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REQUIREMENTS

DO YOU TRUST the software in your 
vehicle? Recent exploits have let hackers 
remotely control aspects such as brakes 
and steering, perform surveillance and 
eavesdropping, and even remotely steal 
a car. It’s speculated that Iran landed a 
US stealth drone at an Iranian airfield 
through a GPS spoofing attack. Recent 
research in self-driving cars and multi-
vehicle coordination requires ever-more 
software that could be used to launch 
cyberattacks.

In DARPA’s High-Assurance Cyber 
Military Systems (HACMS) project, re-
search teams are investigating how to 
construct complex networked-vehicle 
software securely. An air team builds 
a software stack for unmanned aerial 
vehicles (UAVs), and a ground team in-
vestigates software for automobiles and 
ground-based robots. These teams are 
paired with a red team of professional 
penetration testers to assess the soft-
ware’s security vulnerabilities. The red 
team can access all software, design 
documentation, models, meeting docu-
mentation, analysis results, and system 
binaries produced by the other teams.

To build our air-team software se-
curely enough to repel red-team attacks, 
we needed an approach that was rigor-
ous, flexible, and compositional, to let 
us focus on important security concerns 
at several abstraction levels. As in com-

mercial and military development, our 
UAVs must incorporate a significant 
amount of third-party software. We 
also expect that our UAVs could be net-
worked to construct systems of systems 
whose purpose might differ considerably 
from the UAV system’s original intent. 
So, we must be able to reason about re-
quirements at various abstraction levels. 
Indeed, whether you consider a state-
ment to be a requirement or design deci-
sion depends on the abstraction level on 
which you focus (see Figure 1).

Setting Requirements 
(and Their Limits)
To define meaningful requirements, we 
made two main assumptions about the 
system and potential attackers. These as-
sumptions are essentially limits on what 
we can prove about the system’s security.

The first assumption relates to a 
UAV’s intended functionality and its con-
trollability from the associated ground 
station. We assume that an authorized 
user has the authority to issue any com-
mand to the UAV, including commands 
that would crash or otherwise destroy it. 
We don’t wish to limit a priori what a le-
gitimate user may choose to do with the 
UAV, so we assume that all commands 
sent by the authorized user are legiti-
mate. We’ll only need to model whether 
a message (and the command it carries) 
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is well formed. If an attacker can co-
opt an authorized user’s identity, no 
mitigation is possible.

The second assumption relates to 
using wireless communication. Be-
cause we can’t realistically limit ac-
cess to the radio spectrum, attack-
ers will always be able to launch a 
denial-of-service (DoS) attack, by 
either jamming the physical link 
or overwhelming the UAV receiver 
with well-formed messages (even if 
they fail authorization). This means 
we can’t provide absolute guaran-
tees about reception and execution 
of commands from authorized us-
ers. However, we can require the 
UAV to reject any commands lack-
ing authorization. We can also re-
quire the UAV to execute commands 
from authorized users in a timely 
fashion, assuming there’s no DoS at-
tack on the radio link. And, when a 
DoS attack is detected, our require-
ments can specify what actions the 
UAV should take to keep itself safe 
or avoid compromising its mission 
(if possible).

To construct the requirements, 
we followed an approach similar to 
that described in last issue’s column, 
which employed Security Cards.2 We 
knew quite a bit about our immedi-
ate adversary, the red team: they had 
strong technical skills and essentially 
unlimited knowledge about the sys-
tem. So, we focused on a variety 
of known concrete attacks drawn 
from the Common Attack Pattern 
Enumeration and Classification list 
(http://capec.mitre.org). First, we en-
sured generic security principles such 
as user identification and authori-
zation, secure network access and 
communication, secure storage, con-
tent security, and availability. From 
those principles, we created system-
level security requirements for the 
UAV, including these:

• The UAV executes only unmodi-
fied commands from the ground 
station.

• If an air–ground communication 
link fails (or is eliminated through 
a DoS attack), the UAV executes 
its no-communication behavior.

From the system requirements, 
additional requirements were levied 
on the data link, OS, maintenance 
procedures, and fault handling, as 
well as on other system aspects.

Eliminating Weaknesses
Even with good requirements, pre-
venting attacks is difficult; new 
attack methods are regularly dis-
covered. So, we also focused on 
common software weaknesses that 
lead to security problems. The Com-
mon Weakness Enumeration website 
(http://cwe.mitre.org) maintains a 
large list of such weaknesses. There-
fore, we approached the problem 
bottom-up, eliminating common 
weaknesses known to be important 

to many attacks, such as those re-
lated to authentication and authori-
zation, system partitioning, mainte-
nance, OS boot and configuration, 
overflow or underflow, encryption, 
and memory safety.

Some of these weaknesses de-
pend considerably on the system ar-
chitecture. We modeled the system 
architecture in AADL (Architec-
ture Analysis & Design Language)3 
and used this model to reason about 
system vulnerabilities. We then con-
structed tools to build system images 
directly from the model. To ensure 
strict enforcement of the architec-
tural partitioning, we used the seL4 
microkernel from Data 61, which 
has a rigorous proof of correctness.4

Other weaknesses can be elimi-
nated by the programming language. 
For example, Ivory, developed by 
Galois Inc., is an efficient domain-
specific programming language that 
guarantees the absence of certain 
classes of memory errors. It also 
provides significant integration with 
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FIGURE 1. The interplay between requirements and architecture.1 Whether 

you consider a statement to be a requirement or design decision depends on the 

abstraction level on which you focus.
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model-checking tools to check for 
underflow or overflow, as well as 
cryptographic libraries.

Reasoning about Security  
and Composition
Assume we can define what it means 
for a component to be secure and 
can define the property Secure(A). It 
might be tempting to say that when 
we assemble components to form a 
larger system, we get

Secure(A) ∧ Secure(B) ⇒  
   Secure(A ⊕ B),

for some (as yet undefined) compo-
sition operator ⊕. Such a result cer-
tainly isn’t true in general, although 
it might hold for some specific prop-
erties and types of composition. For 
example, if we’re concerned with a 
system’s memory safety, it might be 
sufficient to demonstrate the memory 
safety of all that system’s processes:

MemSafe(A) ∧ MemSafe(B) ∧  
   MemSafe(C) ⇒ MemSafe(System 
   (A, B, C)).

What’s more often the case in 
architecture-based composition 
is that we must look at different 
properties at the component level 
rather than the system level. In 
this way, composition is more like 
a set of lemmas used in an argu-
ment to complete a theorem’s proof. 

The UAV executes only unmodi�ed 
commands from the ground station.

The UAV motors only execute 
commands that pass decrypt.

Only the ground station can send
commands that pass decrypt.

The UAV motors only receive 
commands from 

ML : �ight_gen_process.impl.

All commands to ML :
 �ight_gen_process.impl pass decrypt 
before reaching the UAV motors.

SW.ML.px4ioar_inst.motor1 -> 
PX4IOAR.M1.commands comes 

from ML : �ight_gen_process.impl.

All inputs to ML : �ight_gen_process.impl
are internal sensor data or pass 

decrypt before reaching the UAV motors

UAV.SW.ML.sensors.gps_data 
only receives sensor data.

Commands to UAV.SW.ML.motors_and_radios
.mavlink pass through decrypt 

before reaching the UAV motors.

Decomposition of the claim with arguments for
 encryption algorithm strength, correct 

implementation, and encryption key management

Claims about additional
sensor data here

Decomposition of the claim related to
information sent to or from the UAV

 through the interrupt service routine 
controlling the radio link

Claims about the 
other three 
motors here

UAV.SW.ML.sensors.battery_data
only receives sensor data.

Commands to uart5ISR_inst : uart5ISR
not passing through decrypt 
can’t reach the UAV motors.

FIGURE 2. A portion of the automatically generated assurance case tree for an unmanned air vehicle (UAV) for the requirement, 

“The UAV executes only unmodified commands from the ground station.”
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Each lemma might correspond to a 
particular component property, a 
channel connecting components, or 
an attacker. That is,

Lem1(A) ∧ Lem2(Chan) ∧ Lem3(B)  
   ∧ Lem4(Attack) ⇒ Secure(A ⊕ B).

Using such reasoning, we devel-
oped an assurance case for our sys-
tem’s primary high-level property: 
“The UAV executes only unmodified 
commands from the ground station.” 
Figure 2 shows a portion of the assur-
ance case. At the top of the case, we 
separated this claim into two parts on 
the basis of the encryption setup:

• The UAV motors only execute 
commands that pass decrypt.

• Only the ground station can 
send commands that pass 
decrypt.

We broke down the second part into 
claims about our encryption proto-
col’s strength and the keys’ secrecy. 
The first part required a more de-
tailed analysis of our software’s ar-
chitecture, including dataflow paths 
and memory protection.

We expressed our assurance case’s 
general structure using logical ex-
pressions in the Resolute language.5 
Resolute lets you embed assurance 
case claims and rules in a system’s 
architectural model. The Resolute 
engine evaluated these rules over our 
architecture to generate a concrete 
assurance case. This allowed our 
assurance case to adapt automati-
cally as the model was updated and 
changed. Some changes could break 
the assurance case—for example, 
adding a non-memory-safe compo-
nent to a nonpartitioning real-time 
OS; Resolute would flag such is-
sues. We could then fix this—for ex-
ample, by hosting the component in 

seL4 or ensuring that the component 
was memory-safe by compiling from 
Ivory. For either fix, Resolute would 
automatically construct the corre-
sponding assurance case.

In addition, several portions 
of the architecture were assured 
through proof. The proof of parti-
tioning and correct OS behavior in 
seL44 provided an ironclad founda-
tion for building our UAV. Proofs of 
the Ivory type system ensured that 
all Ivory programs that compiled 
were memory-safe, which removed 
large classes of attacks.

T he HACMS project com-
prises three 18-month 
phases. Near each phase’s 

end, the red team receives a demon-
stration vehicle and software for pen-
etration testing. In phases 1 and 2, 
the air team’s UAVs successfully re-
sisted all red-team attacks. In phase 
1, attacks were possible only through 
the communications link between 
the ground station and UAV. In phase 
2, we provided root access to a Linux 
partition that controlled a camera 
used for vehicle tracking and dem-
onstrated that attacks launched from 
this partition didn’t affect the UAV’s 
flight-worthiness. In phase 3, we’re 
adding capabilities to our UAVs, such 
as secure geofencing to ensure they 
avoid certain no-fly zones. We’re also 
pursuing technology transfer of our 
tools and techniques with automo-
tive and aerospace companies. Our 
experience shows that careful atten-
tion to requirements and system ar-
chitecture, along with formally veri-
fied approaches that remove known 
security weaknesses (using Ivory and 
seL4), can lead to vehicles that can 
withstand attacks from even sophis-
ticated attackers with access to vehi-
cle design data.

Acknowledgments
This research was funded partly by DAR-

PA and the Air Force Research Laboratory 

under the High-Assurance Cyber Military 

Systems project (contract FA8750-12-

9-0179) and by NASA under contract 

NNA13AA21C.

References
1. M. Whalen et al., “Your ‘What’ is 

My ‘How’: Iteration and Hierarchy in 

System Design,” IEEE Software, vol. 

30, no. 2, 2013, pp. 54–60.

2. J. Cleland-Huang et al., “Keeping 

Ahead of Our Adversaries,” IEEE 

Software, vol. 33, no. 3, 2016, pp. 

24–28.

3. P.H. Feiler and D.P. Gluch, Model-

Based Engineering with AADL: An 

Introduction to the SAE Architecture 

Analysis & Design Language, 1st ed., 

Addison-Wesley Professional, 2012.

4. G. Klein et al., “seL4: Formal Verifi-

cation of an OS Kernel,” Proc. ACM 

Symp. SIGOPS 22nd Symp. Operat-

ing Systems Principles, 2009, pp. 

207–220.

5. A. Gacek et al., “Resolute: An Assur-

ance Case Language for Architecture 

Models,” Proc. 2014 ACM SIGAda 

Ann. Conf. High Integrity Language 

Technology (HILT 14), 2014, pp. 

19–28.

MICHAEL W. WHALEN is the director of the 

University of Minnesota Software Engineering 

Center. Contact him at mike.whalen@gmail.com.

DARREN COFER is a Fellow at the Rockwell 

Collins Advanced Technology Center. Contact him 

at darren.cofer@rockwellcollins.com.

ANDREW GACEK is an industrial logician at 

the Rockwell Collins Advanced Technology Cen-

ter. Contact him at andrew.gacek@gmail.com.

Selected CS articles and columns 
are also available for free at  
http://ComputingNow.computer.org.


