
Assuring Learning-Enabled Increasingly
Autonomous Systems*

Nandith Narayan
Computer Engineering and Sciences

Florida Institute of Technology
Melbourne FL, USA

nnarayan2018@my.fit.edu

Parth Ganeriwala
Computer Engineering and Sciences

Florida Institute of Technology
Melbourne FL, USA

pganeriwala2022@my.fit.edu

Randolph M. Jones
Applied Cognitive Systems

Soar Technology
Ann Arbor MI, USA
rjones@soartech.com

Michael Matessa
Applied Research and Technology

Collins Aerospace
Cedar Rapids IA, USA

mike.matessa@collins.com

Siddhartha Bhattacharyya
Computer Engineering and Sciences

Florida Institute of Technology
Melbourne FL, USA

sbhattacharyya@fit.edu

Jennifer Davis
Applied Research and Technology

Collins Aerospace
Cedar Rapids, IA U.S.A.

jen.davis@collins.com

Hemant Purohit
Computer Engineering and Sciences

Florida Institute of Technology
Melbourne FL, USA

hpurohit2021@my.fit.edu

Simone Fulvio Rollini
Applied Research and Technology

Collins Aerospace
Rome, Italy

simonefulvio.rollini@collins.com

Abstract—Autonomous agents are expected to intelligently
handle emerging situations with appropriate interaction with
humans, while executing the operations. This is possible today
with the integration of advanced technologies, such as machine
learning, but these complex algorithms pose a challenge to
verification and thus the eventual certification of the autonomous
agent. In the discussed approach, we illustrate how safety prop-
erties for a learning-enabled increasingly autonomous agent can
be formally verified early in the design phase. We demonstrate
this methodology by designing a learning-enabled increasingly
autonomous agent in a cognitive architecture, Soar. The agent in-
cludes symbolic decision logic with numeric decision preferences
that are tuned by reinforcement learning to produce post-learning
decision knowledge. The agent is then automatically translated
into nuXmv, and properties are verified over the agent.

Index Terms—Formal Verification, Human-Autonomy Interac-
tions, Human-Autonomy Interface, Assuring Learning Enabled
Systems, Autonomous Agent Verification

I. INTRODUCTION

With the advancements in machine learning, it is expected
that autonomous agents/systems will become increasingly in-
telligent. As a result, it is envisioned that autonomous agents
will be capable enough to handle emerging situations. This
is evident from the research explorations that are evaluating
advanced capabilities such as autonomous collision avoid-
ance, advanced air mobility, drone delivery systems, and

*We would like to thank Anubhav Gupta for his initial support in setting up
the infrastructure for LEIAS. We would also like to thank Natasha Neogi and
Paul Miner of NASA LaRC for their feedback on the learning function and
its safety verification. This work was funded by award 80NSSC20M0005 to
the NASA Langley Research Center from the NASA Shared Services Center.

autonomous cars. Newton et. al [1] discuss the need for the
integration of new advanced algorithms to ensure safety of
passengers and bystanders for autonomous Urban Air Mobility
(UAM). They also discuss how to assess the vehicle capability
to handle contingency scenarios. Gregory et. al [2] discuss the
need for the use of deterministic and learning models to handle
uncertain situations with the design of intelligent systems and
the assessment of such vehicles. Although these advancements
enhance the expertise of the autonomous system/agent, it
makes assurance and certification more challenging.

In the research effort by Bhattacharyya et. al [3] [4], they
discuss the design of a framework to include Human-Machine
Interfaces and formal methods to verify the correctness of
an Increasingly Autonomous System (IAS). In that effort the
IAS does not include machine learning. For the assurance of
learning-enabled IAS designed for contingency management,
Neogi et. al [5] investigate chunking, a general learning
mechanism in Soar [6]. They do not evaluate the need for
human-machine interactions, and the learning mechanism is
not based on machine learning using statistical inferences.

In the Assured Human Machine Interface for Increasingly
Autonomous Systems (AHMIIAS) approach [3], along with
the integration of advanced technologies, we have identified
that there is a need to discover the human-machine interaction
that should be implemented for learning-enabled systems.
In section II related work is discussed, with the proposed
methodology in section III. In section IV, the human-machine
interactions essential for our selected scenarios and the learn-
ing function of the IAS are identified and discussed. The



design of, and the experiments performed with, the learning-
enabled IAS are explained in section V. Then, in section
VI, formal verification of the IAS is elaborated on, with the
verification of learning-enabled autonomous systems. Finally,
the results are in section VII with conclusion in section VIII.

Our contribution is the design of a framework that inte-
grates human-machine interactions and formal methods for the
assurance of learning-enabled autonomous systems. We have
identified the human-machine interactions that are essential
for humans to team up with autonomous systems that can
perform machine learning. We have extended our Soar-to-
nuXmv translator to support constructs needed for learning
in Soar. We have verified correctness and safety properties
over the translated learning-enabled agent. The architecture
models, IAS agent, translator code, and verified models can
all be found on our project repository1.

II. RELATED WORK

In the pursuit of increasing the learning capability of
IAS, various methodologies, including deep learning, Markov
decision processes, data analysis, and real-time discoveries
have been proposed to achieve significant enhancements in
cognitive autonomy [7]. On the other hand, within the controls
research community, constrained control approaches such as
Model Predictive Control (MPC) ensure the learning based
on the previously recorded data. MPC has gained the re-
searchers’ attention on the basis of the methods being used
in learning that include learning through system dynamics,
learning the controller design, and model predictive control
for safe learning [8]. Learning-Enabled Systems (LESs) have
also been designed on the basis of goal-based, model-driven
approaches to assure self-adaptation and self-assessment [9].
Additionally, various uncertainties about the safety assurance
of LESs have been exhibited in Model-Driven Assurance for
Learning-enabled Autonomous Systems (MoDALAS) [9].

Formal methods have been consistently used in assuring
safety and trust in safety critical applications, intelligent
systems, and co-operative autonomous agents [4]. Cofer et
al. [10] discuss a formalized run-time assurance architecture
together with diverse monitors that were used to ensure
the safety of an aircraft taxiing application that included a
neural-network-based learning-enabled component. Moreover,
the research conducted by Bhattacharyya et. al [3] shows that
the human-machine team architecture can be designed and
verified using Architecture Analysis and Design Language
(AADL) [11] and the Assume Guarantee REasoning Envi-
ronment (AGREE) [12], which lays a strong foundation in
increasing trust and safety. This paper extends [3] by the
addition of learning to the IAS to create a Learning-Enabled
IAS (LEIAS), updating the architecture models, extending the
Soar-to-nuXmv translator to support learning, and verifying
properties related to outcomes of learning.

1https://github.com/loonwerks/AHMIIAS/tree/Year 2

Fig. 1. Proposed methodology for LEIAS

III. RESEARCH METHODOLOGY

The proposed methodology for the design of LEIAS is
shown in Figure 1. During the Requirements phase, the sce-
narios for learning are developed, along with the specifications
for the human-machine interfaces. These are then mapped into
the architectural components that are required for learning to
occur. Then, the behavior of the components are added in the
Implementation phase, as learning infrastructure, the design
of the learning agent and, then, experiments are performed
for the LEIAS to learn the specified behavior. Finally, during
the Testing and Verification phase, formal verification of the
LEIAS is performed by extending the previous automated
translator with the inclusion of the translation of learning-
related constructs.

IV. HMI AND ARCHITECTURE OF LEIAS

A. Human-Machine Interface (HMI)

Bhattacharyya et. al [3] developed two scenarios to test the
collaborative roles and responsibilities of a human pilot and
an IAS in Urban Air Mobility (UAM) operations. The first
scenario, the Unreliable Sensor Scenario, introduces an off-
nominal situation where the GPS sensor’s reliability is reduced
due to an urban canyon. The IAS detects the unreliable GPS
sensor and determines the correct position using Lidar and
IMU, informing the pilot about the situation. The pilot can
either accept or reject the IAS interpretation of the situation.
To extend the Unreliable Sensor Scenario with learning, the
IAS was trained to learn the pilot preferences. As the learning
occurred, the specifications for the HMI were established to
explain the pilot what the IAS learnt. With the LEIAS method-
ology, the IAS learns about the pilot’s preferences and informs
the pilot of an unreliable sensor accordingly. However, as soon
as the error value passes the safety threshold, the LEIAS will
always inform the pilot of the unreliable sensor. In the second
scenario, the Aborted Landing Scenario, the pilot detects an
unsuitable landing area, aborts the landing, and relies on the
IAS to calculate alternate landing options. The IAS presents
the best option and reasoning to the pilot, who can either
accept or choose an alternate landing site. In both scenarios,
the IAS supports the pilot by monitoring the situation, assisting
in decision making, and providing information, while the pilot
retains the ultimate decision-making authority.



Fig. 2. Learning HMI

The HMI display consists of a map, position indicators (for
GPS, Lidar, and IMU sensors), and a triangular unreliable
sensor alerting icon placed next to a severity indicator bar. The
position indicators show the pilot any discrepancy between
sensor positions in units that a pilot can understand (e.g.,
within a building, within a block, or across town).

The error range is decomposed into four segments: a normal
range for minimal sensor discrepancy, a level 1 range for larger
discrepancy, a level 2 range for even larger discrepancy, and
a safety range for a significant sensor discrepancy. The IAS
always provides an alert for the safety range, never provides
an alert for the normal range, and learns the pilot’s preference
for level 1 and level 2; it colors the corresponding bar segment
red if an alert is to be given and green if an alert is not to be
given.

The main objective of these scenarios are to capture the
collaboration between the IAS and the pilot. In the Unreliable
Sensor Scenario, the IAS detects that the GPS sensor is
unreliable by comparing the GPS position value with the
values from the Lidar and IMU sensors. The errors are abstract
values that are induced to indicate the pairwise difference
in position. It does not include the inner workings of the
sensor. The scenario assumes that in this specific situation, the
Lidar and IMU sensors are more reliable than the GPS sensor.
However, it should be noted that Lidar and IMU sensors
can also experience errors, which was also evaluated. The
scenarios can be modified to explore different failure modes
or sensor combinations.

B. Human-Machine Team Architecture Model

We capture the structure of the model (components and in-
terfaces) in AADL. AADL is a standardized language for em-
bedded, real-time systems. It supports design, analysis, virtual
integration, and code generation. The graphical representation
of the AADL model, showing components and connections,
is given in Fig. 3. We include in the model the human pilot,
the IAS, a Weight on Wheels (WOW) sensor/subsystem, and
three position sensors. We capture an abstract representation
of the behavior of the system and each subcomponent in

Fig. 3. Human-IAS team model

an assume-guarantee contract in the AGREE. AGREE per-
forms compositional analysis, verifying system requirements
based on the composition of the component assume-guarantee
contracts. By abstracting the implementation of subsystems
and software components into formal contracts, large systems
can be verified hierarchically without the need to perform
a monolithic analysis of the entire system at once. AGREE
translates the model to the Lustre language and then performs
verification using a model checker (e.g., JKind [13]) and an
SMT solver (e.g., Z3 [14]).

The structure of the human-machine team architecture
model builds on the AHMIIAS framework introduced by
Bhattacharyya et. al [3] in the following way. First, the IAS
interface is extended to allow the communication of the sensor
discrepancy value, the corresponding range, and the presence
of an alert, for each of the three sensors; the pilot’s interface is
extended to provide an acceptance/rejection feedback to IAS
alerts. Second, requirements are added in terms of guarantees
in the AGREE language, to specify the IAS behavior and to
express expectations on the pilot’s behavior. For example, the
IAS (i) should not issue an alert for a sensor if the sensor
discrepancy falls into the normal range; and, on the contrary,
(ii) should issue an alert for a sensor if the sensor discrepancy
falls into the safety range:

Fig. 4. IAS alert issuing

Third, the requirements on the system, i.e., on the inter-
action between the IAS and pilot, are encoded as AGREE
lemmas and subject to formal verification.



Whenever a sensor discrepancy is in the level 1 or level 2
range, the learning process comes into play. Broadly speaking,
after the pilot’s response to an alert in the presence of a certain
sensor discrepancy, in case of acceptance (resp. rejection),
it should become more (resp. less) “likely” for the IAS to
issue an alert for that sensor and discrepancy. The definition
of the notion of likelihood, as well as of the details of how
it is affected by the pilot’s response, depend on the particular
learning algorithm and implementation; for these reasons, they
are not represented at the architecture level. However, the
IAS-pilot communication flow, that also enables learning, is
modeled by means of guarantees both on the IAS and the
pilot’s side; for example, the pilot is expected to provide
feedback to an alert from the IAS in a reasonable amount of
time (only guarantees related to one of the sensors are reported
for brevity):

Fig. 5. Pilot’s response to alert

V. LEIAS

The design of a learning-enabled IAS in this research
effort involves using and evaluating learning capabilities in
the cognitive architecture Soar.

A. Learning in the Soar Cognitive Architecture

The problem of V&V for intelligent systems is further com-
plicated when those systems are able to learn and improve their
behavior with experience. As our case study focuses in part
on an IAS implemented in the Soar cognitive architecture [6],
here we describe reinforcement learning, as that is what was
integrated for this study. Soar supports other forms of learning,
i.e. chunking, episodic learning and semantic learning [6].

Reinforcement learning is a well established form of learn-
ing in the machine learning research community [15]. Soar’s
particular implementation of reinforcement learning integrates
the learning algorithms with Soar’s native decision-making
structure [16]. In Soar, decisions are made by observing the
current state of the world, suggesting candidate inferences
or actions (“operators”) to execute next, determining which
of those candidates should be most preferred in the current
context, and then selecting a single inference or action to
execute. This decision cycle repeats quickly and indefinitely to
implement a Soar agent’s intelligent reasoning and behavior.

B. Design of the Integrated Learning Agent

Our research effort initially focused on developing a Soar
decision-making agent with no learning [3]. This agent makes
a relatively simple set of decisions about how to control the
aircraft during different phases of flight, including takeoff,
transit, and landing, as well as transitions between these

phases. The agent also includes some knowledge about how
to address situations in which it infers that one of its position
sensors is faulty. This includes decision-making logic about
alerting a human pilot and using the pilot’s guidance about
whether to decide that a sensor is unreliable.

The use case focuses on the design of an intelligent IAS
that learns the human pilot’s preferences about the conditions
in which the pilot wants to be alerted about a potential sensor
failure.

Symbolic Decision Logic-Based Learning Agent. The
LEIAS agent is structured based on regions of alerting levels
as described in Section IV B. For normal range of error,
the system will never alert the pilot. For safety range of
error, the system will always alert the pilot. For errors in
level 1 or 2, initially, the Soar agent decides to generate an
alert. Over time, the system is given a reward when it alerts
the pilot and the pilot “accepts” the alert, and a punishment
when the pilot “rejects” the alert. With each new experience,
the reinforcement learning algorithm incrementally allocates
portions of these reward/punishment signals to the decisions.

C. Experiments for LEIAS

To conduct the experiments, the overall learning architecture
included the integration of the learning infrastructure, the
interactions with the environment, and the symbolic decision
logic-based learning agent. Cycles of training and testing were
executed to validate that learning.

The learning infrastructure consisted of all the necessary
entities and interactions that support the generation of data.
One of the infrastructural requirements was the need to store
the data, as reinforcement learning requires several cycles to
process it. The second requirement was to store the threshold
values and the third requirement was to store the pilot’s
response. To expedite data collection, the pilot’s response was
scripted as part of the infrastructure.

D. Experimental Setup and Results for LEIAS

The learning process was split into a series of learning trials
and testing trials. During each learning trial, a random error
is introduced and the IAS decides whether to warn the pilot.
If the IAS decision matches the preferences of the scripted
pilot, then the agent is rewarded with a value of +1. If the
IAS decision does not match the scripted pilot, then the agent
is given a reward value of -1. In our scenario, the scripted pilot
wants the IAS agent to always warn when the error is greater
than or equal to 9 (level 2). During each testing trial, the
introduced sensor error continuously increases over time until
it reaches safety error range. These trials validated the agent’s
learned behavior. Boltzmann with high and low temperatures,
and simulated annealing were explored as the rule selection
policy. Simulated annealing utilize gradual learning which
involves starting with a high learning rate or temperature
and gradually decreasing it over time. A high temperature
allows the algorithm to explore a wider range of solutions,
while in Boltzmann learning, a high acceptance rate enables
the algorithm to accept worse moves. As the temperature



or acceptance rate decreases, the algorithm focuses more on
refining the current solution. However, selecting an appropriate
cooling schedule and temperature is crucial for stability and
responsiveness. If the cooling is too fast or too slow, the
algorithm may get stuck in a sub-optimal solution or take too
long to converge to an optimal solution.

Results. Fig. 6 shows the outcomes of the experiments
applying Boltzmann policy with high temperature of 25. The
bar graph in Fig. 6 at the bottom displays the pairwise error
values of the inputs received. The graph in the top left corner
indicates that the LEIAS gets rewarded to warn every time
the error is in level 2; the graph in the top right corner shows
that the LEIAS gets negatively rewarded every time it warns
when the error value is in level 1 (between 8 and 9), so it
learns not to warn when the error is below 9. Similar behaviors
were observed in Fig. 7 (Boltzmann with low temperature) and
Fig. 8 (simulated annealing). Boltzmann with high temperature
explores the search space more than the other algorithms; as
expected, this resulted in more gradual learning.

Fig. 6. Results with Boltzmann high temperature

Fig. 7. Results with Boltzmann low temperature

VI. VERIFICATION OF LEIAS

The verification process involved translation from Soar to
nuXmv and then performing verification by means of the
nuXmv tool. This includes sophisticated SMT-based model
checking techniques and expands the NuSMV language with
additional data types, such as integers and reals, for infinite-
state systems [17].

Fig. 8. Results with Simulated Annealing

A. Translation from Soar to nuXmv

The translation from the LEIAS built in Soar to nuXmv
involves four phases: Input, Parsing, Refinement and Output
(Fig. 9). During the Input phase, the Soar agent source file
is transformed into a runtime execution file, by the Soar
debugger. During the Parsing phase, the ANTLR [18] grammar
representing the Soar grammar rules is used to create an
abstract syntax tree, which is in turn used to extract relevant
information. During the Refinement phase, the variable types
and values are identified, followed by combining the pre and
post conditions associated with each of the Soar rules. Finally,
during the output phase, a nuXmv file is generated that consists
of the variables, modules, transition and guard conditions, as
is expected for a state machine representation of the LEIAS
translated from Soar.

Fig. 9. Translation from LEIAS in Soar to nuXmv

To handle constructs associated with learning in Soar, the
changes enumerated below were made to the translator:

• Priority with preference values: When using rein-
forcement learning, Soar prioritizes rules by assigning
preference values, however, in nuXmv, priority is exe-
cuted in a top-down order. The preferred order is com-
puted and then generated by the translator. For example,
warn*select*high*gps is a Soar production that stores
the preference value to warn for GPS level 2 error. The
production stores it as < s > operator < o >= 0.0,
where < s > represents the state which assigns a value
of 0.0 to the operator < o >. As the agent learns
about the pilot’s preferences, this value is updated. During
translation, the preference values are used to generate the
rules from highest to lowest priority in nuXmv.



• Elaboration rules: The elaboration phase is when rules,
that elaborate the scenario, propose operators, and assess
operators are fired. The numeric mapping of symbolic
constants used for learning a range of values in Soar
was performed with the use of elaboration rules. The
translation handled this mapping of symbolic constants
to numeric values for the LEIAS.

• Existence checks: In Soar, the existence of a vari-
able is checked, before the evaluation of any condition
associated with the variable. As part of the learning
process, some values needed to be removed before new
values were assigned. As a result, the existence check
was also translated for integers and real values. For
example, some of the variables in nuXmv executing
existence are state gps-error-info current-value exists =
yes, state safety-error exists = no.

• Handling of impasse rules: During the propose cycle,
Soar identifies the set of rules for which the conditions
match, then, during the apply cycle, it checks the pref-
erence values of the rules and selects the one that has
the highest preference value. During the translation to
nuXmv, the proposed rules were combined together; with-
out the merging of these rules, nuXmv would have always
selected the first apply operator that was generated. For
example, the following nuXmv translation, (state = run
& state ready-to-decide = yes): combined-warn-propose-
do-not-warn-propose; translated the condition of whether
the agent has set the ready-to-decide flag to yes and
then sets the state operator name to combined-warn-
propose-do-not-warn-propose which handles the impasse
of proposing warn or do-not-warn operators. Then the
translator generated the apply rules based on preference
values in a top-down order from highest to lowest prefer-
ence value, as nuXmv selects the one that appeared first
when the condition of more than one rule matches.

B. LEIAS Properties and Verification in nuXmv

The formal verification of the learning-enabled agent was
performed by decomposing the rules of the LEIAS into two
categories, one that was generated based on learning, and the
other that focused on the non-learning aspects.

The LEIAS agent was trained to learn the threshold of
the pairwise sensor (GPS, IMU, Lidar) error difference at
which the pilot is warned, or not warned. The preference
values were recorded as learning occurred. Then the rules
were translated into nuXmv. An input template was created
in nuXmv for the generation of the input values that the IAS
agent responds to. These input values updated the learning
parameters, along with the change of operational parameters.
The formal representations of the linear temporal logic specifi-
cations (LTLSPECs) in nuXmv were derived by decomposition
from the learning specifications in English, which were at a
higher level of abstraction. 10 properties were verified with a
total of 54 LTLSPECs for the three sensors being used for the
entire verification process. For each of the properties, counter-

TABLE I
SPECIFICATIONS FOR LEIAS BEHAVIOR

Learning Specification in
English

Formal Specification

If the sensor error is at
or past the safety thresh-
old, the agent shall issue a
warning.

LTLSPEC F (X state imu-error-
info warn-condition = safety &
state operator name = warn)

If error difference within
sensors is non zero, then
the agent shall execute the
error changed operator

LTLSPEC F (X state imu-error-
info current-value != state imu-error-
info old-value & state operator name
= record-changed-error-imu)

If the difference in error
values hasn’t changed, the
agent shall not execute the
error changed operator

LTLSPEC G (X state operator name
= record-changed-error-imu →
state imu-error-info value-changed =
nil & (state imu-error-info current-
value = state imu-error-info old-
value))

When a sensor is at fault,
and the warning level is
low, the agent shall not
warn

LTLSPEC F (X state imu-error-
info warn-condition = low &
state operator name = warn)

When a sensor is at fault,
and the warning level is
high, the agent shall warn

LTLSPEC F (X state imu-error-
info warn-condition = high &
state operator name = warn)

If the sensor error is within
normal threshold, the agent
shall not issue a warning

LTLSPEC F (X state imu-error-
info warn-condition = normal &
state operator name = do-not-warn)

A learned rule with the
lowest preference shall
never fire.

LTLSPEC F (X (state imu-error-
info error warn-condition = low) →
state operator name = warn)

If a warning has previously
been issued, the agent shall
not issue another warning

LTLSPEC F (X (state warning-
issued != nil & state imu-error-
info warn-condition = safety) →
(state operator name = do-not-warn))

The agent shall resolve
an impasse in selecting
learned rules

LTLSPEC F (X (state imu-error-
info warn-condition = high) →
state operator name = combined-
warn-propose-do-not-warn-propose))

The agent shall always fol-
low the preference order
from the learned rules

LTLSPEC F (X state imu-error-
info warn-condition = normal →
state operator name = do-not-warn)

properties were also formulated to verify the completeness and
record any anomalies or edge cases for safety assessment.

The learning performed by the LEIAS was verified by
first generating the verification queries written in English text
shown in Table I.

VII. RESULTS AND DISCUSSION

The LEIAS was formally verified within the AHMIIAS
framework, after an iterative interplay between formal ver-
ification and simulation, which identified errors in the IAS
model, as well as errors in translation. In the course of
experimentation and translator updates to better align the
formal verification with the learning specifications, there were
challenges that needed to be addressed due to limitations of
nuXmv. For example, nuXmv constructs cannot handle tree-
like structures and one of the instances of our implementation
only had a single variable for current-value and old-value
for the sensor errors associated with three types of errors. In
Soar, due to the inherent tree structure, it corresponds to three
current values, one for each of the errors, therefore retaining



that information. This was solved by flattening the hierarchical
data structure present in Soar into three separate error variables
(state gps-error-info, state imu-error-info, state lidar-error-
info) to match nuXmv constructs. Due to the abovementioned
change, each rule corresponding to the sensor error had to be
triplicated. To make it modular and simpler, from a software
engineering standpoint, macros were introduced. Macros ef-
ficiently compressed the Soar code by reducing the need for
33 rules to 20 rules. The execution of macros required the
JSOAR debugger output before translation in nuXmv, as the
macros were fully realized through the debugger.

VIII. CONCLUSION AND FUTURE WORK

In this research effort, we demonstrated the integration of
learning in the AHMIIAS framework. This was accomplished
by identifying requirements for the Human Machine Interface
for a learning system and the architecture for the human-
machine team. Finally, the simulation and verification of the
learning-enabled IAS was performed to check the correctness
of the IAS. Our approach showed how LEIAS can be designed
with cognitive modeling, translated to a formal environment,
and validated and verified through simulation and formal
verification. Future work will involve investigating the life
cycle management of LEIAS. Additionally, runtime assurance
methods will be evaluated to perform assurance checks during
learning by the LEIAS.

REFERENCES

[1] N. H. Campbell, M. J. Acheson, and I. M. Gregory,
Dynamic Vehicle Assessment for Intelligent Contingency Man-
agement of Urban Air Mobility Vehicles. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2021-1001

[2] I. M. Gregory and et al., “Intelligent contingency management for urban
air mobility.” in Dynamic Data Driven Applications Systems. DDDAS
2020. Lecture Notes in Computer Science, 2020.

[3] S. Bhattacharyya, J. Davis, A. Gupta, N. Narayan, and M. Matessa,
“Assuring increasingly autonomous systems in human-machine teams:
An urban air mobility case study,” Electronic Proceedings in Theoretical
Computer Science, vol. 348, pp. 150–166, oct 2021. [Online]. Available:
https://doi.org/10.4204%2Feptcs.348.11

[4] S. Bhattacharyya, N. Neogi, T. Eskridge, M. Carvalho, and M. Stafford,
“Formal assurance for cooperative intelligent agents,” in NASA Formal
Methods Symposium LNCS, vol. 10811, 2018.

[5] N. Neogi, S. Bhattacharyya, D. Griessler, H. Kiran, and M. Carvalho,
“Assuring intelligent systems: Contingency management for uas,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp.
6028–6038, 2021.

[6] J. Laird, The SOAR Cognitive Architecture. MIT Press, 2012.
[7] G. Mani, B. Bhargava, P. Angin, M. Villarreal-Vasquez, D. Ulybyshev,

and J. Kobes, “Machine learning models to enhance the science of
cognitive autonomy,” in 2018 IEEE First International Conference on
Artificial Intelligence and Knowledge Engineering (AIKE), 2018, pp.
46–53.

[8] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, no. 1, pp. 269–296, 2020. [Online]. Available:
https://doi.org/10.1146/annurev-control-090419-075625

[9] M. A. Langford, K. H. Chan, J. E. Fleck, P. K. McKinley, and
B. H. Cheng, “Modalas: Model-driven assurance for learning-enabled
autonomous systems,” in 2021 ACM/IEEE 24th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS).
IEEE, 2021, pp. 182–193.

[10] D. Cofer and et. al, “Run-time assurance for learning-enabled systems,”
in NASA Formal Methods: 12th International Symposium, NFM 2020,
Moffett Field, CA, USA, May 11–15, 2020, Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2020, p. 361–368. [Online]. Available:
https://doi.org/10.1007/978-3-030-55754-6 21

[11] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012.

[12] M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. P. E. Heimdahl,
and S. Rayadurgam, “Your ”what” is my ”how”: Iteration and hierarchy
in system design,” IEEE Software, vol. 30, no. 2, pp. 54–60, 2013.

[13] A. Gacek, J. Backes, M. Whalen, L. Wagner, and E. Ghassabani, “The
jkind model checker,” in Computer Aided Verification, 2018.

[14] L. D. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 337–340.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[16] S. Nason and J. Laird, “Soar-rl: Integrating reinforcement learning with
soar,” Cognitive Systems Research, vol. 6, pp. 51–59, 03 2005.

[17] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in CAV, 2014, pp. 334–342.

[18] T. Parr, The definitive antlr 4 reference. The Pragmatic Bookshelf,
2014.


