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ABSTRACT

Emerging technologies for nanoscale computation such as self-assembled nanowire arrays present specific
challenges for logic synthesis. On the one hand, they provide an unprecedented density of bits with a high
degree of parallelism. On the other hand, they are characterized by high defect rates. Also they often exhibit
inherent randomness in the interconnects due to the stochastic nature of self-assembly. We describe a general
methodfor synthesizing logic that exploits both the parallelism and the random effects. Our approach is based
on stochastic computation with parallel bit streams. Circuits are synthesized through functional decomposi-
tion with symbolic data structures called multiplicative binary moment diagrams. Synthesis produces designs
with randomized parallel components—and operations and multiplexing—that are readily implemented in
nanowire crossbar arrays. Synthesis results for benchmarks circuits show that our technique maps circuit
designs onto nanowire arrays effectively.

Keywords:  Nanoscale Computation, Nanowires, Nanowire Arrays, Stochastic Circuits

1 INTRODUCTION the exploratory phases, still years or decades
from the point when they will be actualized.
Asthesemiconductor industry contemplatesthe  Accordingly, the development of software
endofMoore’s Law, there has been considerable  toolsand techniques for logic synthesis remains
interest in novel materials and devices (IRTS,  speculative.
2006). Technologies such as molecular switches And yet, for some types of new technolo-
and carbon nanowire arrays offera pathtoscal-  gies, we can identify broad traits that will likely
ing beyond the limits of conventional CMOS impinge upon Synthesis. For instance, nano-
(FENA, 2006). Most such technologies are in  wire arrays are stochastically self-assembled
in tightly-pitched bundles. Accordingly, they

exhibit the following (DeHon, 2005):
DOI: 10.4018/jnmc.2009120903
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1. Ahigh degree of parallelism.

2. Minimal control during assembly.

3. Inherent randomness in the interconnect
schemes.

4. High defect rates.

Existing strategies for synthesizing logic for
nanowire arrays are based on routing schemes
similar to those used for field-programmable
gate arrays (FGPAs) (DeHon, 2005). These
rely on probing the circuit and programming
interconnects after fabrication.

We describe a general method for synthe-
sizing logic that exploits both the parallelism
and the random effects of the self-assembly,
obviating the need for such post-fabrication
configuration. Our approach is based on sto-
chastic computation with parallel bit streams.
Circuits are synthesized through functional
decomposition with symbolic data structures
called multiplicative binary moment diagrams.
Synthesis produces designs with randomized
parallel component—AND operations and
multiplexing—operating on the stochastic
bit streams. These components are readily
implemented in nanowire crossbar arrays. We
present synthesis results forbenchmarks circuits
illustrating the method. The results show that
our technique is effective in implementing
designs with nanowire arrays, with a measured

tradeoff between the degree of redundancy and
the accuracy of the computation.

2 CIRCUIT MODEL

Ourdiscussion of synthesis is framed in terms of
aconceptual model for nanowire arrays. (In the
later part of the article, we justify this model with
implementation details.) A nanowire crossbar
is illustrated in Figure 1. The connections be-
tween horizontal and vertical wires are random.
However, we assume that these connections are
nearly one-to-one, that is to say, nearly every
horizontal wire connects to exactly one vertical
wire, and vice-versa. This is a specific attribute
of types of nanowire arrays, controlled during
self-assembly (DeHon, 2005).

2.1 Parallel Stochastic Bit Streams

Our synthesis method implements digital
computation in the form of parallel stochastic
bit streams. We refer to a collection of parallel
nanowires as a bundle. The width of a bundle
is the number wires. Its current weight is the
number of logical 1’s on its wires. The signal
that it carries is a real value between zero and
one corresponding to the fractional weight: for
a bundle of N wires, if £ of the wires are 1,
then thesignalis £ / N .Let P(X = 1) denote

Figure 1. Nanowire crossbar with random connections
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the probability that any given wire in bundle
X carriesa 1.

2.2 Shuffling Devices

We implements computation with two basic
nanowire constructs: shuffled ANDs and
Bundleplexers. We describe these only in con-
ceptual terms here; implementation details are
postponed until the later part of the article.

2.2.1 Shuffled AND

A shuffled AND has two bundlesof N wires as
inputs and a bundle of N wires as the output.
Each wire in the output bundle is actually the
output of an AND gate, which takes one input
from the first input bundle and the other from
the second. The choice of which inputs are fed
into which AND gate israndom. Figure 2 shows
a simple shuffled AND with N = 3.

Suppose that the signal carried by the first
inputbundle A is a ,that carried by the second
input bundle B is b, and that carried by the
outputbundle C is c. Provided that the bits in
the first and second input bundles are indepen-
dent, for large N we can assume that

c=P(C =1) 6

=P(A=1andB =1) ()

=PA=1)-PB=1) 3
=a-b “@)

We see that a shuffled AND in effect per-
forms the multiplication of the signals carried
by the two input bundles.

2.2.2 Bundleplexer

A bundleplexer has two bundles of N wires
as its inputs and a bundle of N wires as its
output. It is tagged with a fixed selecting ratio,
0 < s <1 . The output bundle is composed of
a randomly selected choice of sN bits from
the first input bundle and (1 — s)N bits from
the second. The choice is not ordered: rather,
a random shuffling occurs. Figure 3 shows a
bundleplexer with N = 4 and s =3 /4.The
output bundle has three wires from input bundle
A and one wire from input bundle B .

Suppose that the signal carried by the
first input bundle A is a, that carried by the
second input bundle B is b and that carried
by the output bundle C is ¢ . For large N, we
can assume that

c=P(C =1) (5)

=sP(A=1)+(1-)P(B =1) )

Figure 2. A shuffled AND element, for bundles of width 3
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Figure 3. A bundleplexer with N =4 and s =3 /4

4 ——— 3/4 Bundleplexer
a, |

A
a; - a;
as -a;

b C

Bd Y
b,
by~

= sa +(1—s)b. (7) arithmetic multiplication and addition. (In fact,

We see that a bundleplexer in effect per-
forms a scaled addition on the signals carried
by the two input bundles.

2.3 Stochastic Circuits

Our synthesis method produces a circuit design
that operates on the fractional-weighted values
carried by bundles of wires. Our approach is
analogous to the formulation of a real-valued
polynomial representation of a circuit, with

we perform synthesis with symbolic data struc-
tures called binary moment diagrams.)

For example, consider a circuit with the
Boolean truth table shown in the top-right in
Figure 4. Its output ¥ can be represented as

y=a+b—2ab

Evaluating this polynomial for all Boolean
values of a and b gives the correct Boolean
output ¥ . We use shuffled ANDs for multiplica-
tion and bundleplexing for addition.

Figure 4. An example of the formulation of a stochastic circuit
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Foracircuitwith m inputsand 7 outputs,
wehave m inputbundlesand n outputbundies
(each bundle consisting of N parallel wires).
For computation, all the wires in each input
bundle are set to the corresponding Boolean
input value (so all the wires in each bundle are
set to 0 or to 1). With bundleplexing, wires are
randomly selected from separate bundles. As a
result, the internal bundles carry stochastic bit
streams with fractional weightings.

We assume that the output of the circuit is
directly usable in a fractional-weighted form.
For instance, in sensor applications, an analog
voltage discriminating circuit might be used to
transform an output bundle of bits intoa Boolean
value. We assume direct quantization: an output
signal greater than or equal to 0.5 corresponds
to logical 1; less than this corresponds to 0.

Figure 4 illustrates the formulation. Bun-
dles of width N = 4 are used. The truth table
shown in the bottom-right gives the fractional
weight on the output bundle Y . For inputs
A=1and B=0,wehave Y = 3 /4 ,which
correspondstological.For A =1and B =1,
wehave Y =1 /4 ,which correspondsto logi-
cal 0. Thus, the stochastic circuit implements
the same Boolean function as that shown in the
top-right truth table.

3 SYNTHESIS OF
STOCHASTIC CIRCUITS

Our synthesis procedure begins with the speci-
fication of a combinational circuit, say in the
form of a netlist, and produces a stochastic
design consisting of shuffled AND elementsand
bundleplexer elements. Synthesis is performed
through functional decomposition with a variant
of binary decision diagrams called multiplica-
tive binary moment diagrams (*BMDs) (Bryant
& Chen, 1995).

3.1 Multiplicative Binary
Moment Diagrams

Like binary decision diagrams, *BMDs are
a graphic representation of functions over

Boolean variables; however, they can have
non-Boolean ranges. Figure 6 shows an ex-
ample of a *BMD for the circuit in Figure 5,
implementing the function:

y = (g, Az)) N(z, V,))V (K, Ag,).

There is a total ordering of the variables in
a *BMD. Also, each non-terminal vertex has
outgoing edges to two children. Three salient
features of *BMDs are:

1. There can be more than two terminal ver-
tices and each terminal vertex can have a
numberotherthan O or 1. (Terminal vertices
are shown as square boxes at the leaves of
the tree.)

2. Eachedge has an associated weight which
caneither be an integer orareal value. (The
weights are shown in square boxes written
directly on the edges; an edge withoutabox
is assumed to have weight 1; the weights of
edges that connect to terminal vertices are
simply the weights of the terminal vertices
themselves.) Note that the edge pointing
to the root can also have a weight. (For
example, see Figure 7(b).) The function
represented by a *BMD is the product of
the root weight and the function at the root
vertex.

3. The left edge from each vertex indicates
the case where the function is independent
of the vertex variable; the right edge indi-
cates the case where the function depends
linearly on that variable. (In diagrams, we
sometimes exchange “left” and “right” to
get prettier graphs; when we do so, we
indicate this by annotating the edges with
L and R ) Thus, the function / atavertex
with variable z is

f=w,f, +wfe, ®

where ¥, isthe weight of the leftedge and w,,
is the weight of theright edge; f, isthe function
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Figure 5. A simple circuit

X

X2 —— / .

X3

X4 — / L y

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

att
ist
rig]
thr

wil

col
al

pt

ti
(1

- » -l W

w wn M U



Intemational Journal of Nanotechnology and Molecular Computation, 1(4), 39-57, October-December 2009 45

at the vertex pointed to by the left edge and J;
is the function at the vertex pointed to by the
rightedge. We obtain the function for the *BMD
through such recursive decomposition.

In order to construct a *BMD, we begin
with base functions corresponding to constants
and individual variables, and then we build more
complex functions by combining these. Given
a circuit, we obtain a *BMD for its Boolean
function by expressing it in terms of addition
and multiplication operations. For the *BMD
in Figure 6, the function is

f=zz3 tozz +o,5 - 2522 (9)

In general, for a circuit with multiple out-
puts, there are separate * BMDs for each output.
However, in the data structure, significant por-
tions of different *BMDs can often be shared
(Bryant & Chen, 1995).

3.2 Decomposing a *BMD into
Positive and Negative *BMDs

After obtaining a *BMD for a circuit, the next
step in our procedure is to decompose it into two
*BMDs, both withnon-negative-weighted edges,
such that the function of the original *BMD
equals that of the first *BMD minus that of the
second. We call the first *BMD the positive
*BMD and the second the negative *BMD.

Figure 7 shows the positive and negative
*BMDs for the *BMD in Figure 6. The function
ofthepositive*BMDis z,z,z, + z,z,7, + z,7,
and the function of the negative *BMD is
222,33, . The procedure for thisdecomposition
is given as pseudo-code in Figure 8.

In the pseudo-code, we represent a *BMD
as a weighted pair of the form (w,v), where
v designates the root vertex and w is the root
edge weight. (This pair alsorefers to the function
represented by the *BMD.) Avertex y = A de-
notesaterminal leaf. The function Var( v ) returns
the variable of vertex v . The function Lefi(v)

returns the left pair of v: (w,,v, ), where w,
is the weight of the left edge of v and v, is the

left child of v . Similarly, the function Right
(v ) returnsthe right pair of v : (w,,v,),where

w, isthe weight of the right edge of v and v,
is the right child of v .

The function MakeBranch(z, (w,,v,),
(w,,v,)) constructs a new *BMD. It returns
a pair (w,v) designating a *BMD, such that
wf(v) = w,f(v,) + w f(v,)x . Here, f(v)
denotes the function of vertex v . The func-
tion ApplyWeight(w', (w,v)) multiplies the
function of the pair (w,v) by a constant w’
and returns the resulting pair. The functions
MakeBranch and ApplyWeight are described
in (Bryant & Chen, 1995).

The function PosNegBMDin Figure 8 takes
a pair (w,v) representing a *BMD as an input
argument and returns two pairs (w,,v,) and

(wy,vy ) representingthe positive and negative
*BMDs, respectively. It first obtains the positive
and negative *BMDs without considering the
weight w . In the non-trivial case, i.e., when
v is not a terminal vertex, it recursively calls
PosNegBMDto obtainthe positive and negative
*BMDs of the *BMDs designated by the left
and right pairs of v . Then, the procedure calls
the function MakeBranchto constructa positive
*BMD based on the two positive *BMDs of the
leftand right pairs of v . Similarly, it constructs
a negative *BMD based on the two negative
*BMDs of the left and right pairs of v . Finally,
it calls the function WeightChange to apply the
weight w to the previously obtained positive
and negative *BMDs. If w > 0, then Weight-
Change just calls the function ApplyWeight to
multiply both the positive and negative *BMDs
by the weight w . Otherwise, the positive *BMD
is taken to be the previously obtained negative
*BMD multiplied by —w ; the negative *BMD
is taken to be the previously obtained positive
*BMD multiplied by —w .

3.3 Transforming a *BMD
into a Unit-Weight *BMD

In order to build a stochastic circuit, we need
to transform *BMDs with integer edge weights

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of 1G1 Global
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Figure 7. The positive and negative *BMDs for the *BMD in Figure 6. (@) Positive *BMD; (b)

Negative *BMD

into *BMD:s of a special form, which we call
unit-weight: a *BMD is unit-weight if the
absolute values of the edge weights of each
non-terminal vertex sum to 1.

Figure 9 gives the unit-weight *BMD
corresponding to the positive *BMD in Figure
7(a). The unit-weight *BMD corresponding to
the negative *BMD in Figure 7(b) is just itself,
The procedure for this transformation is given
as pseudo-code in Figure 10.

Assume that the original *BMD has vari-

ables x,,z,,---,z, and that they are ordered
as r < <-- <z .(Heretheroot vertex

has variable Z, .)Each vertex in the unit-weight

(b)

*BMD has three data members recording the
weights:

1. LeftWeight: The edge weight of its left
branch.

2. RightWeight: The edge weight of its right
branch.

3. FuncWeight: The weight used to keep
the function at that vertex unchanged.
The function at a vertex in the unit-weight
*BMD multiplied by its FuncWeight equals
the function at the corresponding vertex in
the original *BMD.

In Figure 9, we show the FuncWeight of
each vertex in parentheses. For example, the
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b ‘ Figure 8. Procedure for decomposing a *BMD into positive and negative *BMDs
function  PosNegBMD (pair (w, v))
it v =4
then (wp,vp) < (1, A)

(wy. vy ) < (0,A)

else (wpy . vpr ) (Wyr . var, ) < PosNegBMD (Left (v))
(Wpr.vpr ) (Wyg . vag ) <+ PosNegBMD (Right (v))
(wp,vp) «— MakeBranch (Var (v), (wWpy ,vpy ), (Wpr.Ver))

(wy . vy ) — MakeBranch (Var(v), (wap . vaL ) (War . Var J)

end il
(wp.vp), (wy, vy ) «— WeightChange (w, (wp ., vp), (wx.,Vx))

rewurn  (wp.vp), (W, vy )

tunction  WeightChange (wtype w, pair (wp, vp ), pair (wy, vy )) .

ifw> 0
then (wp.vp) «— ApphyWeight (w. (wp,vp))
(wy.vy) — AppheWeight (w, (wy . vy ))

elsc (wp,vp) «— ApplyWeight (—w, (wy, vy )

he 5 (Wa . vy ) — ApplyWeight (—w, (wp,vp))
end if

aft return  (wp, vp ) (wy. vy )
tht

FuncWeight for vertex m, equals 2 and the for all the vertices with z, ; and so on through
ep . .

1 1 to . For each vertex v in the unit-weight

5d. H H , = - —T. 13 .
1 function for m, is fy =5%% + 5%, The  sp\D et its Lfileightand the LefiWeight of
s function for the corresponding vertex 7, in  the corresponding vertex in the original *BMD

n Figure 7(a) is f, = 2,2, + 2, = 2f,.. be w,, and w

In the initialization, we set the FuncWeight
for each terminal vertex to the weight of that
vertex. Then the procedure modifies the edge

weights forallthe vertices with variable z, ;then

o, » Tespectively. Let its Right-
Weightand the RightWeight of the corresponding

vertex in the original *BMD be w,, and w,,, ,
of

respectively. Let its FuncWeight be w,,. .
e
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Denote the FuncWeight of its left child and

its right child as w,, and w,, , respectively.
We have the following equations to determine

Wy, s Wy and Wy
Wyp =| Wy, * Woy | + | wp, *Wog 1
Wy Wy,
w - b
vL
Wy
Weg " Wor
Wy = — —
w

UF

Finally, we set the root edge weight w,
of the unit-weight *BMD to

w, = w, - w,(root),

where %, is the root edge weight for the origi-
nal *BMDand w, (root) is the FuncWeight for
the root vertex.

If the original *BMD has integer edge
weights, thenthe edge weights ofthe unit-weight
*BMD builtby the procedure MakeUnitWeight-

Figure 9. The unit-weight *BMD corresponding to the *BMD in Figure 7(a). The numbers in
parentheses gives the FuncWeight of the corresponding vertices
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Figure 10. Procedure for transforming a *BMD into a unit-weight *BMD
function MakeUnitWeightBMD (*BMD  OriginalBMD )
UnitBMD  « OriginalBMD
for each terminal vertex T of UnitBMD

i

do T FuncWeight « TermWeight (T)

or
end tor

ge

tht for i—1lton

he- )

do for each vertex V of UnitBMD with variable x;
do V.LeftWeight « ...
in

V.LeftWeight - V.LeftVertex FuncWeight

V.RightWeight «+ ...

V.RightWeight - V.RightVertex FuncWeight =
V.FuncWeight « ...

abs(V. LefiWeight ) + abs (V.RightWeight )

V.LeftWeight  «— V.LeftWeight / V.FuncWeight

V.RightWeight «— V.RightWeight / V.FuncWeight

end for

end lor

RootEdgeWeight «— root. FuncWeight - RootEdgeWeight

return  UnitBMD

BMD are all rational numbers. The root edge
weight w,, is an integer.

3.4 Transforming a Unit-Weight
*BMD into a Stochastic Circuit

In our method, we transform both the positive
and negative *BMDs into unit-weight *BMDs.
(We refer to these as UnitPosBMD and Unit-
NegBMD, respectively.) Both of these have
non-negative edge weights.

Given a unit-weight *BMD with non-
negative edge weights, we can transform it
directly intoa stochastic circuit. For each vertex
in the *BMD, we build a stochastic circuit with
an output bundle that implements the function
at that vertex. (Here, when we say ““a bundle
implementsa function”, we mean thatthe signal
carried by the bundle equals the function output
for all input combinations.)

The procedure is as follows. We first set
n bundles of inputs such that their signals are
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equal to the Boolean inputs z,2,,--,z_ of
the original circuit. Also, we provide an input
bundle with all bits equal to 1 (equivalent to a
constant logical value of 1).

Next, we build bundles implementing the
functions of vertices in the unit-weight *BMD
with variable z, ;thenbundlesimplementingthe
functions of vertices with variable z, ; and so

on through to those vertices with variable z .
For the circuit corresponding to a non-

terminal vertex v, with variable z,, suppose
that the functions of its left child vertex and
right child vertex are f, and fe, respectively,
and that LeftWeight and RightWeight are w,
and w,, respectively. We have 0 <w, <1,
0<w, <1 and w, + w, =1.According to
Equation (8), the function of v, is

fv)=wf, +w.fz,. (10)

At this point, since we are building the
circuit according to the order of the vertex in-

dices, we have already constructed abundle s,
implementing f, andabundle s, implementing

fz . Tobuildthe bundle implementing f(v,) we
first build a shuffled AND on the input bundles

8, and z, . Call the result of the shuffled AND

s, and its signal f; . Since P(z, =1)=0 or
1, we have

P(f, = a,z, = b) = P(f, = a)- P(z, = }),Ya,b € {0,1},

which means that the bits in the bundle s, and

the primary inputbundie for z, are independent.
Thus, according to Equation (4), we have

fC = f;fzt'

If w, = 0, then we build a bundleplexer
with inputs s, and s,. We set the selecting
ratio of this bundleplexer to be s = w, with

respect to §, . Thus, according to Equation (7),
the output bundle of the bundleplexer imple-
ments the function

w,f, + (1- wL)fC =w, f, +w,fz,

and so implements the function of vertex v, .
A circuit fragment illustrating these steps
is shown in Figure 11. In the circuit, we use a
gate called "SAND” to denote a shuffled AND
operation and a gate called *"BUX" to denote
bundleplexing. (We denote bundles by cross-
ing a single wire with a slash and writing the
number of wires, N , nexttoit.) The number on
a bundleplexer denotes its selecting ratio with
respect to the input bundle that is bubbled. The
same conventions are also used in Figure 12.

Ifw, = 0,then w, =1 and Equation (10)
simplifies to f(v,) = f,z,. Thus, the output

Figure 11. A circuit fragment illustrating the computation of the function of a vertex v,
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N
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Figure 12. Thestochastic circuit obtainedfrom the UnitPosBMD in Figure 9 andthe UnitNegBMD
in Figure 7(b). The number on the counter indicates the amount that it increments or decrements
the count for each 1 on the corresponding bundle. The output of the counter implements the

Sfunction of the original *BMD in Figure 6.

X —

x3 ——p—

\\ P
X7 — / S —
ANDY [ / |

+3
Counter ——— YV
-2

MUX1

T

bundle s, ofthe shuffled AND implements the

function of the vertex v, .

Sinceboth UnitPosBMD and UnitNegBMD
areunit-weight *BMDs with non-negative edge
weights, we can build two stochastic circuits
implementing the functions of the root vertices
of these ¥BMDs.

Finally, we connect the output bundles of
the two circuits to an analog counter. The 1’s
in the output bundle of the circuit for UnitPos-

BMD will increment the counter by w,,, , while

the 1’s in the output bundle of the circuit for
UnitNegBMD will decrementitby w,, ,

w,, and W, aretherootedge weights of Unit-
PosBMD and UnitNegBMD, respectively. We
call the increment and decrement coefficients
of the counter the scaling factors.

For the UnitPosBMD shown in Figure 9
andthe UnitNegBMD shown in Figure 7(b), we
obtain the stochastic circuit shown in Figure 12.

The output bundle of BUX1 implements the
function of vertex m, and the output bundle

where

of BUX2 implements the function of vertex m,

, the root vertex of UnitPosBMD. The output
bundle of SAND3 implements the function of
the root vertex of UnitNegBMD. Finally, we
connect the output bundle of BUX2 and the

output bundle of SAND3 to a counter. The
output of the counter implements the function
of the original *BMD in Figure 6. Thus, the
circuit implements the same logic as the circuit
in Figure 5.

3.5 Summary of Synthesis
Procedure

In summary, our procedure for synthesizing
a stochastic circuit consists of the following
five steps:

1. Build a *BMD for each output of the
circuit.

2. Decompose each *BMD into positive and
negative *BMDs.

3. Transform these into unit-weight
*BMDs.

4. Transform the unit-weight *BMDs into
stochastic designs with shuffled ANDs and
bundleplexers.

5. Realize the outputs with cumulative in-
crement and decrement operations on the
outputs.
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4 EXPERIMENTAL RESULTS

We chose 15 small benchmark circuits from the
IWLS 93 set to test our synthesis technique.
(For sequential circuits in this group, we have
extracted the combinational part.)

Table 1 shows some statistics of the origi-
nal benchmark circuits and the corresponding
stochastic circuits. Column “#Devices in Orig.
Ckt.” gives the number of devices in the original
circuit and column “#Devices in Stoch. Ckt.”
gives the number of devices in the stochastic
circuit. Here the devices are the shuffled AND
elements and bundleplexers used in the design.
The column “Ratio” gives the ratio of the
number of devices in the stochastic circuit to
the number of devices in the original circuit.
We see that that this ratio is on average one
and a half.

Given that the width of the bundles is
finite, the outputs of the stochastic circuit

might be erroneous. We analyze the error
ratio defined as the number of outputs that
return an incorrect value. For example, as-
sume that for a given combination of inputs,
the outputs of the stochastic circuit are
8, = (0,,9,,0,,0,) = (0.78,1.01,~0.02,0.16)
and that the correct values are ¢ = (1,1,1,0).
After discriminating, we get a Boolean output
0, =(1,1,0,0). Comparing 5' with 3, we
find that 1 out of 4 bits is incorrect, so the er-
ror ratio is 25%. Of course, with larger bundle
widths the error ratio will be lower.

In our experiments, we do an average
across a number of input combinations with the
following rule: if the number of inputs is less
than or equal to 5, then we run through all the
input combinations; otherwise, we randomly
select 2° = 32 input combinations and run
experiments on them. Considering the inher-
ent randomness in the circuit construction, we

Table 1. Synthesis results for selected IWLS ‘93 benchmark circuits

#Devices #Devices " Ratio
Circuit #Inputs #Outputs in Orig. in Stoch, (col. 5/
Ckt. Ckt. col. 4)
C17 5 2 14 26 1.86
bl 3 4 18 18 1.00
majority 5 1 18 23 1.28
lion 4 3 19 30 1.58
daio 5 4 26 29 1.12
me 5 7 36 47 1.31
cml38a 6 8 43 104 242
bbtas 5 5 44 74 1.68
cmd2a 4 10 49 61 1.24
tcon 17 16 58 73 1.26
beecount 6 7 62 108 1.74
decod 5 16 69 194 2.81
sqri8mi 8 4 74 87 1.18
sqrt8 8 79 87 1.10
c8 28 18 184 272 1.48
Average 1.54
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also run 20 trials for each input combination
and average the results. (In our simulations, the
randomness of the construction is generated by
the standard C function rand().) We find that
the width of the bundles needed to obtain an
error ratio below a given threshold is linearly
proportional to the maximal scaling factor of
all the counters.

Define o as the ratio of the width of the
bundles to the maximal scaling factor. We run
experiments to see how the error ratio changes
with increasing o . We set « to five different
values: 5, 10, 20, 50, 100. The result for each
circuit is shown in Table 2. The error ratio is
shown in the form of percentages. The smaller
the error ratio, the better the result. We also
givethe maximal scaling factor for each circuit.
The width of the bundles in each circuit is the
maximal scaling factor multiplied by «.

From Table 2, we see that:

1. With o increasing, the error ratio
decreases.

2. Forall the circuits, the error ratio is below
4% when o = 10.

3. For most of the circuits, the error ratio is
below 1% when o = 20.

4. When o = 100, the error ratio is almost
0.

Some applications are characterized by
a tolerance for less than perfectly accurate
computation. Forexample, inimage processing
applications, a small error in a processed im-
age will be masked by the limits of the display
device and by the limits of human vision. For
such applications, a non-zero error ratio is ac-
ceptable. Suppose that we choose 1% as our

Table 2. Error percentages vs. o, the ratio of the width of the bundles to the maximal scaling

factor
Max. @ : Width of Bundles over

Circuit Scaling Max. Scaling Factor
Factor 5 10 20 50 100
C17 4 8.36 313 1.02 0.00 0.00
bl 3 5.63 1.72 0.00 0.16 0.00
majority 9 4.69 1.88 094 031 0.00
lion 4 4.27 1.56 0.31 0.00 0.00
daio 6 4.53 2,19 0.70 0.04 0.00
mc 6 3.97 2.12 042 0.07 0.00
cml38a 8 0.55 0.51 0.22 0.02 0.00
bbtas 7 5.84 1.91 0.78 0.09 0.00
cm42a 4 091 0.56 0.03 0.03 0.00
tcon 2 1.50 0.23 0.01 0.00 0.00
beecount 14 420 335 1.14 0.29 0.05
decod 16 481 1.90 0.72 0.11 0.05
sqrt8ml 24 3.56 1.76 0.82 0.39 0.04
sqrt8 24 6.60 1.52 0.86 0.12 0.12
c8 6 593 3.09 1.03 0.12 0.01
Average 9.13 436 1.83 0.60 0.12 0.02
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error ratio threshold. Then we obtain o ~ 20.
Given that the maximal scaling factor is around
10, on average, the width of the bundles in the
stochastic circuit will be roughly 200.

5 IMPLEMENTATION OF
STOCHASTIC ELEMENTS
WITH NANOWIRE
CROSSBAR ARRAYS

General features of nanowire technology are
illustrated in Figure 13. The connections be-
tween horizontal and vertical wires are FET-like
junctions with nearly a one-to-one ratio, i.e.,
there is nearly always one FET-like junction per
horizontal nanowire. This is a specific attribute
of nanowire arrays, controlled through doping
during self-assembly (DeHon, 2005).

When high or low voltages are applied to
input nanowires, the FET-like junctions that
cross these develop a high or low impedance,
respectively. Because the doping regions for
the junctions are randomly placed across the
crossbar, the connections are random. We ex-

Figure 13. The nanowire crossbar architecture
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NlInputs
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*Note: When A is a high
voltage, the FET-like region

ploitthisrandomness to implement the shuffled
AND and bundleplexing constructs.

5.1 Shuffled AND

In order to implement a shuffled AND on two
input bundles, four crossbars are required. Two
invert the signals on the input bundles. Two
more invert the results and compute the AND
of pairs of randomly shuffled signals from
each bundle.

This is illustrated in Figure 14. Consider
the third wire from the bottom. It produces the
AND of ¢, and b, . To see this, note that the
horizontal wire with input ¢ runs through a
FET-like junction that inverts the value on the
first vertical nanowire from the left. Similarly

the input b, gets inverted on the second vertical
nanowire from the right. These vertical nano-
wires are tied together by FET-like junctions
on the horizontal nanowire that produces the
output. This effectively computes the comple-
ment of the OR of the inverted values, so the

ANDof a, and b, .

—

Y, N N, N U
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|

causes high resistance between N Qutputs

the VppA. Otherwise, it
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5.2 Bundieplexing

In order to implement the bundleplexing opera-
tion on two input bundles, we set a different
density of doping for the FET-likeregions on the
corresponding crossbars. The density dictates
that a certain ratio of the output stream is af-
fected by one input stream and the rest affected
by the other input stream. The implementation
is composed ofthree crossbars. Two select wires
from the input bundles and invert the values. A
third inverts the values a second time, produc-
ing the output.

This is illustrated in Figure 15, which
shows a bundleplexer with a selecting ratio of

3 . —
1 We dope the first three vertical wires in the

upper-most crossbar and the right-most vertical
wire in the middle crossbar. This effectively
chooses three bits from bundle A and one bit
from bundle B and inverts these. The lower-
most crossbar inverts these choices a second

time. This gives the requisite output values: a
randomly shuffled selection of bits from the

two input bundles, with a ratio of % .

6 DISCUSSION & FUTURE
DIRECTIONS

The trials with benchmarks in experimental
results section show that our technique produces
circuits with tunable characteristics: with small
bundle widths, the circuits require relatively
little area yet compute somewhat inaccurately;
with larger bundle widths, the circuits consume
more area yet compute more accurately. With
sufficiently wide bundles, the computation is
perfectly accurate (i.e., no errors occur in the
outputs). For many applications, such as con-
trol circuitry, perfect accuracy is a requisite.
However, for other applications, such as image
processing and telemetry, the tolerance for er-

Figure 14. The nanowire crossbar architecture implementing a shuffled AND
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Figure 15. The nanowire crossbar architecture implementing a bundleplexer
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rors might be quite high. Stochastic circuits are
particularly applicable in these domains.

Although not the focus of this article,
defect and fault-tolerance provide the impetus
for our work. Indeed, with parallel stochastic
bit streams, the random shuffles need not be
perfect. There can be errors in the shuffling
AND:s and bundleplexing: bits can be flipped
or duplicated. With sufficiently wide streams,
quantization at the output will map the result-
ing fractional weights to the correct Boolean
values. We are working to analyze and opti-
mize fault and defect tolerance with stochastic
implementations.

Also, in future work, we will tailor the syn-
thesis of stochastic circuits to particular forms
of nanowire technology, such as hybrid Nano/
CMOS architectures (Strukov & Likharev,
2005; Snider & Williams, 2007).
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