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Abstract. Formal verification tools like model checkers have long demon-
strated their capability to ensure mission-critical properties are satis-
fied, yet their adoption in the aerospace and defense industries remains
limited. Surveys consistently identify difficulty in interpreting analysis
results, especially counterexamples, as a primary barrier. Previously,
our team developed AGREE, an assume-guarantee compositional rea-
soning tool for architectural models, which generates detailed but of-
ten challenging-to-interpret counterexamples. In this paper, we intro-
duce AGREE-Dog, an open-source generative Al copilot integrated into
the OSATE IDE to enhance explainable compositional reasoning with
AGREE and AADL. AGREE-Dog automates 16 DevOps and ProofOps
steps, utilizing a novel context-selection and memory management sys-
tem to efficiently manage evolving artifacts and historical interactions.
We introduce structural and temporal metrics to evaluate the typically
overlooked human contributions in generative Al-supported workflows.
Evaluations using 13 UV fault-injection scenarios demonstrate a signif-
icant reduction in manual effort (less than 0.1 % of tokens authored by
users), rapid convergence of counterexample repairs (84.6 % resolved in
a single iteration, accuracy increasing to about 92 % after two iterations,
and reaching 100 % within three iterations), and low latency (average
LLM response under 22 seconds, with negligible AGREE-Dog compu-
tational overhead). We also discuss limitations and future work. These
promising results motivate further exploration into explainable model-
based systems engineering (MBSE).
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1 Introduction

Formal methods provide a mathematically rigorous means of verifying correct-
ness in high-assurance systems, such as those used in the aerospace and de-



fense industries. Certification guidance such as DO-333 [13] explicitly outlines
how formal methods can meet airworthiness objectives for commercial aircraft
software. Despite their proven effectiveness, adoption within traditional devel-
opment workflows remains limited, hampered by scalability challenges, poorly
designed tooling, and significant barriers to entry due to specialized training
requirements [3].

The DARPA Pipelined Reasoning of Verifiers Enabling Robust Systems (PRO-
VERS) program was launched to address these adoption barriers by developing
scalable, human-centered formal verification workflows that seamlessly integrate
into existing aerospace and defense engineering practices. Central to PROVERS’
objectives is enabling usability even among engineers who lack extensive formal
methods expertise, thereby fostering broader adoption and enhancing system
dependability.

In response, our team has developed the Industrial-Scale Proof Engineering
for Critical Trustworthy Applications (INSPECTA) framework [6]. INSPECTA
comprises two integrated layers—ProofOps and DevOps—that embed formal
verification directly into modern DevOps pipelines. The framework emphasizes
scalability and explainability as primary design objectives, aligning closely with
the PROVERS program’s goals.

Within INSPECTA’s ProofOps workflow, we employ the Assume-Guarantee
Reasoning Environment (AGREE) |2], a compositional verification tool designed
specifically for the Architecture Analysis and Design Language (AADL) [4]. Al-
though AGREE avoids many of the scalability pitfalls found in monolithic verifi-
cation tools, its counterexample outputs remain difficult to interpret. Like many
model checkers, AGREE produces tabular counterexamples that trace the state
of variables across multiple time steps. These can involve intricate temporal
logic, nested states, and violations spanning architectural layers, posing chal-
lenges even for experienced engineers |7]. The diagnostic and repair process may
span, hours, days, or weeks for large, evolving models based on user experties.

Recently, generative Al, and particularly large language models (LLMs), have
shown promising potential to improve explainability and guide automated formal
verification and counterexample repair. Early efforts include OpenAI’s GPT-f,
which achieved notable success in Metamath theorem proving [8}/12]. Other ini-
tiatives have applied LLMs successfully to proof repair in Isabelle/HOL [5], the-
orem diagnosis in Coq [18], and discovering program invariants [11}/17]. Stanford
and VMware’s Clover project represents another significant step forward, focus-
ing on verifiable code generation with generative assistance [14]. Tahat et al.
demonstrated high success rates using multi-turn conversational LLMs for proof
repair in Coq, underscoring conversational learning’s value in formal reasoning
domains [15,/16]. Apple’s GSM-Symbolic [9] highlighted fundamental limitations
of LLMs in symbolic reasoning tasks. Similarly, Amazon’s recent SMT-backed
hallucination prevention framework [1], while innovative, remains closed-source,
available exclusively as a web service, and has yet to integrate within aerospace-
specific MBSE pipelines such as those based on AADL.



In this paper, we introduce AGREE-Dog, an open-source generative Al copi-
lot integrated directly into the OSATE IDE. AGREE-Dog is purpose-built to
support explainable, compositional reasoning within MBSE workflows, partic-
ularly targeting aerospace and defense applications using AADL and AGREE.
It automates 16 DevOps and ProofOps steps, including requirements ingestion,
context-aware prompt construction, semantic diffing, formal validation, and log
analysis. Notably, AGREE-Dog employs a specialized conversational memory
management and context-selection approach that efficiently represents evolving
verification artifacts in a concise, fixed-size token window, dramatically simpli-
fying the complexity inherent in tracking and repairing system-level contract
violations (see Section [f] for detailed evaluation and artifact descriptions).

To quantify these benefits, we introduce novel structural and temporal eval-
uation metrics, explicitly addressing aspects such as repair convergence, human
intervention level, token efficiency, and response latency.

The rest of this paper is organized as follows. Section [ presents AGREE-
Dog’s architecture and orchestration strategy. Section [6] details our experimental
evaluation and findings. We conclude with current limitations and outline future
work aimed at enhancing autonomy and generalization across verification do-
mains.

2 Explainable AGREE

2.1 Overview

AGREE provides a formal contract language for specifying assumptions (i.e.,
expectations on a component’s input and the environment) and guarantees (i.e.,
bounds on a component’s behavior). Because AGREE is implemented as an
AADL annez in the Open Source AADL Tool Environment (OSATE), the con-
tracts are specified directly on components in the AADL model. AGREE then
uses a k-induction model checker to prove properties about one layer of the
architecture using properties allocated to subcomponents. The analysis proves
correctness of (1) component interfaces, such that the output guarantees of each
component must be strong enough to satisfy the input assumptions of down-
stream components, and (2) component implementations, such that the input
assumptions of a system along with the output guarantees of its sub-components
must be strong enough to satisfy its output guarantees.

When a contract violation is found (i.e., when an assumption is determined to
be invalid or a guarantee is unsupported), AGREE produces a counterexample
consisting of values for each system variable at each execution step. A sample
counterexample is depicted in Figure [T} Currently, OSATE includes the AADL
Simulator tool that can accept an AGREE counterexample as input and walk
through the trace in the graphical editor, but it is of limited help when it comes
to identifying the root cause of the contract violation.



Counterexample

Variable Name =] 1 2
Inputs:

{Target Speed.val} 121 =] =]
{Target Tire Pitch.val} =] 1/5 2]
State:

{[G car 1] actual speed is less than constant target speed} true true false
{_TOP.AXL..ASSUME.HIST} true true true
{_TOP.CNTRL..ASSUME.HIST} true true true
{_TOP.SM. .ASSUME .HIST} true true true
{_TOP.THROT..ASSUME.HIST} true true true
{const tar speed} true false true
Outputs:

{Actual Speed.val} 11 10 108/11
{Actual Tire Pitch.wal} =] 1/5 2]
{state Signal.wval} ] <] <]

Variable Name =] 1 2
Inputs:

{AXL.Speed.val} 46 46 46
{AXL.Target Tire Direction.wval} ] 1/5 <]
State:

{AXL..ASSUME.HIST} true true true
Outputs:

{AXL.Actual Tire Direction.wal} 8 1/5 2]

Fig.1: AGREE counterexample generated from the Car model.

2.2 Making Counterexamples Actionable

We therefore desire AGREE counterexamples that are actionable; that is, an
explanation of the violation in terms that will quickly lead to a passing analysis
(e.g., by making changes to the formal contract or model). To achieve this, we
implemented an interactive conversational copilot (AGREE-Dog) powered by
GPT-40 and O3 multimodal generative Al models. It is specifically designed
to assist AGREE users in identifying the root causes of counterexamples and
applying targeted modifications during the model repair process, significantly
reducing the turnaround time between verification attempts. The copilot is user-
friendly and integrates seamlessly with the OSATE IDE (see Figure .

In the remainder of this paper, we explore the motivations that drove the de-
velopment of AGREE-Dog, describe its key architectural features, and evaluate
its effectiveness within representative modeling and verification workflows.

3 Motivations and Core Challenges

Drawing upon our practical experience integrating AGREE within MBSE work-
flows, in this section we highlight central challenges and key design principles
that guided the development of our LLM-based solution for generating action-
able counterexample explanations and facilitating automated model repairs.

3.1 Context-Aware Prompt Construction

AGREE-generated counterexamples typically involve numerous variables, intri-
cate execution traces, and extensive AADL architectural data. Incorporating
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Property const_tar_speea =
true -> Target_Speed.val = pre(Target_Speed.val);
guarantee G_car_1 *actual speed is less than constant target speer
const_tar_speed => (Actual Speed.val <= Target Speed val);
guarantee G_car_2 "acceleration is limited
“Agree Nodes: :abs (Actual_Speed.val - prev(Actual Speed.val, 0.0)) < max accel;
)

end Car;

system inplementation Car.Car_Impl
subcomponents
THROT: system Transmission::Throttle.Throttle Inpl;
CNTRL: system Transmission::Speed_Control.Speed_Control_Impl;
AXL: system Steering: :Axle.Axle Inpl;
Sh: systen Transmission: State Rachine. Inpl;

connections
SpeedToThrot: port CNTRL.Actuator Input -> THROT.Actuator Input {
Communication_Properties::Timing => immediate;};

AcSpeedToTop: port THROT.Actual -> Actual Speed {Communication Properties::Timing => immediate;};
AcSpeedToCntrl: port THROT.Actual -> CNTRL.Actual {Communication Properties::Tining => inmediate;
TgSpeedToCntri: port Target Speed -> CNTRL.Target {Communication _Properties::Timing => immediate;

TgPtichToAxL: port Target Tire Pitch -> AXL.Target Tire Direction {

AcPtichToCar: port AXL.Actual
Comnunication Properties::Tining => immediate;
SSToSM: port SH.State Out -5 State Signal {Communication Properties::Tining = lamediate;};

end Car.Car_Inpl;

THROT.Actualval 11 10 9.09090909090909
THROT.Actuator_Input 110-10-9.09090909090909
i

INSPECTA-Dog: The counter-example provided by AGREE indicates that
the guarantee "G_car_1" ("actual speed is less than constant target
speed’) has Let's analyze th

step:

#it# Counter-example Analysis:

1. **Variable Values:**

- Actual_Speed.val 11, 10,9.09090909090909
- ‘Target_Speed.val': 121,0,0

2.**Guarantees and Properties:**

- const_tar_speed': "true > Target_Speed.val = pre(Target_Speed.val)"
-G_car_1": “const_tar_speed => (Actual_Speed.val <=
Target_Speed.val)"

#i Key Points:
1. *#nitial State:**

-Attime 0, "Actual_Speed.val is 11and ‘Target_Speed.val'is 121. The
quarantee G_car_1" holds true because ‘11 <= 121",

2.%#Time Step 1+
~*Actual_Speed.val’ is 10 and ‘Target_Speed.valis 0. Here, the

guarantee G_car_1" is violated because '10>0'.
end Car;

- -Stop-Here it Issue:
The violation occurs because the ‘Target_Speed is changing to 0 in the
next time step, which makes the guarantee 'G_car_1" invalid as the
‘Actual_Speed is not allowed to catch up immediately to the new
Target_Speed.

42 Problems [] Properties [ AADL PropertyVal ¢ Classifier Informati & Project Dependenc i Packageand Prope & AGREEResults X 3 Progress = 8
roperty Result

[ Contract Guarantees 1invalid, 2 Valid

+/subcomponent Assumptions Valid (05) ### Solution
T [G_car_1] actual spee s less than constant target speed inalid (05) To fix the problem, we need to ensure that the “Target_Speed" remain:
/[6_car_2] accelerationis imited Valid (05) constant for the duration over which the *Actual_Speed' is being
/This component consistent 1valid compared. This can be done by introducing a delay or ensuring that
+/ THRAT cancictent = et P 10671 Malid Target_Speed" does not change abruptly. We can modify the property

const tar seed” to accommodate a scenario where the

Fig.2: AGREE-Dog copilot integrated within OSATE, providing an actionable
explanation of a counterexample generated from the Car model.

detailed LLM-generated code explanations and diagnostics exacerbates this chal-
lenge. Presenting these details directly to a generative Al model without careful
management often result in excessive context size, increasing latency, hallucina-
tions, costs, and potentially exceeding token limits. The key challenge is identify-
ing and selecting only the most relevant context to include in prompts, ensuring
accurate, concise explanations and actionable recommendations.

3.2 Ensuring Validity of Automated Repairs

Generative models might propose repairs that, while plausible, could uninten-
tionally violate established architectural interfaces or critical system proper-
ties. Maintaining consistency within compositional reasoning frameworks, such
as AGREE, requires continuous validation. Thus, repairs must be tightly inte-
grated with formal verification steps to ensure that each modification preserves
overall system correctness.

3.3 Minimizing User Effort and Interaction Latency

Manually reviewing detailed logs and deeply nested temporal logic from coun-
terexamples is both error-prone and time-consuming. An effective repair process
must significantly reduce user overhead by automating log analysis, semantic
comparisons between successive runs, and managing formal proof re-validation.
Minimizing both system latency and human interaction time is essential to
achieve an efficient, near-interactive model repair workflow.
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Fig.3: AGREE-Dog Ul interface showing integrated model diagnostics, user in-
put, token count, response time, and push-button feedback loop. Each repair
cycle is proof-aware and synchronized with AGREE log results.

4 AGREE-Dog Architecture

This section details AGREE-Dog’s architecture (Figure [4)), systematically high-
lighting key subsystems designed to overcome the practical challenges identified
previously (Section 3). Specifically, in this section, we present AGREE-Dog’s
intuitive user interface, sophisticated memory and context management algo-
rithms, formal validation-driven feedback loops, and integration with OSATE
and version control systems.

4.1 TUser Interface and Interaction Workflow

AGREE-Dog features an intuitive, streamlined user interface (UI), (Figure [3)),
seamlessly integrated within the OSATE environment, designed specifically to
minimize cognitive load and simplify complex verification tasks. Central to its
usability are clearly labeled, push-button controls, enabling users to directly
interact with counterexample explanations, formal validations, and system-level
model repairs from a single coherent point of interaction.

A fundamental design principle of this Ul is to balance transparency with
abstraction—clearly presenting operational outcomes without burdening users
with underlying complexities. This approach promotes efficiency, productivity,
and verification effectiveness.

At the center of user interaction is the Feedback button, which synchronizes
the internal state of OSATE with AGREE-Dog, updating its variables and inter-
nal data structures. This synchronization ensures coherence between AGREE-
Dog’s conversational state and the current OSATE project status, thus setting
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Fig.4: AGREE-Dog workflow illustrating the integration of formal verification
with context-aware explanation and iterative model repair.

the stage for effective model analysis and refinement—detailed further in the
next sections.

We complement this mechanism, with the Insert button which enables seam-
less integration of AGREE-Dog’s suggested model repairs directly into OSATE,
significantly streamlining what would otherwise be a tedious manual integra-
tion process. User-driven requests or specific instructions are submitted via the
Submit button and can be further elaborated upon through an integrated conver-
sational chat window. This conversational approach encourages precise, targeted
refinements by enabling iterative and detailed guidance from the user.

Additional UT elements enhance interaction quality and knowledge retention.
The Save button allows users to archive conversational histories for later review
or further analysis and evaluations, as shown in Section [6] while the integrated
Git control provides mechanisms for persistent storage, sharing of verification
outcomes, and collaborative insight generation.

Moreover, advanced configurations are accessible via the dedicated Settings
menu, allowing users to customize interaction workflows and select optimal LLM
models tailored to specific tasks—such as generating explanations and repair
suggestions (best supported by GPT-03), or facilitating rapid implementation
of code repairs (ideally powered by GPT-40), as further detailed in Section



4.2 Backend Function Call Graph and Workflow Automation

To support interactive workflows, AGREE-Dog automates 16 critical DevOps
and ProofOps steps. The backend orchestration, summarized in Figure [7}, man-
ages operations ranging from artifact selection and prompt construction to au-
tomated AGREE invocations. AGREE-Dog utilizes context and history-aware
agents that dynamically select relevant artifacts, perform semantic diffs, and in-
voke proof engines. Each backend operation is highly optimized, incurring neg-
ligible runtime overhead (less than one second per operation), as demonstrated
by the empirical results in Section [0}

4.3 Context Selection and Memory Management Optimization

Effective context selection and memory management are critical to AGREE-
Dog’s ability to provide precise explanations and actionable repairs involving
complex AADL artifacts, execution traces, and user instructions. Addressing
these challenges requires the sophisticated, carefully optimized mechanisms em-
bedded within AGREE-Dog’s core copilot algorithm.

Core Copilot Algorithm Algorithm [I| embodies the central context man-
agement strategy of AGREE-Dog, as conceptually outlined in Figure [l This
algorithm integrates intelligent conversational state tracking, dynamic artifact
selection, and optimized memory management processes to efficiently support
model verification and repair tasks.

Optimized Dynamic Context Retrieval and Updates. Algorithm [1| dynamically
selects a minimal yet sufficient context—including relevant AADL source files,
counterexamples, AGREE logs, and system requirements, and interactive user
instructions—for accurate verification and effective repair interactions. Lever-
aging its integrated dynamic Context Retrieval component, the algorithm selec-
tively imports only the most recently updated model artifacts, identified through
AGREE-log updates received from OSATE, by traversing dependency chains and
referencing stored conversational data.

By default, the context retrieval strategy excludes standard training data
such as core libraries typically present in LLM training sets, thus optimizing
token usage. However, users retain flexibility to explicitly include or exclude
any files from the complete import chain during initialization, incorporating
selected context elements into the initial prompt. Once included, these explicitly
imported files remain static in memory unless updated explicitly by the user or
signaled via AGREE logs. Additionally, natural-language requirement files (e.g.,
CSV-based inputs), not tracked by AGREE logs, are monitored independently
with automatic checks performed every two seconds to detect changes.

This nuero-sympolic (intersymbolic) and user-customizable selection process
significantly reduces redundancy, enhances convergence speed toward correct
model solutions, minimizes generative model latency, and mitigates hallucina-
tions caused by irrelevant context.



Algorithm 1: AGREE-Dog Interactive Copilot Prompt Construction
and Counterexample Handling

Input: AADL Model Files, Counterexample File (optional), System
Requirements (optional)
Output: Prompt for GPT-based AGREE-Dog Copilot, Actionable Repair
Suggestions

Initialization:

Load command-line arguments: working directory, start file, counterexample,
requirements file;

Load OpenAI API key;

Initialize logging system;

Main Procedure:

if requirement file provided then
‘ Load and include requirements in prompt context;

else
L Set requirements context to "No sys_ requirement file provided ",

Prompt Construction:
Read top-level AADL file from provided workspace;
Parse import chain and extract relevant AADL files (avoid standard libraries);
if counterezample provided (CLI or file) then
L Load counterexample into context;

else
Search for recent counterexamples:

— Check command-line provided counterexample path first.

— If unavailable, parse agree.log for failing contracts.

— Match failing contracts with available counterexample XML /text files.
— Extract and format counterexample(s) for inclusion.

Construct comprehensive prompt with:

1. System Requirements (if available)

2. AADL Model Content

3. Counterexample(s) Explanation

4. Explicit instructions for GPT (repair suggestions within AADL syntax)

Interaction and Feedback Loop (via Dash UI):

while copilot session active do

Receive additional user input (optional);

Combine with the current prompt context (if any);
Submit prompt to GPT-40/GPT model via OpenAl API;
Retrieve response:

— Explain verification failures clearly
— Suggest repairs in AADL syntax, respecting requirements

Present GPT response to user;
Log interaction and update metrics (latency, tokens used, etc.);
if user applies modifications then
Extract AADL repair suggestions from GPT response;
Safely overwrite the original AADL model file;
Notify user of successful update or handle exceptions;

Quality Assessment and Logging:

Automatically record metrics (timestamps, token use, latency);
Store interaction logs for future analysis and fine-tuning;
Shutdown Procedure:

On user request, terminate the copilot session gracefully;




Memory Management Optimization Mechanism. A critical component of Algo-
rithm [T is its internal conversational memory management subsystem, detailed
fully in Appendix A. This subsystem employs a structured, list-based repre-
sentation to balance immediate responsiveness with longer-term conversational
persistence. Short-term interactions are retained in readily accessible memory
for efficient prompt updates, while less immediate interactions can optionally be
saved locally by the user or systematically migrated into persistent storage man-
aged by integrated Git version control. This approach allows AGREE-Dog to
effectively recall prior repair strategies and interaction histories, thus enhancing
iterative repairs and significantly reducing the overhead associated with manual
snapshots management.

Furthermore, AGREE-Dog’s memory management strategy directly facili-
tates ongoing system refinement. Archived conversational histories and validated
repairs can subsequently be leveraged to fine-tune the underlying generative
models, enabling continual improvement in the quality of explanations and re-
pair suggestions.

4.4 Verification-Aware Feedback Loop and Repair Validity

AGREE-Dog’s neuro-symbolic reasoning, achieved by combining AGREE’s for-
mal verification with generative Al explanations, establishes a rigorous, verification-
aware repair loop. Central to this process, AGREE-Dog invokes AGREE exter-
nally via API calls to ensure that all proposed repairs strictly adhere to system-
wide consistency and soundness criteria.

This verification-integrated approach not only acts as a safeguard against un-
sound or logically inconsistent model modifications but also enhances the quality
of data fed into the generative model. By proactively filtering invalid suggestions,
AGREE-Dog reduces the overall token volume required, thereby significantly
improving LLM latency and maintaining model reliability and trustworthiness.
Such integration distinctly differentiates AGREE-Dog from purely neural LLM
approaches, which inherently lack logical soundness checks and may erroneously
group logically distinct, yet superficially similar elements |9}|15}/16].

Additionally, the semantic diffing mechanism embedded in AGREE-Dog de-
tects relevant model changes precisely across iterative repair cycles, facilitating
faster convergence to formally valid solutions. This integrated neuro-symbolic
loop thus effectively bridges generative Al capabilities with rigorous MBSE based
formal verification.

4.5 Traceability, Logging, and Continuous Refinement

The extensive logging within AGREE-Dog serves dual purposes. First, it fa-
cilitates real-time diagnostics, enabling rapid identification of effective conversa-
tional interactions and successful repair strategies. As illustrated in the AGREE-
Dog user interface (Figure, key performance indicators—including AGREE va-
lidity status, token count, system and human return time, and LLM latency—are



prominently displayed, providing users immediate feedback to gauge interaction
effectiveness.

Second, the detailed logs support ongoing system refinement by highlighting
conversational patterns consistently associated with high-quality, formally valid
repairs. This capability directly informs the metrics employed for evaluating
AGREE-Dog’s performance, as further detailed in Section [6] and Section [5} By
analyzing logged interaction timelines and human response metrics, AGREE-
Dog identifies optimal repair strategies, promotes knowledge reuse, and reduces
manual intervention, significantly enhancing both short-term repair efficiency
and long-term knowledge retention.

5 Evaluation Metrics

This section introduces the core metrics used to evaluate AGREE-Dog’s per-
formance. We organize them into two complementary categories: structural (or
spatial) metrics, which quantify the shape and volume of interaction, and tempo-
ral metrics, which capture responsiveness and turnaround time. Together, these
metrics enable a holistic assessment of automation, effort, and cost.

5.1 Structural Metrics

Structural metrics quantify how the repair process unfolds—how many interac-
tions occurred, how much human input was required, and how much computa-
tional effort was expended.

Total Token Count (TTC). This metric captures the total number of tokens
exchanged during a repair conversation, including both human-authored tokens
and those generated by AGREE-Dog—either by the LLM or by the system’s
prompt constructor:

TTC = Human Tokens + AGREE-Dog System Tokens (1)

TTC serves as a proxy for computational and financial cost (e.g., token-based
billing), independent of who authored the tokens. However, it does not by itself
distinguish the extent of human involvement.

Human Input Ratio (HpR). This metric measures the proportion of human-
authored tokens relative to the total token count:

_ Human-Authored Tokens
" Total Tokens in Conversation

HpR (2)

A lower HpR suggests higher automation, with the system contributing more
heavily to the conversation. When considered with TTC, this helps differentiate
brief, efficient sessions from those with more human effort or verbosity.



Number of Repair Cycles (Nrc). This metric counts the number of conver-
sational cycles required to reach a valid system state:

Ngrc = Number of Repair Cycles Until Validity (3)

Each cycle begins with a start_file_read message and ends with a validity_-
status: valid confirmation. Together, Ngc, HpR, and TTC form a triplet that
reflects the intensity, automation level, and computational cost of the repair pro-
cess.

Repair Success Rate (RSR). This metric measures how often AGREE-Dog
succeeds in exactly Ngrc cycles:

Number of Tests Solved in Ngc Cycles
Total Number of Tests

RSR(Nre) = (4)

Cumulative Repair Success Rate (RSR,..). This cumulative variant cap-
tures the percentage of tests solved within a given number of cycles:

Number of Tests Solved in < Ngrc Cycles (5)
Total Number of Tests
These success rate metrics extend the basic structural measures to account

for convergence and consistency. They are operationalized in Section [6] where
we analyze repair outcomes and cycle distributions (see Figure @

RSRacc (NRC) =

5.2 Temporal Metrics

While structural metrics describe what happened during the interaction, tem-
poral metrics quantify how long it took—enabling assessments grounded in real-
world engineering effort and user experience.

Wall-Clock Time (WCT) The total elapsed time from the first user input
to final validation. WCT serves as a practical proxy for engineering effort and
turnaround time. Shorter durations may reflect both efficient execution and the
usefulness of AGREE-Dog’s guidance.

WCT also conveys a notion of Repair Speed—how many valid tasks are
completed per unit of time. For example, in our evaluation (Section @, the
mean WCT per valid cycle was 2 minutes and 9 seconds, with a median of 1
minute and 39 seconds.

LLM Latency The average LLM response time per repair cycle. Lower latency
improves interactivity and helps maintain user focus, especially in iterative or
multi-step sessions.

Next, we define a dependent metric based on the previous temporal measure-
ments to estimate the human return time.
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Fig.5: AGREE-Dog Conversation Quality Assessment Workflow (CQAW). The
workflow tracks structural metrics from conversation histories and temporal met-
rics from copilot logs, leveraging timestamps to measure user and LLM response
latencies. Finally, metrics are analyzed and visualized using AGREE-Dog’s sta-
tistical utility

Human Return Time (HRT) This metric estimates the time required for
a human to return to a task and make cognitively informed decisions necessary
to reach validity during the interaction. It is calculated as the total wall-clock
time minus the time AGREE-Dog spends in CPU execution and large language
model (LLM) processing. Formally:

HRT = Wall-Clock Time — CPU Time — LLM Response Time (6)

5.3 Composite Score: Structural and Temporal Dimensions

To facilitate comprehensive evaluation, we interpret AGREE-Dog’s performance
using a composite score that integrates both structural and temporal dimensions:

(Ngc, HpR, TTC, Wall-Clock Time, LLM Response Latency, CPU Time) (7)

This composite vector captures not only the automation level and concise-
ness of each repair session but also temporal efficiency. For instance, sessions
with identical token counts and automation levels might still differ significantly
in usability due to variations in latency or total duration. Additionally, this for-
mulation supports the calculation of derived metrics, such as Human Return
Time (HRT) (Eq. [6) and Repair Success Rate (RSR).

By combining structural and temporal perspectives, the composite score pro-
vides nuanced insights into human—system interaction dynamics, balancing token
efficiency with practical engineering outcomes.

6 Experimental Evaluation

6.1 Evaluation Setup and Fault Injection Protocol

Using the Conversation Quality Assessment Workflow (CQAW, Figure , we
systematically tracked structural and temporal metrics to comprehensively eval-



uate AGREE-Dog. Our experiments involved thirteen fault-injected test sce-
narios based on an AADI-based Car model. Each scenario featured dynami-
cally evolving artifacts—including AADL source files, natural-language require-
ments, counterexample traces, AGREE log files, and LLM-generated diagnos-
tics—culminating in approximately 32,100 tokens across all scenarios. On aver-
age, scenarios began with around 400 lines of AADL and log content, fewer than
100 lines of counterexample traces, and less than 100 lines of natural-language
inputs.

Faults targeted three safety-critical subsystems (Top-Level Control, Steering,
and Transmission), triggering 16 repair cycles. Injected faults covered typical be-
havioral and contract-level violations—ranging from incorrect assumptions, logic
errors, and range violations to faulty assignments and temporal inconsisten-
cies. Repairs were accepted only after passing AGREE’s formal verification and
manual user confirmation via AGREE-Dog’s insert command, ensuring both
correctness and soundness. Detailed scenarios and artifacts are documented in
Appendix |A| and made available in our public GitHub repositoryﬂ

Evaluation Metrics. Figure [6a visualizes repair convergence across the sce-
narios. Table [f]summarizes AGREE-Dog’s structural and temporal performance
metrics (defined in Section . Next, we summarize the key insights obtained
from our evaluation, supported by quantitative data presented in Table [6] and
visualized in Figure [6a]

6.2 Key Results.

This evaluation demonstrates the feasibility of integrating generative AI (GenAl)
with formal verification in Model-Based Systems Engineering (MBSE). By com-
bining large language model reasoning with AGREE-based validation in OS-
ATE 2, AGREE-Dog delivers verifiable repairs with minimal human effort.

1. Rapid Convergence with Reduced Human Intervention Frequency:
AGREE-Dog resolved approximately 85% (11 out of 13) of the test cases
within a single cycle, while the remaining cases required two or three cycles
(approximately 7.5% each). This demonstrates swift convergence and sig-
nificantly reduces the frequency of user interventions needed across diverse
fault scenarios.

2. High Automation with Minimal Human Effort: Estiamted by (HpR)
metric, Human-generated content constituted less than 0.1 % of the overall
tokens, with AGREE-Dog autonomously generating more than 99.9 % via its
integrated prompt construction mechanism and language model. Combined
with the rapid convergence rate noted previously, this outcome highlights
AGREE-Dog’s capability to effectively automate model repairs, significantly
reducing manual input relative to the extensive verification contexts encoun-
tered.

! nttps://github.com/loonwerks/AgreeDog
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Fig. 6: AGREE-Dog Evaluation Metrics and Convergence
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(a) Repair cycles required to achieve system-wide validity.

(b) Structural and Temporal Metrics Summary

Metric Result

Structural Metrics

System Validity 100% achieved for all test scenarios

Repair Success Rate (RSR) 11/13 (84.6%) in 1 cycle; 1/13 in 2 cy-
cles; 1/13 in 3 cycles

Human Input Ratio (HpR) < 0.1% of total tokens

AGREE-Dog Generated Input > 99.9% of total tokens

Token Use (per test suite) 4.8k, 5.5k, 22k tokens

Temporal Metrics

Wall-Clock Time (WCT) Mean: 2:09 min; Median: 1:39 min

LLM Latency (per cycle) Mean: 22 s; Range: 4-33 s

3. Efficiency and Reduced Human Return Time (HRT):

AGREE-Dog demonstrated significant computational and cognitive efficiency
throughout the evaluation. Internal computational overhead consistently re-
mained below one second per operation, complementing an average LLM
latency of approximately 22 seconds per cycle. While the median overall
wall-clock time (WCT) was about 1 minute and 39s the average human re-
sponse time (HRT) was approximately 1 minute and 3 seconds. This average,
however, was notably skewed by two outlier cases; in fact, 85 % of scenar-
ios achieved total resolution (WCT) in under 45 seconds—including LLM
latency—limiting human analysis and decision-making time to less than 23
seconds per scenario in 11 out of 13 cases. Compared to traditional manual
verification approaches, which typically require hours or days, AGREE-Dog’s
structured guidance and intuitive natural-language explanations significantly



reduced human cognitive effort estimated by (HRT) metric and the overall
interaction duration (WCT).

7 Conclusions and Future Work

To enhance the explainability and usability of AGREE-generated counterex-
amples, we developed AGREE-Dog, the first open-source conversational copilot
specifically integrating neuro-symbolic methods with AGREE’s formal verifi-
cation tools within the OSATE environment. AGREE-Dog produces intuitive,
natural-language explanations for complex counterexamples, significantly reduc-
ing human effort and cognitive load required for formal model repairs. Our ex-
perimental evaluation demonstrates AGREE-Dog’s feasibility and effectiveness
at realistic MBSE scales—handling scenarios spanning tens of thousands of to-
kens without notable performance degradation. These initial results provide a
promising evidence for the practical utility and scalability of neuro-symbolic
methods, highlighting significant potential for broader educational and indus-
trial adoption. AGREE-Dog is publicly accessible on GitHub.

Despite these encouraging outcomes, several avenues for future improvement
and exploration remain. We intend to continue evaluating AGREE-Dog on in-
creasingly sophisticated and complex system models and formal specifications.

Furthermore, ongoing developments in large-context language models (e.g.,
GPT-4.1’s 1-million-token context window) offer substantial opportunities to
explore more autonomous decision-making frameworks, including reinforcement
learning-driven judge-router-worker agentic architectures. Such systems could
dynamically and autonomously select optimal repair strategies, further reduc-
ing manual intervention. Additionally, extending AGREE-Dog’s capabilities to
emerging modeling standards, such as SysML v2 [10], represents a key future
goal, especially considering that no current SysML v2 tools support comprehen-
sive compositional reasoning or temporal logic analysis comparable to AGREE.

Lastly, the integration of our evaluation workflow into INSPECTA’s DevOps
Assurance Dashboard will facilitate continuous monitoring, displaying metrics
such as model modifications, counterexample handling efficiency, and AGREE
usage statistics. This integration aims to quantify the tangible benefits of more
explainable counterexamples, driving targeted improvements in usability and
overall user experience.

We look forward to exploring these directions in future work and reporting
further advancements toward integrating neuro-symbolic verification approaches
in MBSE.
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A Appendix

Algorithm 2: Memory Management and Prompt Optimization in
AGREE-Dog

Input : User input, conversation state, AADL model repository, optional
requirements file
Output: Optimized prompt, updated conversation history
Initialize Short-Term, Temporary, and Long-Term memories;
Identify and load recently updated files:
— Identify recently updated files in repository.
— Load only these updated files into Temporary memory.
— Cache filenames and timestamps.

Integrate system-level requirements (if provided);
Construct prompt from:

— Updated files from Temporary memory.
— User input and interaction history.
— System-level requirements.

Ensure prompt size within token limits (truncate oldest entries if necessary);
Generate response from AGREE-Dog model;
Update Short-Term memory with latest interaction;
if User selects Save Conversation then
L Save conversation to Long-Term memory;

if User selects Commit to Git then
Stage conversation and updated files;
Commit and push to remote repository;

return optimized prompt, updated conversation history;
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Fig.7: AGREE-Dog backend function call graph illustrating automated De-
vOps/ProofOps orchestration. Nodes represent key operations, while edges in-
dicate dependencies and data flows between components.
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