
Editor: Jane Cleland-Huang
DePaul University
jhuang@cs.depaul.edu

12 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

REQUIREMENTS

DO YOU TRUST the software in your
vehicle? Recent exploits have let hackers
remotely control aspects such as brakes
and steering, perform surveillance and
eavesdropping, and even remotely steal
a car. It’s speculated that Iran landed a
US stealth drone at an Iranian airfield
through a GPS spoofing attack. Recent
research in self-driving cars and multi-
vehicle coordination requires ever-more
software that could be used to launch
cyberattacks.

In DARPA’s High-Assurance Cyber
Military Systems (HACMS) project, re-
search teams are investigating how to
construct complex networked-vehicle
software securely. An air team builds
a software stack for unmanned aerial
vehicles (UAVs), and a ground team in-
vestigates software for automobiles and
ground-based robots. These teams are
paired with a red team of professional
penetration testers to assess the soft-
ware’s security vulnerabilities. The red
team can access all software, design
documentation, models, meeting docu-
mentation, analysis results, and system
binaries produced by the other teams.

To build our air-team software se-
curely enough to repel red-team attacks,
we needed an approach that was rigor-
ous, flexible, and compositional, to let
us focus on important security concerns
at several abstraction levels. As in com-

mercial and military development, our
UAVs must incorporate a significant
amount of third-party software. We
also expect that our UAVs could be net-
worked to construct systems of systems
whose purpose might differ considerably
from the UAV system’s original intent.
So, we must be able to reason about re-
quirements at various abstraction levels.
Indeed, whether you consider a state-
ment to be a requirement or design deci-
sion depends on the abstraction level on
which you focus (see Figure 1).

Setting Requirements
(and Their Limits)
To define meaningful requirements, we
made two main assumptions about the
system and potential attackers. These as-
sumptions are essentially limits on what
we can prove about the system’s security.

The first assumption relates to a
UAV’s intended functionality and its con-
trollability from the associated ground
station. We assume that an authorized
user has the authority to issue any com-
mand to the UAV, including commands
that would crash or otherwise destroy it.
We don’t wish to limit a priori what a le-
gitimate user may choose to do with the
UAV, so we assume that all commands
sent by the authorized user are legiti-
mate. We’ll only need to model whether
a message (and the command it carries)

Requirements
and Architectures
for Secure Vehicles
Michael W. Whalen, Darren Cofer, and Andrew Gacek

REQUIREMENTS

 JULY/AUGUST 2016 | IEEE SOFTWARE 13

is well formed. If an attacker can co-
opt an authorized user’s identity, no
mitigation is possible.

The second assumption relates to
using wireless communication. Be-
cause we can’t realistically limit ac-
cess to the radio spectrum, attack-
ers will always be able to launch a
denial-of-service (DoS) attack, by
either jamming the physical link
or overwhelming the UAV receiver
with well-formed messages (even if
they fail authorization). This means
we can’t provide absolute guaran-
tees about reception and execution
of commands from authorized us-
ers. However, we can require the
UAV to reject any commands lack-
ing authorization. We can also re-
quire the UAV to execute commands
from authorized users in a timely
fashion, assuming there’s no DoS at-
tack on the radio link. And, when a
DoS attack is detected, our require-
ments can specify what actions the
UAV should take to keep itself safe
or avoid compromising its mission
(if possible).

To construct the requirements,
we followed an approach similar to
that described in last issue’s column,
which employed Security Cards.2 We
knew quite a bit about our immedi-
ate adversary, the red team: they had
strong technical skills and essentially
unlimited knowledge about the sys-
tem. So, we focused on a variety
of known concrete attacks drawn
from the Common Attack Pattern
Enumeration and Classification list
(http://capec.mitre.org). First, we en-
sured generic security principles such
as user identification and authori-
zation, secure network access and
communication, secure storage, con-
tent security, and availability. From
those principles, we created system-
level security requirements for the
UAV, including these:

• The UAV executes only unmodi-
fied commands from the ground
station.

• If an air–ground communication
link fails (or is eliminated through
a DoS attack), the UAV executes
its no-communication behavior.

From the system requirements,
additional requirements were levied
on the data link, OS, maintenance
procedures, and fault handling, as
well as on other system aspects.

Eliminating Weaknesses
Even with good requirements, pre-
venting attacks is difficult; new
attack methods are regularly dis-
covered. So, we also focused on
common software weaknesses that
lead to security problems. The Com-
mon Weakness Enumeration website
(http://cwe.mitre.org) maintains a
large list of such weaknesses. There-
fore, we approached the problem
bottom-up, eliminating common
weaknesses known to be important

to many attacks, such as those re-
lated to authentication and authori-
zation, system partitioning, mainte-
nance, OS boot and configuration,
overflow or underflow, encryption,
and memory safety.

Some of these weaknesses de-
pend considerably on the system ar-
chitecture. We modeled the system
architecture in AADL (Architec-
ture Analysis & Design Language)3
and used this model to reason about
system vulnerabilities. We then con-
structed tools to build system images
directly from the model. To ensure
strict enforcement of the architec-
tural partitioning, we used the seL4
microkernel from Data 61, which
has a rigorous proof of correctness.4

Other weaknesses can be elimi-
nated by the programming language.
For example, Ivory, developed by
Galois Inc., is an efficient domain-
specific programming language that
guarantees the absence of certain
classes of memory errors. It also
provides significant integration with

Flow down:
requirements for C2

 • Determine subcomponents
• Allocate requirements to
 subcomponents
• Verify that subcomponent
 requirements establish
 system requirements

System A
System C2

C2C1 X

Y

Z

Flow up: environmental
constraints and modi�ed

system requirements from C2

…

System Z

…

FIGURE 1. The interplay between requirements and architecture.1 Whether

you consider a statement to be a requirement or design decision depends on the

abstraction level on which you focus.

REQUIREMENTS

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

model-checking tools to check for
underflow or overflow, as well as
cryptographic libraries.

Reasoning about Security
and Composition
Assume we can define what it means
for a component to be secure and
can define the property Secure(A). It
might be tempting to say that when
we assemble components to form a
larger system, we get

Secure(A) ∧ Secure(B) ⇒
 Secure(A ⊕ B),

for some (as yet undefined) compo-
sition operator ⊕. Such a result cer-
tainly isn’t true in general, although
it might hold for some specific prop-
erties and types of composition. For
example, if we’re concerned with a
system’s memory safety, it might be
sufficient to demonstrate the memory
safety of all that system’s processes:

MemSafe(A) ∧ MemSafe(B) ∧
 MemSafe(C) ⇒ MemSafe(System
 (A, B, C)).

What’s more often the case in
architecture-based composition
is that we must look at different
properties at the component level
rather than the system level. In
this way, composition is more like
a set of lemmas used in an argu-
ment to complete a theorem’s proof.

The UAV executes only unmodi�ed
commands from the ground station.

The UAV motors only execute
commands that pass decrypt.

Only the ground station can send
commands that pass decrypt.

The UAV motors only receive
commands from

ML : �ight_gen_process.impl.

All commands to ML :
 �ight_gen_process.impl pass decrypt
before reaching the UAV motors.

SW.ML.px4ioar_inst.motor1 ->
PX4IOAR.M1.commands comes

from ML : �ight_gen_process.impl.

All inputs to ML : �ight_gen_process.impl
are internal sensor data or pass

decrypt before reaching the UAV motors

UAV.SW.ML.sensors.gps_data
only receives sensor data.

Commands to UAV.SW.ML.motors_and_radios
.mavlink pass through decrypt

before reaching the UAV motors.

Decomposition of the claim with arguments for
 encryption algorithm strength, correct

implementation, and encryption key management

Claims about additional
sensor data here

Decomposition of the claim related to
information sent to or from the UAV

 through the interrupt service routine
controlling the radio link

Claims about the
other three
motors here

UAV.SW.ML.sensors.battery_data
only receives sensor data.

Commands to uart5ISR_inst : uart5ISR
not passing through decrypt
can’t reach the UAV motors.

FIGURE 2. A portion of the automatically generated assurance case tree for an unmanned air vehicle (UAV) for the requirement,

“The UAV executes only unmodified commands from the ground station.”

REQUIREMENTS

 JULY/AUGUST 2016 | IEEE SOFTWARE 15

Each lemma might correspond to a
particular component property, a
channel connecting components, or
an attacker. That is,

Lem1(A) ∧ Lem2(Chan) ∧ Lem3(B)
 ∧ Lem4(Attack) ⇒ Secure(A ⊕ B).

Using such reasoning, we devel-
oped an assurance case for our sys-
tem’s primary high-level property:
“The UAV executes only unmodified
commands from the ground station.”
Figure 2 shows a portion of the assur-
ance case. At the top of the case, we
separated this claim into two parts on
the basis of the encryption setup:

• The UAV motors only execute
commands that pass decrypt.

• Only the ground station can
send commands that pass
decrypt.

We broke down the second part into
claims about our encryption proto-
col’s strength and the keys’ secrecy.
The first part required a more de-
tailed analysis of our software’s ar-
chitecture, including dataflow paths
and memory protection.

We expressed our assurance case’s
general structure using logical ex-
pressions in the Resolute language.5
Resolute lets you embed assurance
case claims and rules in a system’s
architectural model. The Resolute
engine evaluated these rules over our
architecture to generate a concrete
assurance case. This allowed our
assurance case to adapt automati-
cally as the model was updated and
changed. Some changes could break
the assurance case—for example,
adding a non-memory-safe compo-
nent to a nonpartitioning real-time
OS; Resolute would flag such is-
sues. We could then fix this—for ex-
ample, by hosting the component in

seL4 or ensuring that the component
was memory-safe by compiling from
Ivory. For either fix, Resolute would
automatically construct the corre-
sponding assurance case.

In addition, several portions
of the architecture were assured
through proof. The proof of parti-
tioning and correct OS behavior in
seL44 provided an ironclad founda-
tion for building our UAV. Proofs of
the Ivory type system ensured that
all Ivory programs that compiled
were memory-safe, which removed
large classes of attacks.

T he HACMS project com-
prises three 18-month
phases. Near each phase’s

end, the red team receives a demon-
stration vehicle and software for pen-
etration testing. In phases 1 and 2,
the air team’s UAVs successfully re-
sisted all red-team attacks. In phase
1, attacks were possible only through
the communications link between
the ground station and UAV. In phase
2, we provided root access to a Linux
partition that controlled a camera
used for vehicle tracking and dem-
onstrated that attacks launched from
this partition didn’t affect the UAV’s
flight-worthiness. In phase 3, we’re
adding capabilities to our UAVs, such
as secure geofencing to ensure they
avoid certain no-fly zones. We’re also
pursuing technology transfer of our
tools and techniques with automo-
tive and aerospace companies. Our
experience shows that careful atten-
tion to requirements and system ar-
chitecture, along with formally veri-
fied approaches that remove known
security weaknesses (using Ivory and
seL4), can lead to vehicles that can
withstand attacks from even sophis-
ticated attackers with access to vehi-
cle design data.

Acknowledgments
This research was funded partly by DAR-

PA and the Air Force Research Laboratory

under the High-Assurance Cyber Military

Systems project (contract FA8750-12-

9-0179) and by NASA under contract

NNA13AA21C.

References
1. M. Whalen et al., “Your ‘What’ is

My ‘How’: Iteration and Hierarchy in

System Design,” IEEE Software, vol.

30, no. 2, 2013, pp. 54–60.

2. J. Cleland-Huang et al., “Keeping

Ahead of Our Adversaries,” IEEE

Software, vol. 33, no. 3, 2016, pp.

24–28.

3. P.H. Feiler and D.P. Gluch, Model-

Based Engineering with AADL: An

Introduction to the SAE Architecture

Analysis & Design Language, 1st ed.,

Addison-Wesley Professional, 2012.

4. G. Klein et al., “seL4: Formal Verifi-

cation of an OS Kernel,” Proc. ACM

Symp. SIGOPS 22nd Symp. Operat-

ing Systems Principles, 2009, pp.

207–220.

5. A. Gacek et al., “Resolute: An Assur-

ance Case Language for Architecture

Models,” Proc. 2014 ACM SIGAda

Ann. Conf. High Integrity Language

Technology (HILT 14), 2014, pp.

19–28.

MICHAEL W. WHALEN is the director of the

University of Minnesota Software Engineering

Center. Contact him at mike.whalen@gmail.com.

DARREN COFER is a Fellow at the Rockwell

Collins Advanced Technology Center. Contact him

at darren.cofer@rockwellcollins.com.

ANDREW GACEK is an industrial logician at

the Rockwell Collins Advanced Technology Cen-

ter. Contact him at andrew.gacek@gmail.com.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

