the binary for the target platform. SPLAT uses the HOL4
theorem proving system to implement the synthesis and prove
its correctness relative to the contract. The synthesis targets
a dialect of Standard ML called CakeML [16] and uses
CakeML'’s fully verified compiler to render the final binary.

BriefCASE employs the High Assurance Modeling and
Rapid engineering for embedded systems (HAMR) tool [17], a
multi-platform, multi-language AADL code generation frame-
work. Using selL4 [18] as a foundation, HAMR enables
AADL to be used as a model-based development and systems
engineering framework for seL4-based applications [19]. The
seL4 microkernel is a lightweight, fast, and secure operating
system kernel. Its implementation is fully formally verified,
from high-level security properties down to the binary level.

One of the primary objectives of HAMR is to support
system builds that leverage selL4 separation and informa-
tion flow guarantees to achieve the AADL-specified compo-
nent isolation and inter-component communication needed for
cyber-resiliency. For each AADL thread component, HAMR
generates a thread code skeleton and APIs for communicating
over the ports declared on the component. For components that
are implemented manually, the developer fills out the thread
skeleton with application code. HAMR generates component
infrastructure and integration code implementing the semantics
of AADL-compliant thread scheduling, thread dispatching,
and port-based communication.

The seL.4 deployment uses the Component Architecture for
microkernel-based Embedded Systems (CAmkES) develop-
ment framework to configure the microkernel. The HAMR-
generated CAmKES directly encodes the AADL model’s com-
ponent and communication topology and includes the AADL
run-time infrastructure with its thread scheduling. HAMR
leverages the existing seL4 domain scheduler to enforce time
partitioning and provide static cyclic scheduling. As part of
its code generation process, HAMR produces flow graphs
reflecting the inter-component information flow at both the
AADL architecture level and the CAmKES level for the sel.4
deployment. Visual representations are provided for manual
inspection, and SMT-based representations are generated for
formal reasoning. The SMT-based representations are used to
prove that 1) all AADL modeled flows are in the CAmKES
configuration, and 2) no extraneous flows have been added.

B. Assurance Case Generation in BriefCASE

Each of the BriefCASE tools contribute to some aspect of
high-assurance system development, and each emit evidence
of correctness that can be used to substantiate cyber-resiliency
assurance goals. Resolute [20] is used to evaluate this evidence
and incorporate it into a system cyber-resiliency assurance
case. Resolute is a language and tool for embedding an
assurance argument in an AADL system architecture model
and evaluating the validity of the associated evidence. Because
high-assurance products generally undergo certification at the
system level, there is a natural mapping between a system
design and the corresponding assurance argument. Resolute
takes advantage of this alignment by enabling the specification
of the assurance argument directly in an AADL annex. The
assurance case is then automatically instantiated and evaluated
with elements specified in the model.

BriefCASE projects contain a repository for cyber re-
quirements. Imported requirements (e.g., those generated by
GearCASE or DCRYPPS) are represented as assurance case
goals to be satisfied. For example, a requirement that spec-
ifies that a target component shall only receive well-formed



messages is imported as the Resolute goal depicted in
Fig. 3a. The goal is initially marked undeveloped since
the requirement has yet to be addressed.

1 goal Req_Filter() <=

2 ** "Messages shall be well-formed" **

3 context Generated_By : "GearCASE";

4 context Generated_On : "2022-09-09-180532";
5 context Req_Component : "SW::FlightPlanner";
6 undeveloped

(a)

1 goal Req_Filter() <=

2 ** "Messages shall be well-formed" **

3 context Generated_By : "GearCASE";

4 context Generated_On : "2022-09-09-180532";

5 context Req_Component : "SW.FlightPlanner";

6 agree_property_checked("SW.FlightPlanner", "Req_Filter") and

7 add_filter("SW.FlightPlanner", "SW.Filter", "SW.c7", RF_Msg)
(b)

Fig. 3. (a) Cyber requirement imported as an undeveloped Resolute

assurance goal. (b) Updated goal with logical rules for determining whether
goal is satisfied.

The well-formed message requirement can be mitigated
by performing an automated model transformation for in-
serting a filter. Each transformation has an associated assur-
ance pattern that describes a strategy for determining from
the model whether the requirement has been satisfied (see
Section IV-B). These evidential statements are automatically
added to the goal as the design is updated to address the
requirement, as shown in Fig. 3b. For the insertion of a
filter, Resolute must now check that AGREE formal analysis
passes (line 6) and the filter was added correctly to the
model (line 7). The agree_property_checked () and
add_filter () function definitions are included with the
built-in BriefCASE assurance pattern library and contain ad-
ditional statements that instruct Resolute on how to determine
the validity of the claims. Subsequent changes to the model
that invalidate any of the assurance claims can then be detected
and corrected.

Resolute has recently been updated to enable evaluation of
artifacts external to the modeling workspace, which facilitates
manual specification of additional assurance goals and re-
quired evidence. BriefCASE includes an Artifact Management
tool for specifying how Resolute should parse documents with
specific formats (such as test results, review forms, etc.) to
determine whether they support specific assurance claims. For
each type of document, users can specify a regular expression
that will be matched against the document contents, such
that a correct match indicates the validity of the evidence in
supporting a specific claim.

Resolute also includes a linter tool for AADL models called
Resolint [21]. Resolint provides a language for specifying
rules that correspond to modeling guidelines, as well as a
checker for evaluating whether a model complies with the
rules. Results of the Resolint analysis are displayed to the

user, and can be directly incorporated as evidence in a Resolute
assurance argument.

IV. BRIEFCASE CYBER-RESILIENCY ASSURANCE
PATTERNS

Although verifying functional correctness, safety, and other
dependability properties is necessary for a comprehensive
system assurance case, the CASE patterns presented in this
section only addresses cyber-resiliency. The intention is for the
resulting instantiated assurance argument to be integrated into
a full system dependability assurance case, when applicable.
We present our assurance patterns as GSN Patterns [3], [22]
(with slight abuse of notation for brevity).

The high-level CASE argument structure is depicted in
Fig. 4, with the top-level goal stating “The system is accept-
ably cyber-resilient”. Two contextual elements are required
here: the system under development and the domain-specific
guidance that defines ‘“acceptable cyber-resilience” for the
current development effort. This goal is then substantiated
by arguments that cyber-resiliency requirements have been
appropriately identified and then satisfied, both in the system
model and the realization of the system model as a built,
deployable system.

A. Cyber Requirement Correctness and Completeness

The assurance argument for cybersecurity requirement cor-
rectness and completeness is shown in Fig. 5. In the figure,
it can be seen that in order to support the claim, we must
provide evidence that the full set of cyber requirements passed
through a review process, were imported into the BriefCASE
environment as Resolute goals or omitted with rationale, and
that successive analyses on updated versions of the model
found no new vulnerabilities. The latter reflects the iterative
step in the workflow (depicted by the left-pointing arrow in
Fig. 1), in which a modified model must be re-analyzed after
applying a mitigation for a previously generated requirement.
This is necessary in order to demonstrate that the mitigation
of one vulnerability does not inadvertently introduce new
vulnerabilities. To argue that the current model was analyzed
appropriately, we must be able to demonstrate first that the
model is well-formed (i.e., it complies with modeling guide-
lines), that the analysis was indeed performed on the current
version of the model, and that the analysis does not produce
any new applicable requirements.

B. Cyber Requirements are Satisfied in the System Model

BriefCASE includes a library of automated model transfor-
mations corresponding to common cyber requirement classes.
Each transformation modifies the model to harden it against a
specific vulnerability, thereby mitigating the associated threat
and addressing the driving requirement. In addition, the trans-
formations automatically update the corresponding Resolute
goals with logical statements that enable Resolute to evaluate
whether the goal is supported by the necessary evidence.
Because the transformations modify the architecture model in
different ways, assuring that a specific requirement is satisfied
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Fig. 4. Top-level assurance pattern structure.
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Fig. 5. Assurance pattern for security requirement correctness and completeness.

in the model will be argued according to a transformation-
specific pattern.

For example, the well-formed message requirement (intro-
duced in Section IIT) can be addressed by inserting a filter on
the communication channel upstream of the target component.
The corresponding assurance pattern for this mitigation is
shown in Fig. 6. Here, we argue that the well-formed message
requirement has been satisfied in the model by showing that
a filter component was inserted and formally verified on the
current version of the model. For evidence that the filter
was properly added, we rely on Resolute’s model traversal
functions to verify that the filter component was indeed added
to the model upstream of the target component and that
there are no communication channels that can bypass the
filter. For formal verification, we first desire evidence that
the requirement is stated in terms of the AADL component
interfaces and publicly disclosed state. Although this is not
strictly necessary in the general case, it is included in this
pattern for confidence that the CASE workflow was followed
correctly. For a formally specified functional requirement, this

may be substantiated with evidence that the formal specifica-
tion has been validated to align with the requirement’s intent
(e.g., failure and success cases for the formal specification
are provided) and the requirement is correctly specified in the
formal language (e.g., by manual review).

Assurance patterns corresponding to all the BriefCASE
model transformations have been defined and are packaged
with the framework.

C. Cyber Requirements are Satisfied in the Realization of the
System Model

In the CASE workflow, a software component implementa-
tion could have various origins. It could be legacy, third-party,
or manually implemented code. It could also be generated
from a behavioral model (i.e., Simulink) or be synthesized
directly from the component’s contract. In BriefCASE, the
latter is performed by the SPLAT tool.

Application infrastructure code and the operating system it-
self must also be implemented and integrated into a deployable
system. The HAMR tool generates the infrastructure code,
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Fig. 6. Assurance pattern for proper filter insertion in the architecture model.

along with correspondence proofs that the inter-component
connections specified in the model are maintained in the im-
plementation and that no new connections have been created.
For high-assurance systems, this is made possible in part by
building to a target platform running the formally verified
seL4 microkernel, which provides time and space partitioning
guarantees.

To help ensure that system executables conform to AADL
model semantics and that semantics are consistent across
different AADL-aligned code generation frameworks, AADL
defines principles for structuring application code and specifies
key semantic steps in the form of Run-Time Services (RTS).
AADL RTS are library functions, some of which are called
by AADL infrastructure code while others may be called
by application code (e.g., to access values on component
ports). Working off of an AADL instance model generated
by OSATE, HAMR generates a CAmKES specification of the
deployment topology and other kernel configuration informa-
tion. For each AADL thread, HAMR generates infrastructure
code that implements the AADL thread dispatch semantics.
This includes (a) infrastructure code for linking entry point
application code to the underlying seL4 scheduling framework,
for implementing the storage associated with ports, and for
realizing the buffering and notification semantics associated
with event and event data ports; and (b) developer-facing code
including thread code skeletons for which the developer will
write application code, and port APIs that the application code
uses to send and receive messages over ports.

The structure of the Implementation Correctness
module of the assurance pattern (shown in Fig. 7) there-
fore necessarily focuses on evidence of correctness in
terms of behaviors observed at component interface de-
ployment observation points associated with the Brief-
CASE workflow. To support the claim that the deployed

software component satisfies the cyber requirement, we
must demonstrate that the component application code con-
forms to both its declared interface and requirements (goal
interfaceConformance), that the component’s AADL
runtime infrastructure code satisfies AADL port and threading
semantics (goal aadlSemantics), and that the component’s
platform deployment context achieves its required assurance
properties (goal platformDeployment).

Goal interfaceConformance is substantiated by the
argument in Fig. 8. Here it is critical that we show the
application code interfaces correctly with the infrastructure
code. This includes evidence that application code only com-
municates through correct port APIs, runs to completion and
produces an output (or drops the input where appropriate) upon
being dispatched, and satisfies information flow and worst-case
execution time specifications. Evidence supporting most of
these goals will typically be in the form of manual inspection
and review; however, some evidence such as analysis and
verification results can be automatically evaluated by the
framework.

For goal aadlSemantics (expanded argument not pic-
tured), to demonstrate that the component’s AADL runtime
infrastructure code satisfies AADL port and threading seman-
tics, we must show that for each component port declared
in the AADL model, HAMR correctly generates (a) an API
for application code (aligned with the AADL standard) to use
when interacting with that port, and (b) an implementation of
the port API (aligned with the AADL standard’s description
of port semantics) that communicates values between the
application code APIs and the boundary of the platform
deployment of the component. Evidence to substantiate these
claims comes from manual inspection of model-to-code trace-
ability information as well as a justification of alignment with
the AADL standard.
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Fig. 7. Assurance pattern for arguing a requirement is satisfied in the realization of the model.
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Fig. 8. Assurance pattern for arguing component code conforms to the specified interface and requirements.

Finally, it must be shown that the component’s platform
deployment context achieves its required assurance properties
(goal platformDeployment). This is supported by the
argument in Fig. 9, in which we must assure the realization
of component interfaces and data encodings on the sel.4 plat-
form. This includes appropriate separation of the deployment
interface into application and infrastructure interfaces and the
correct composition of the application and the AADL runtime
onto the platform. Some supporting evidence such as HAMR
and selL4 proof artifacts can be evaluated automatically by
the framework, but otherwise manual artifact inspection is
required.

In addition to demonstrating that deployed software com-
ponents satisfy their cyber requirements, we must also argue
that the deployed system implementation preserves them.
We do not further expand the System Implementation
argument module here since the evaluation criteria are typical
of established methods in practice today.

V. CONCLUSION

We have presented a collection of hierarchical cyber-
resiliency assurance patterns, which are bundled with our
BriefCASE framework and instantiated with a specific system
under development. Automated instantiation and evaluation
of these patterns provides us with confidence that we have
adequately analyzed the system for cyber vulnerabilities and
addressed the corresponding cyber requirements in the system
design and implementation. Although these patterns mainly
correspond to the automated BriefCASE features that support
the CASE workflow outlined in Fig. 1, BriefCASE is not
required to use them; with minor adaptation they can be
applied to any tool chain that supports a similar workflow.

We have demonstrated the utility of our tools and methods
on several real-world use cases that were subjected to red-
team adversarial evaluation®. Nonetheless, it will not often
be the case that an entire high-assurance system can be
developed in this fashion. Not all cyber vulnerabilities can

20n the DARPA CASE program, BriefCASE was applied to a section of
CH-47 mission control software, as well as an AFRL UxAS application.
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Fig. 9. Assurance pattern for arguing platform deployment context achieves the required assurance properties.

be mitigated by an automated model transformation. Not all
component implementations can be synthesized in a provably
correct manner. And not all evidential development artifacts
can be automatically evaluated. But, for many systems, we
are confident that the technologies described in this paper can
be usefully employed to improve cyber resilience, even when
some elements of the system (e.g., legacy components) resist
rigorous analysis and/or automated synthesis.

Although the assurance patterns described herein provide
confidence that (a) the CASE workflow was properly followed
for a specific system development configuration and (b) the
resulting deployable system is acceptably cyber-resilient, ad-
ditional patterns are still necessary to support typical devel-
opment efforts we see in practice today. Our cyber-resiliency
patterns are structured hierarchically, enabling straightforward
insertion of additional pattern fragments corresponding to
new cyber vulnerability mitigations, processes, and workflows.
We anticipate working towards supporting these patterns in
future research projects, with contributions encouraged from
the wider security assurance community.
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