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1.0  SUMMARY 
Modern defense systems are complex software systems implemented over heterogeneous 

and constantly evolving hardware and software platforms. Due to the failure rates of individual 
hardware components, critical functions must be implemented as redundant, fault-tolerant 
systems in order to meet their reliability requirements. This is achieved by distributing these 
functions over multiple processing components connected by fault-tolerant networks. When a 
system is replicated to achieve a high level of reliability, the individual components still need to 
agree on some part of the global system state, such as which node is the current leader. While the 
amount of state that needs to be consistent is often tiny, that consistency is essential for the 
correct behavior of the system. Unfortunately, developing protocols to achieve agreement in an 
asynchronous environment can be deceptively difficult.  

In developing distributed agreement protocols, engineers often exploit the fact that their 
systems are quasi-synchronous, where even though the clocks of the different nodes are not 
synchronized, they all run at the same rate, or multiples of the same rate, modulo their drift and 
jitter. While such designs often appear to work correctly, their intrinsic asynchrony makes them 
prone to latent race and deadlock conditions. These design errors often do not appear until late in 
system integration or even after the system is deployed.  

The goal of this project was to provide systems designers with an intuitive modeling 
environment that 1) allows systems engineers to easily specify the high-level architecture and 
synchronization logic of quasi-synchronous systems using widely available system engineering 
notations and tools, and 2) integrates and enhances innovative formal verification tools such as 
Satisfiability Modulo Theories (SMT) based model checkers and model checkers for timed 
automata to provide system engineers with immediate feedback on the correctness of their 
designs.  

In the modeling environment, system developers create high-level models of the system 
architecture and synchronization logic using the Enterprise Architect System Modeling 
Language (SysML) modeling environment enhanced with a SysML profile for quasi-
synchronous systems. A translator translates these models into the Architectural Analysis and 
Description Language (AADL) and imports them into the Open Source AADL Tool 
Environment (OSATE). System properties can then be verified using either the Assume 
Guarantee Reasoning Environment (AGREE) with the Kind model checker or the Uppaal model 
checker for timed automata. 

Four examples of quasi-synchronous systems were created and verified: the Pilot Flying 
example, the Leader Selection example, the Active Standby example, and the Wheel Breaking 
System (WBS) example. All of these are based on actual examples seen in industry. The WBS 
example is derived from an accident report in which a commercial air transport aircraft lost all 
braking capability on landing. Critical synchronization constraints for these examples were 
formally specified and verified using both Kind and Uppaal. In the case of the WBS example, the 
logic synchronization error that caused the loss of braking was readily found. In addition, another 
counterexample not discussed in the accident report was found using the Kind model checker. 

These examples clearly demonstrate the difficulty of developing correct distributed 
agreement protocols without the use of formal verification tools that examine all possible 
combinations of inputs and states. They also show that distributed agreement protocols can be 
simplified by exploiting the quasi-synchronous relationship of the clocks found in many real 
systems. 
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2.0 INTRODUCTION 
Modern defense systems are complex software systems implemented over heterogeneous 

and constantly evolving hardware and software platforms. Due to the failure rates of individual 
hardware components, critical functions must be implemented as redundant, fault-tolerant 
systems in order to meet their reliability requirements. This is achieved by distributing these 
functions over multiple processing components connected by fault tolerant networks. When a 
system is replicated to achieve a high level of reliability, the individual components still need to 
agree on some part of the global system state, such as which node is the current leader. While the 
amount of state that needs to be consistent is often tiny, that consistency is essential for the 
correct behavior of the system. Unfortunately, developing protocols to achieve agreement in an 
asynchronous environment can be deceptively difficult. In fact, the difficulty of doing this is so 
well known that entire textbooks have been written on the design of distributed algorithms [1], 
[2]. 

Too often, this activity is treated as a low-level software design problem rather than as 
the high-level systems engineering task it actually is. Moreover, when designing the 
synchronization logic, engineers often exploit the fact that their systems are quasi-synchronous 
systems, where even though the clocks of the different nodes are not synchronized, they all run at 
the same rate, or multiples of the same rate, modulo their drift and jitter [3], [4]. Such designs 
often appear to work correctly, but their intrinsic asynchrony makes them prone to latent race 
and deadlock conditions. These design errors often do not appear until late in system integration 
or even after the system is deployed.  

Commercial modeling tools are starting to emerge for the design of complex system 
architectures, but this problem can actually be made worse if these tools are not used with care. 
System designers will often model their distributed system architecture and synchronization 
logic using popular commercial tools such as MATLAB and Simulink/Stateflow® [5] [5] or the 
Safety Critical Application Development Environment (SCADE) Suite™ of Esterel 
Technologies [6], failing to realize that these tools assume an underlying synchronous model of 
computation in which all nodes are driven by a single global clock. Even though their designs 
appear to work correctly when simulated in the modeling environment, the actual 
implementations are likely to fail since they are implemented on processors executing 
asynchronously.  

This project provides systems designers with an intuitive modeling environment that 1) 
allows systems engineers to easily specify the high-level architecture and synchronization logic 
of quasi-synchronous systems using widely available system engineering notations and tools, and 
2) integrates and enhances innovative formal verification tools such as SMT-based model 
checkers and model checkers for timed automata to provide system engineers with immediate 
feedback on the correctness of their designs. An important aspect of this approach is that once 
the high-level system architecture and synchronization logic are verified, that system model can 
be refined to become the complete system design without invalidating the correctness of the 
initial design. An overview of this environment is shown in Figure 1. 



Approved for Public Release; Distribution Unlimited 

3 

● ● ●
Kind

SMT-Based
Model Checker
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Model Checker
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OSATE AADL Plug-in

AGREE Plugin

Figure 1 – Framework for the Verification of Quasi-Synchronous Systems 
To provide a realistic path for technology transfer, system developers can create high-

level models of the system architecture and synchronization logic using the Enterprise Architect  
SysML [7], [8] modeling environment enhanced with a SysML profile for quasi-synchronous 
systems. Translators import these models into the OSATE development environment for AADL 
[9]. Component behaviors specified as SysML state machines are translated into AGREE and 
Behavior Annex (BA) specifications within AADL. Verification of the AADL model 
supplemented with the AGREE annexes can be performed directly using the AGREE tool [10], 
[11], where AGREE can be configured to invoke either the Kind [12]  or jKind1 SMT-based 
model checker. Verification of the AADL model supplemented with the Behavior Annexes can 
be performed using the Uppaal model checker [13] for timed automata by first invoking a 
translator that converts the AADL and Behavior Annex specifications into an Uppaal model. 
This model can then be verified using the graphical user interface provided with the Uppaal tool. 

The remainder of this report is structured as follows. Section 3.1 provides background 
information on SysML, AADL, Kind, and Uppaal. Section 3.2 describes the notion of quasi-
synchrony and its relevance to the problem at hand. Section 3.3 introduces the four example 
problems. Section 3.4 discusses the translations from SysML to AADL and from AADL to Kind 
and Uppaal. Section 4.1 discusses the verification of the four examples with Kind and Section 
4.2 discusses the verification of the four examples with Uppaal. Finally, Section 5.0 summarizes 
the project, presents our conclusions, and identifies directions for future research. 

1 jKind is light-weight version of Kind provided with the AGREE tool. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
This chapter describes the methods, assumptions, and procedures followed in conducting 

this work. Section 3.1 provides background material on the modeling languages and analysis 
tools on which the project is based. Section 3.2 explains in detail the concept of quasi-synchrony 
and its relevance to the verification of distributed systems. Section 3.3 describes the four 
example problems developed to demonstrate and exercise the tool framework. Finally, Section 
3.4 describes how models are automatically translated from the original architectural models to 
the formal verification tools. 

3.1 Background Material 
This section provides background material on the modeling languages and analysis tools 

on which the project is based. Section 3.1.1 describes the relevant aspects of the SysML 
architectural modeling language used by the system designers to specify a system and its 
synchronization protocols. Section 3.1.2 describes AADL and its use as an intermediate language 
in the conversion from SysML to the formal verification tools. Section 3.1.3 describes the Kind 
SMT-based model checker and Section 3.1.4 describes the Uppaal model checker for timed 
automata, both of which are used for formal verification of the quasi-synchronous systems. 
3.1.1 System Architectural Modeling with SysML. 

Notations and tools for the modeling of system architectures are just starting to emerge, 
with the most widely used today being SysML. SysML is an Object Management Group (OMG) 
standard for the specification, analysis and design of a broad range of complex systems and 
systems of systems [7]. It is defined as an extension of a subset of the Unified Modeling 
Language (UML). Like UML, SysML is a graphical modeling notation, not a methodology or a 
tool. It makes use of seven of UML’s thirteen diagram types (the other six diagram types were 
felt to be too software-specific and were omitted from SysML).  Of the seven included diagram 
types, three are devoted to modeling the system structure. These include: 

Package Diagram: Package Diagrams are used to organize a model and group model 
elements into a name space. Packages often appear in the navigation windows of tool 
browsers. Packages can be imported to reduce the need to use fully qualified names in a 
model.  

Block Definition Diagram: Blocks are a fundamental construct used to describe the 
structure of an element or system. To reuse complex relationships among blocks, a Block 
Definition Diagram can be defined once to specify a pattern of blocks so that the pattern 
can then be reused. A block can be defined with associated properties, operations, 
constraints, allocations, and requirements. 

Internal Block Diagram: The internal structure of a block is described using an Internal 
Block Diagram. This kind of diagram defines the Parts and the interconnection of Parts 
using Ports, Connectors, and Flows. The Internal Block Diagram most closely matches 
the traditional notion of an architecture. 

Four of the seven diagram types included from UML are devoted to modeling the behavior of the 
system, either of components of the system or the interactions between components. These 
include: 
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Activity Diagram: Activity Diagrams are used to specify the sequence and control of 
activities that transform inputs to outputs, somewhat analogous to flow charts, but with 
constructs that allow activities to occur in parallel, similar to Petri Nets. Swim lanes can 
be used to show which objects perform which activities.  

Sequence Diagram: Sequence Diagrams are used to specify how parts of a block interact 
by exchanging messages. Block elements are aligned across the top of the diagram with a 
vertical lifeline running downwards indicating increasing time. The types and order of 
messages exchanged are shown as horizontal arrows between the object’s lifelines. 
Various structures are used to indicate synchronous (blocking) communication, 
asynchronous (non-blocking) communication, conditional guards, etc. 

State Machine Diagram: State Machine Diagrams define the behavior of a block using a 
Statecharts-like notation. The major states of the block are depicted along with transitions 
between states. Transitions from one state to another are triggered by events with optional 
guards and actions that can be performed. Concurrent and sequential execution of state 
machines is supported. 

Use Case Diagram: Use Cases are used to describe the functionality of a system in terms 
of how its users use the system to achieve their goals. They provide an informal way of 
describing a dialogue of requests and actions between the actors and the system to 
achieve some goal. Use cases can be used to describe the “sunny day” dialogue in which 
nothing goes wrong as well as alternate courses and exception cases.  

With respect to UML, SysML includes two new diagram types to meet the specific needs of 
systems modeling and analysis.  The first of these, the Parametric Diagram, is a structural 
diagram: 

Parametric Diagram: Parametric Diagrams are used to capture the constraints on the 
properties of the system, where the constraints are expressed as equations whose 
parameters are bound to the properties of the system. These can then be used by analysis 
tools to support engineering trade-offs. 

The second new diagram, the Requirements Diagram, is used to capture the requirements 
contained in a specification: 

Requirements Diagram: Requirement Diagrams represent text-based requirements. 
They include an id and text and can be used to specify functional, interface, and 
performance requirements. In addition, relationships can be defined to show that a 
requirement is derived from, is satisfied by, is verified by, refines, traces to, and copies 
some other requirement or entity (e.g., a test case). 

SysML can be further extended or constrained through the use of stereotypes, tagged 
values, and constraints.   Stereotypes allow a user to extend a meta-class with additional tagged 
values and constraints. A profile is a collection of such extensions that collectively customize 
UML or SysML for a particular domain. 

SysML was designed as a general-purpose systems modeling language, but it can also be 
used to model embedded real-time systems. In the Defense Advanced Research Projects Agency 
(DARPA) META program [10], we demonstrated that a high-level model of the system 
architecture can be created using only SysML package, block definition, and internal block 
diagrams. Interactions between architectural components can be specified using SysML ports 



Approved for Public Release; Distribution Unlimited 

6 

and connections. These basic SysML components can be further extended with the definition of 
a profile containing stereotypes for entities found in embedded real-time systems such as threads 
and processors. The synchronization logic of the system can be specified using the state machine 
diagrams of SysML. This provides a natural modeling style for system designers, while 
emphasizing that design of the synchronization logic is a system engineering activity distinct 
from specifying the behavior of individual components.  
3.1.2 System Architectural Modeling with AADL. 

The Architectural Analysis and Design Language is an international standard (AS5506) 
of the Society of Automotive Engineers (SAE) [9], [14]. AADL is used to model the software 
and hardware architecture of embedded, real-time systems, but is not limited to the automotive 
domain. In fact, it was originally developed for avionics systems. It is derived from MetaH, an 
architecture description language developed by the Advanced Technology Center of Honeywell. 

Due to its emphasis on the embedded domain, AADL contains constructs for modeling 
both software and hardware components. AADL contains equivalent textual and graphical 
standards, and it is possible to automatically convert from one to the other.  It is possible to 
extract many different views of an AADL model, but there is only one underlying model of the 
system, ensuring consistency of the different views.  

The basic modeling constructs, or component categories  of AADL are divided into three 
groups as shown in Table 1. The first group is concerned with modeling the application software 
and includes constructs for software components. The second group is concerned with modeling 
the hardware execution platform and includes constructs for modeling hardware components. 
The third supports the composition of components into subsystems and systems. It consists of a 
single System construct.  

Table 1 – AADL Component Categories 

Software Constructs 
Thread Unit of concurrent execution. 
Thread Group Compositional unit for organizing threads. 
Process Protected address space. 
Data Data types and static data in source text. 
Subprogram Callable sequentially executable code. 

Hardware Constructs 
Processor Entity that schedules and executes threads. 
Memory Location for storing code and data. 
Device Sensors, actuators, or other components that interface with the external 

environment. 
Bus Entity that interconnects processors, memory, and devices. 

System Constructs 
System A compositional unit for integrating other components into distinct units 

within the architecture. 

A system represents a composition of software, hardware, or system components. A 
system can be organized into a hierarchy of systems to represent a complex system of systems. 
Within a system, application components can be mapped onto hardware execution components 
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through binding relationships. For example, a thread can be bound to a processor for execution 
and a process can be bound to memory. Constructs are available to specify what types of 
bindings are allowed and to ensure that fault-tolerant components are not hosted within the same 
fault-containment region. 

AADL restricts interactions between components to occur only through defined 
interfaces referred to as features as shown in Table 2. Ports are the most commonly used feature 
and can be further classified as data ports for un-queued state data, event data ports for queued 
message data, and event ports for asynchronous events. Ports are directional, though data ports 
can be declared as bidirectional. Access declarations define accesses to data or bus components 
that another component may require or provide. Subprogram declarations define access to a 
subprogram that a component may require. The interactions between ports, port groups, access, 
and subprogram features and the component they interact with are specified by connections.  
Connections can be named and may have other attributes, such as whether data is sent 
immediately or is delayed. 

Table 2 – AADL Feature Categories 

Port Communications interface for the directional exchange of data  
Port Group A collection of ports or other port groups 
Access Interface for direct (non-port) access to data or bus components 
Subprogram Interface for invoking and passing values to and from a subprogram 

 
AADL makes a strong distinction between a component type and a component 

implementation. A component type specifies the externally visible interface to a component by 
listing the features of the component and their attributes. A component implementation defines 
the internal structure of a component type by listing its subcomponents and their connections. A 
component type definition cannot include subcomponents or connections, while a component 
implementation cannot define new features for the component. This is very similar to the concept 
of package specification and package body found in the Ada language on which AADL was 
originally based. 

Some systems may require different system configurations at different times. AADL 
allows the designer to specify modes that represent alternative operational states of a system.2 
Transitions between modes can be specified using a standard state transition diagram. For each 
mode, one can specify different active components and connections, different calling sequences 
for threads, and mode-specific properties for components. 

Finally, most AADL constructs are assigned a built-in set of properties that consist of a 
name, type, and value. Examples include period, worst-case execution time, deadlines, space 
requirements, and arrival rates. Properties can be assigned values in a specification through 
property-association declarations.  

A collection of AADL packages and property sets representing a system specification is 
referred to as a declarative model. A declarative model defines, or declares, a library of 
component types and implementations that can be used to construct a system.  In contrast, a 
system instance model is an instantiation of a specific system component implementation.  If a 
declarative model is viewed as a set of blueprints on how to construct a system, an instance 
model is analogous to the operational physical system. Instance models are automatically 
                                                 
2 AADL modes are not used in this project since dynamic reconfiguration is not used in any of the examples. 
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generated from a component implementation by recursively instantiating each subcomponent 
from its declarative specification. While some analyses are best performed on the declarative 
model, other analyses are best performed on an instance model.  

Like SysML, AADL also provides mechanisms for extending a specification and the 
AADL language itself. Components can be extended and assigned new properties, features, 
connections, etc. New property sets can be defined and the properties within them assigned to 
AADL constructs. Finally, annexes can be defined to make major additions to the language that 
are recognized and checked by analysis tools.  

The AADL Behavior Model Annex [15], [16] is an extension to AADL that allows 
component behaviors to be described as state transition systems with guards and actions. The 
guards and actions may refer to and modify AADL components and their features as well as 
local variables defined in the annex. So a transition can receive inputs from a port of the 
enclosing component or a subcomponent, reference the current value of a data subcomponent, 
bus, or local variable, send outputs to a port of the enclosing component or a subcomponent, and 
set the current value of a data subcomponent, bus, or local variable. Only flat, i.e., non-
hierarchical, state transition systems are supported.  

The AGREE Annex is an extension to AADL that allow component behaviors to be 
specified as assume/guarantee contracts. The AGREE environment allows a user to prove that 
the guarantees stated in an AADL type’s contract are guaranteed by its implementation. It also 
checks that a subcomponent’s assumptions are guaranteed by the component’s assumptions and 
the guarantees of the other subcomponents and that the entire contract for a component and its 
subcomponents are consistent. 

Tool support for AADL, AGREE, and the Behavior Annex is provided by the Open 
Source AADL Tool Environment [17]. OSATE is implemented as a number of plug-ins for the 
open-source Eclipse Integrated Development Environment (IDE). OSATE provides graphical 
and textual editors for AADL and supports a number of analysis tools. 
3.1.3 The Kind SMT-based Model Checker. 

There are many model-checkers, each with their own strengths and weaknesses [18]. 
Kind is an automated tool for checking safety properties of Lustre models [12], [19], [20], [21]. 
Lustre is a synchronous dataflow language which can be used as either an executable 
specification language or a highly declarative programming language [22]. Lustre is an open 
standard and is also the textual representation used by the SCADE Suite for the design of safety-
critical systems [6]. It operates on streams, infinite sequences of values of conventional data 
types, such as machine integers, floating point numbers, and Booleans. A Lustre program, or 
model, is defined as the synchronous parallel composition of one or more nodes. A node is in 
essence an equational specification of a stream transformer, mapping a finite set of streams to 
another finite set of streams. Operationally, a node has a cyclic behavior: at each cycle i, it takes 
as input the value of each input stream at position, or instant, i and returns the value of each 
output stream at instant i. Lustre nodes can be stateful as they are allowed to access stream 
values from previous instants, up to a finite limit statically determined by the node itself. 
Checking safety properties for Lustre models can be recast as proving that certain logical 
predicates are invariant, i.e., hold in every reachable state of the model.   

Lustre has a notion of clock that allows one to define streams and nodes with different 
clock rates. Clocks are just Boolean valued streams that can be associated with other streams. 
Intuitively, a stream s with an associated clock c is defined only at those instants of a basic 
global clock when c has value true. This effectively defines s to have a slower clock rate than the 
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basic clock rate. This clock mechanism is quite powerful and more than enough to specify quasi-
synchronous systems as defined in this project. At the same time, it considerably complicates the 
Lustre type system since stream types depend on clocks and typical stream operators with more 
than one argument (such as +, <, and so on) are well defined only on input streams with the same 
clock rate. 

Kind was designed to check arbitrary quantifier-free invariants of Lustre models. It does 
that by encoding internally the model and the properties to be checked as logical formulas over 
the background theory of integer and real numbers [19]. The problem of proving invariance of a 
property then amounts to checking the satisfiability of a quantifier-free logical formula with 
respect to this background theory. This SMT problem [23], [24], [25], [26], [27], [28] is 
decidable and several efficient solvers exist, so that Kind can delegate the reasoning task to one 
of these solvers. In addition, an SMT solver can provide a model witnessing that a property is not 
invariant. Such a model can be translated to an execution trace of the system that is a 
counterexample to the property. 

The main model checking algorithm used by Kind is k-induction, which is a 
strengthening of the induction principle. To prove a property to be invariant by basic induction, 
one has to show that the property holds in the initial states of the system and is preserved by 
every single-step transition. Together the initial case and the inductive step case show that the 
property holds in every reachable state of the system. The two cases can be checked 
automatically by an SMT solver by encoding them into logical formulas  

If the initial case does not hold, the property is certainly not invariant. On the other hand, 
if the inductive step does not hold, the property may still be invariant since the inductive step 
might be falsified only by unreachable states. The idea of k-induction is to consider not only 
single-step transitions, but transition paths of finite length k by unrolling the transition relation k 
times. The initial case is extended to check if the property holds for the first k steps. The 
inductive step then checks if in every sequence of k transitions, where the property is satisfied for 
the first k states, the property also holds in the k+1-th state. Again, if both the initial case and the 
inductive step case hold, the property is invariant over all reachable states of the system. If the 
initial case is not valid, there exists a counterexample of k steps that violates the property; if the 
inductive step is not valid, the property may still be invariant. 

It is important to note that k-induction can prove a strict superset of the properties that 
can be proved by induction, or in fact k-induction for a smaller k. However, there are invariant 
properties that cannot be proved by k-induction for any k. 

The Kind model checker executes the initial case, which is called bounded model 
checking (BMC) in other contexts, in parallel with the inductive-step case. Both processes 
independently increment k until either the BMC process finds a counterexample to the property 
or the inductive step process proves the inductive step for some k for which the BMC process 
found no counterexamples. 

Another essential component of the Kind model checker is invariant discovery, a process 
that guesses and tries to discover auxiliary invariants about the system automatically [29]. 
Asserting these invariants during k-induction can speed up the model checking process by 
lowering the bound k required to prove a property. More importantly, it can make previously 
unprovable properties provable by k-induction and thus extend Kind’s scope. 
3.1.4 The Uppaal Model Checker for Timed Automata 

Uppaal is an integrated tool environment for the specification, simulation and verification 
of real-time systems modeled as networks of timed automata [30]. A timed automaton is a finite 
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automaton extended with a finite set of real-valued clocks. The clock values all increase at the 
same rate and clock values can be interrogated in the transition guards of each automaton, 
allowing transitions to be enabled or disabled based on the passage of time. Clocks can be reset 
to a positive time value by transitions, but cannot be changed otherwise. The addition of clock 
variables make timed automata useful for modeling real-time systems. Methods for checking 
safety and liveness properties of timed automata have been studied extensively for many years. 
These features make Uppaal attractive for the verification of quasi-synchronous systems. 

Timed automata in Uppaal are specified as processes, where a process consists of process 
parameters, local declarations, states and transitions. Process parameters turn into process-private 
constants when a process is instantiated. Local declarations describe the set of private variables 
to which a running process has access. States correspond to the vertices of a timed automaton in 
graphical form. Transitions are the edges connecting these vertices. A transition specifies a 
source and destination state, a guard condition, an (optional) synchronization channel, and 
updates to private or global data.  A system in Uppaal is the parallel composition of previously 
declared processes. 

To facilitate analysis of timed automata, the Uppaal model checker places restrictions on 
comparisons and assignments to clocks. For example, a variable of type clock can only be 
assigned the value of an integer expression.  Moreover, transition guards are limited to 
conjunctions of simple clock conditions (a comparison of a clock to an integer expression or 
another clock) or data conditions (a comparison of two integer expressions). As described in 
Section 3.4.3, clocks with period, jitter and offset can be readily modeled in Uppaal, and quasi-
synchrony constraints can then be imposed on them.  Researchers at Stony Brook University 
have constrained clocks in Uppaal in similar ways in previous work [31], [32].  

3.2 Quasi-Synchrony 
Designing and verifying systems with unbounded asynchrony can be very difficult. As 

discussed in [33], [34], [35], the possible interleaving of the execution of the nodes and the 
interactions between them grows exponentially in a fully asynchronous system, limiting the 
complexity of the systems that can be verified through model checking. Moreover, the 
synchronization of the global system state has to be accomplished through hand-shaking 
protocols that make no assumptions about time and are consequently hard to design. Even 
formally specifying the desired system properties is difficult for these sorts of systems.  

Fortunately, very few actual systems exhibit completely unbounded asynchrony. In most 
cases, the asynchrony is bounded. A convenient way to model and verify such systems is by 
associating a clock (a Boolean-valued function of time) with each subsystem such that the 
subsystem executes one step when its clock ticks (the Boolean function becomes true) [3]. The 
amount of asynchrony can then be specified as constraints on the clocks. For example, in fully 
asynchronous systems, there are no constraints placed on the clocks and each node can execute at 
any time. At the other extreme, in a completely synchronous system the clocks are constrained to 
tick at exactly the same time so that all nodes execute in unison. 

A straightforward approach to verifying such systems is to drive the local clocks with a 
calendar automaton. A calendar automaton is a discrete state machine that knows the period and 
jitter of each clock and maintains a global system time. At each step of the overall system, it non-
deterministically computes the next time at which one or more local clocks can execute, sets 
their clocks true, executes the entire system, and advances the global time. It thus constrains the 
clocks so that nodes execute at the specified periodicity, but may still execute a bit sooner or 
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later than a perfect clock due to their jitter. In this way, the possible interleavings of the nodes 
can be modeled and the overall correctness of the system verified. The primary disadvantage of 
this approach is that most model checkers are still overwhelmed if realistic ranges for period and 
jitter are used. 

What is needed is an abstraction of the local clocks that makes formal verification 
tractable. The quasi-synchronous abstraction defined in [4] is appropriate for many real systems. 
This abstraction constrains the clocks so that no clock is allowed to tick more than twice before 
all other clocks have ticked at least once (2/1 quasi-synchrony). This is an over approximation of 
systems in which the clocks execute at the same period modulo their drift and jitter. In such 
systems, it is easy to envision a case in which one clock ticks slightly later than every other clock 
and then ticks again slightly before every other clock. However, it should not be possible for a 
clock in such a system to tick three times before every other clock has ticked at least once.   

An example with three clocks is shown in Figure 2. The tick of each clock is indicated by 
a triangle, where time increases to the right (in both columns). The shaded background bars 
provide a visual frame of reference, but are not actually necessary. They are each one clock 
period in width. In case (aL) all clocks tick at the same time at the start of each period. This is the 
synchronous case in which there is no jitter or offset. It clearly satisfies the quasi-synchronous 
constraint. In case (aR), clock 2 is ticking faster than clock 1 and clock 3 and in several cases 
ticks three times before clock 1 or clock 3 has ticked once. One such case is indicated by the 
vertical dashed lines. 

In example (bL), the clocks exhibit significant jitter, but none of them ever ticks three 
times before all the other clocks have ticked once. It satisfies the quasi-synchronous constraint.  
Case (bR) is identical to case (bL) except that clock 2 ticks one extra time such that it ticks three 
times before clock 3 ticks once. Case (cL) is similar, but still meets the quasi-synchronous 
constraint. Case (cR) is identical to (cL) except that clock 3 has ticked one extra time, causing it 
to tick three times before clock 2 ticks once. In case (dL), clock 3 ticks twice as fast as clock 1 
and clock 2, but never ticks so fast that it violates quasi-synchrony. Case (dR) is identical to (dL) 
except that clock 2 ticks slightly early and slightly late in one period so that clock 3 ticks three 
times before clock 1 and clock 2 tick once. Finally, in case (eL) all clocks are ticking twice as 
slowly as expected, but never violate quasi-synchrony. Case (eR) is identical to (eL) except that 
clock 2 resumes its normal rate for one step and ticks three times before either clock 1 or clock 3 
ticks once. 

These examples illustrate that quasi-synchrony is clearly an over approximation of the 
case where all clocks execute at the same rate modulo comparatively small values for jitter. In 
Section 3.2.1, we quantify the relationship between period, drift, and jitter that must be 
maintained for the quasi-synchronous constraint to hold. So long as this relationship holds, a 
quasi-synchronous abstraction of a system will exhibit all the possible interleavings of the actual 
system. Thus, if a property of a quasi-synchronous abstraction of the system can be verified, that 
property will also hold of the actual system. Just as importantly, the quasi-synchronous 
abstraction provides a light-weight constraint on the clocks that is well suited for formal 
verification with model checkers.  
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Figure 2 – Examples of Quasi-Synchrony 
Of course, there are other constraints that may be of interest. For example, we could 

require that no clock can tick more than n+1 times before every other clock has ticked at least n 
times, where n is zero or greater. Another interesting constraint would be to require that no clock 
can tick more than n+1 times before every other clock has ticked m times, where 1 ≤ m ≤ n, 
thereby allowing some clocks to tick slower. It is even possible to consider individual constraints 
between every pair of clocks. Whether such higher forms of quasi-synchrony have any practical 
applications appears to be an open question. 
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3.2.1 Relationship to Real Time. 
To relate the quasi-synchronous constraint to real-time, we first characterize each clock 

by its period and jitter, where jitter is the maximum difference between the observed clock 
period and the ideal clock period. Figure 3 illustrates the relationship for two clocks i and k, with 
periods pi and pk and jitter ji and jk. Assume clock i has a shorter period than clock k so that clock 
i must tick three times before clock k ticks once to violate quasi-synchrony. Assuming Clock k 
ticks just before clock i ticks at time t and that clock i always ticks as early as possible, then 
clock i will tick three times by t + 2(pi - ji), while the latest clock k can tick next is pk + jk. Thus, 
these clocks will satisfy the quasi-synchronous constraint if 2(pi - ji) > pk + jk and   
2(pk – jk) > pi + ji.  
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Figure 3 – Relationship of Quasi-Synchrony to Real Time 
Now consider a collection of n clocks. Let the fastest clock be the clock i with the 

smallest value of p - j and let the slowest clock be the clock k with the largest value of p + j. If 
2(pi - ji) > pk + jk holds, then it must be the case that the quasi-synchrony constraint holds for all 
n (n-1)/2 pairs of clocks. So any collection of clocks is quasi-synchronous if the fastest clock i 
and the slowest clock k satisfies the relationship  

2(pi - ji) > pk + jk (1) 

Verifying the correctness of a distributed agreement protocol assuming n quasi-synchronous 
clocks thus verifies the correctness of the protocol for all possible collections of n clocks in 
which the fastest and the slowest clocks satisfy the inequation (1). 
3.2.2 Enforcing Quasi-Synchrony. 

When modeling a distributed agreement system, it is convenient to initially model the 
clocks as unconstrained Boolean inputs and only later impose the appropriate constraints on 
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them. For example, to verify a system as a fully asynchronous system, the clock inputs can 
simply be left unconstrained. To verify the system as a synchronous system, the clock inputs can 
be set to be identical.  

Constraining the clocks to satisfy quasi-synchrony is more complex but an elegant 
approach was described in [4]. Figure 4 illustrates a deterministic finite state acceptor (DFA) that 
accepts all valid sequences of clock activations for a pair P and Q of quasi-synchronous clocks 
such that no clock can tick more than twice before every other clock has ticked at least once, i.e., 
2/1 quasi-synchrony. The transitions are labeled with the clock values accepted by the transition, 
where (CP.CQ) denotes a tick of both clocks, (CP.C̄Q ) denotes a tick of only P and (C̄P .C̄Q ) 
denotes a tick of neither clock. State 1Q represents the state in which Q has ticked once since the 
last time P ticked, while state 2Q represents the state in which Q has ticked twice since the last 
time P ticked. From state 1Q possible activations are for neither clock to tick leading back to 
state 1Q, for P to tick leading to state 1P (since P has now ticked once since Q last ticked), for Q 
to tick leading to state 2Q, and for both P and Q to tick leading back to the initial state 0. The 
only acceptable possibilities from state 2Q are for neither clock to tick leading back to state 2Q 
or for P to tick leading to state 1P. Similar observations hold for states 1P and 2P.  

1Q 1P

0

2Q 2P

CP.CQ CP.CQ

CP.CQ

CP.CQ CP.CQ

CP.CQCP.CQ
CP.CQ

CP.CQ

CP.CQ

CP.CQCP.CQ

CP.CQ CP.CQ

CP.CQ

CP.CQ

Figure 4 – Acceptor for Quasi-Synchronous Activations 
For a system with n clocks, the DFA of Figure 4 must hold for all possible n(n-1)/2 pairs 

of clocks.  
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3.2.2.1 Enforcing Quasi-Synchrony in Kind. 
Since the Kind model checker directly accepts Lustre specifications, the clock constraints 

for Kind can be specified in Lustre.  To constrain the clocks so that they observe 2/1 quasi-
synchronously, we define the Lustre node qs_dfa shown in Figure 5 which implements the quasi-
synchronous acceptor automaton of Figure 4.  

 

 
Figure 5 – Lustre Implementation of the Quasi-Synchronous Acceptor 

This node takes as input two clocks p and q. The local variable r defines how far clock p 
is ahead of clock q. A positive value of r indicates that clock p has ticked r times since q last 
ticked while a negative value of r indicates clock q has ticked –r times since p last ticked. The 
negative values of r (-1 and -2) correspond to the states 1Q and 2Q, respectively, of the DFA in 
Figure 4, and the positive values of r (1 and 2) correspond to 1P and 2P. Since neither clock 
should get more than two ticks ahead of the other clock, the absolute value of r should be less 
than or equal to two. This is stated in the predicate r_is_bounded and passed to Kind as a 
property to be checked. 

To ensure that the clock inputs actually observe the quasi-synchronous constraint, the 
translator also generates the node quasi_synchronous_clocks shown in Figure 6, which is true 
only if the ticks produced by every pair of clocks are accepted by qs_dfa. In the properties to be 
verified (discussed in Section 4.1) this constraint is asserted by the user in AGREE with the 
synchrony : 2 command. Kind will use this assertion to constrain the system inputs during 
evaluation so that only quasi-synchronous executions of the clocks are considered. In similar 
fashion, constraints are also generated as shown in Figure 6 for the cases in which the clocks are 
synchronous and asynchronous, allowing the user to easily evaluate the system under different 
clock constraints.  

The quasi-synchronous property is a restriction on how fast an individual clock can tick, 
i.e., no clock can tick more than twice before every other clock has ticked at least once. 
However, it is also necessary to restrict how slowly each clock can tick since a system in which 
no clock ever ticks is not very interesting. In fact, a step in which no local clock ticks is not 
interesting since the system will not change state on such a step. So to ensure progress, we also 

node qs_dfa (p, q : bool) returns (ok : bool); 
var 
  r : int; 
  r_is_bounded : bool; 
let 
  ok = not (((0 -> pre r) = 2 and p) or ((0 -> pre r) = -2 and q)); 
   
  r = if p and q then 0  
      else if p then (if (0 -> pre r) < 0 then 1 else ((0 -> pre r)) + 1) 
      else if q then (if (0 -> pre r) > 0 then -1 else ((0 -> pre r)) - 1) 
      else (0 -> pre r); 
 
  r_is_bounded = r <= 2 and r >= -2; 
 
  --%PROPERTY r_is_bounded; 
 
tel; 
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require that at least one clock must tick on every step of the system. These two constraints ensure 
that the system makes progress and that no clock gets too far ahead of the other clocks. 

 

 
Figure 6 – Quasi-Synchronous, Synchronous, and Asynchronous Clock Constraints 

Although 2/1 quasi-synchrony is the simplest and probably most useful in practice, we 
have investigated constraints for more general forms of quasi-synchrony. We say a clock p is n/m 
quasi-synchronous to a clock q if p can tick at most n times before q has ticked m times. The 
DFA of Figure 4 can be easily extended to accept valid sequences of clocks that are n/1 quasi-
synchronous.  

To enforce n/1 quasi-synchrony, we extend the DFA of Figure 4 to consist of states iQ 
and iP for 1 <= i <= n, as well as the state 0. The meaning of state iQ is that clock q is i steps 
ahead of clock p, and vice versa for iP. The transitions out of states iQ for i < n are similar to the 
transitions out of state 1Q of the DFA in Figure 4: a tick of both clocks (CP, CQ) leads to state 0, 
a tick of clock q only (C̄P , CQ) leads to state (i+1)Q, a tick of clock p only (CP, C̄Q ) leads to 
state 1P, and the DFA remains in iQ if none of the clocks tick (C̄P ,C̄Q ). Transitions for state iP 
are analogous. 

The transitions out of state nQ are similar to the transitions out of 2Q in Figure 4: a tick 
of clock p only (CP, C̄Q ) leads to 1P. Since clock q must not tick, (CP, CQ) and (C̄P , CQ) are not 

node quasi_synchronous_clocks( 
   CLK1 : bool; CLK2 : bool; CLK3 : bool; CLK4 : bool) 
returns (ok : bool); 
let 
 ok =  
  qs_dfa(CLK1, CLK3) and 
  qs_dfa(CLK1, CLK2) and 
  qs_dfa(CLK1, CLK4) and 
  qs_dfa(CLK3, CLK2) and 
  qs_dfa(CLK3, CLK4) and 
  qs_dfa(CLK2, CLK4); 
tel; 

 

node synchronous_clocks( 
   CLK1 : bool; CLK2 : bool; CLK3 : bool; CLK4 : bool) 
returns (ok : bool); 
let 
 ok = (CLK1 = CLK2) and (CLK2 = CLK3) and (CLK3 = CLK4); 
tel; 

 

node asynchronous_clocks( 
   CLK1 : bool; CLK3 : bool; CLK2 : bool; CLK4 : bool) 
returns (ok : bool); 
let 
 ok = true ; 
tel; 
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accepted, and neither clock ticking (C̄P , C̄Q ) leaves the DFA in state nQ. The transitions for nP 
are again analogous. 

These modifications allow an implementation of the DFA as a Lustre node 
straightforwardly generalized to the one shown in Figure 5. We replace the value 2 in the ok 
stream with n, and generalize the r_is_bounded lemma to state the values of stream r are 
between the bounds -n and n. This generates a set of constraints that are very efficient during 
model checking. 

To distinguish clock patters that respect n/m quasi-synchrony with m > 1, a different 
approach is needed. To construct a constraint for n/m quasi-synchrony, we consider the 
equivalent statement "If clock p ticks, then there have been at least m ticks of clock q since the n-
th last tick of p." This definition can be implemented with n counters, respectively keeping track 
of the number of ticks of q since the last n ticks of p. 

Formally, we define streams cq[i] with 1 <= i <= n to contain the number of ticks of q 
since the i-th last tick of p, and update in any state as follows. If only clock q ticks (C̄P , CQ), then 
increment all cq[i]. If only clock p ticks, set cq[i] to the value of cq[i-1] and cq[0] to zero. If both 
clocks p and q tick (CP, CQ), combine the two previous actions by setting cq[i] to the value of 
cq[i-1] + 1 and cq[0] to one. If no clock ticks, keep all cq[i] at their previous values.  

Before the first instant of the system, we assume that q has ticked m times at each n last 
tick of m, such that it does not constrain the possible ticks of p until p has ticked n times. 
Therefore, we set cq[i] to m initially. Finally, p ticks n/m quasi-synchronous to q if on each tick 
of p the value of cq[n] >= m. A Lustre node implementing this constraint3 is shown in Figure 7. 
It only constrains clock p, and thus it needs to be instantiated once for the ordered pair (p, q) and 
once for (q, p).  

 

 
Figure 7 – Lustre Implementation of an Acceptor for n/m Quasi-Synchrony 

An implementation of a quasi-synchronous constraint is required to take a sliding 
window approach as the one described. Since there is no explicit mention of clock periods in the 
abstraction, a constraint must look back at a fixed history of clock ticks. The constraint presented 
above maintains counters relative to clock ticks of p, not relative to the base clock. As such it has 
the advantage over conceivable other formulations that the state of the Lustre node does not 
change if no clock ticks. Thus, model checking algorithms can apply abstraction and 
                                                 
3 For conciseness of presentation, this implementation uses arrays that currently are not widely supported in Lustre 
tools. Generally, this node would have to be instantiated for each concrete pair of values n and m. 

node  qs_c (p, q: bool; const n: int; const m: int) returns (ok: bool); 
var 
  c_q : int^n; 
let 
  c_q[i] =  
    if (q and (not p)) then (m -> pre c_q[i]) + 1 
    else if (p and (not q)) then (if i=0 then 0 else m -> pre c_q[i-1]) 
    else if (p and q)       then (if i=0 then 0 else m -> pre c_q[i-1]) + 1 
                            else m -> pre c_q[i]; 
  ok = ((2*n) -> c_q[n]) >= m; 
tel; 
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compression methods. This is particularly important if there are more than two clocks in a 
system, such that there are instants where the state of the system changes although neither p nor 
q tick. The constraints generated by the acceptor of Figure 7 are not as efficient during model 
checking as those generated by the acceptor of Figure 5 for n/1 quasi-synchrony. For this reason, 
the AGREE tool will use the acceptor of Figure 5 when the synchrony: n command is specified 
and the acceptor of Figure 7 when the synchrony: n, m command is specified. 

3.2.2.2 Enforcing Quasi-Synchrony in Uppaal 
The quasi-synchronous constraints on the clocks were enforced in two different ways in 

Uppaal. In the first approach, we took advantage of Uppaal’s ability to specify real-time and 
selected concrete values for the period and jitter of each clock that satisfied the constraints of 
Section 3.2.1. In the second approach, we constrained the clocks so that one clock ticked on each 
step in accordance with the quasi-synchronous constraints. The first approach has the advantage 
of using actual values of period and jitter that practicing engineers are comfortable with. The 
second approach is much closer to the way clocks are constrained in Kind and verifies the system 
for all combinations of period and jitter that satisfy the quasi-synchronous constraint. 

In the first approach, the clock synchronization events for the top-level components are 
generated by clock processes, where each clock process is characterized by the clock’s period p 
and jitter j. These values are stored in a global array indexed by the clock’s id. For the system to 
be quasi-synchronous, these values must satisfy the constraints defined in Section 3.2.1. The 
template for a clock takes a clock id as a parameter and uses that id to index its values for period 
and jitter.  The behavior associated with each clock is as shown in Figure 5.  

 
Figure 8 – Uppaal Quasi-synchronous Clocks 

The offset of the clock is implemented by allowing its initial transition to occur when its 
local time t is between 0 and p + j, which is the latest possible time it must tick. This is 
implemented as the invariant t < p[id]+j[id] associated with the initial location. When this 
transition occurs, the clock transitions from the initial location to location St_ClockTick, 
generates a synchronization event clk[id]! and sets its local time t to zero. 

After the clock transitions to the St_ClockTick location, the clock generates ticks in 
accordance with its period and jitter; i.e., a clock tick must occur in the interval (p-j, p+j). The 
upper transition of Figure 8 allows a tick to be generated when the time is greater than p – j.  An 
invariant associated with location St_ClockTick forces this transition to occur before the time is 
greater than p + j.   

The second approach maintains a partial history of when the clocks have ticked. At each 
step, one of the clocks that can tick is selected, a synchronization event is generated, and the 
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partial history is updated. The relationship to be maintained between the clocks is specified in 
two arrays, Max and Min as shown in Figure 9. Max[i, j] specifies the maximum number of times 
clock i can tick before clock j has ticked Min[j, i] times (the values of Max[i, i] and Min[i, i] are 
irrelevant). Figure 9 illustrates Max and Min for 3/2 quasi-synchrony with three clocks. 

 
Figure 9 – Max and Min Arrays for Clock Constraints 

The partial history of clock ticks is stored in the Age matrix which contains one row for 
each clock and N columns, where N is the largest value in Max. Column 1 contains the number 
of steps since each clock last ticked, column 2 contains the number of steps for each clock since 
the first of the previous two ticks, column 3 contains the number of steps for each clock since the 
first of the previous three ticks, and so forth. 

When a clock is selected to tick, every element in the row for that clock is shifted to the 
right (dropping the right most value), the value 0 is entered into the left most cell, and each value 
in the entire matrix is incremented. Initially, every value in the Age matrix is set to 1.4 An 
example of this update cycle where clock 2 is chosen to tick is illustrated in Figure 10. 

 
Figure 10 – Update of Age Matrix when Clock 2 Ticks 

On each step, the next clock to tick can be any clock i that satisfies for all clocks j, j ≠ i,  
 

Age[i][Max[i, j] >= Age[j][Min[j, i] 
 
An example of this is shown in Figure 11 for 3/2 quasi-synchrony. At the top of Figure 

11 is a sequence of clock ticks for three clocks that satisfies 3/2 quasi-synchrony. In step 1, clock 
1 ticks, in step 2 clock 1 ticks again, in step 3 clock 2 ticks, etc. Note that more than one clock 
can tick in a single step, as illustrated in steps 7, 10, and 11. Below are depictions of the Age 
matrix for each step. An arrow on the left indicates which clocks ticked to produce that 
configuration of the matrix. Dots on the right indicate which clocks are allowed to tick on the 
next step. 

                                                 
4 Initializing the Age matrix with ones is not intuitive, but we have performed a proof using Kind that this 
initialization is correct. 

Max Min 

Initial Setting Clock 2 Ticks All Clocks Age 
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For example, in step 1, clock 1 ticks, shifting its row to the right, inserting a zero in the 
left most cell of that row, following by incrementing the value of all cells. For 3/2 quasi-
synchrony, the eligibility of each clock to tick on the next step can be determined by checking 
that the value of the clock in column 3 is greater than or equal to the value of all the other clocks 
in column 2. At the end of step 1, all three clocks are allowed to tick on the next step, indicated 
by the dot next to each clock. 

 

 
Figure 11 – Example of Clock Selection for 3/2 Quasi-Synchrony 

In step 2, clock 1 is again selected to tick from among the eligible clocks and the Age 
matrix is updated. At the end of step 2, all three clocks are still allowed to tick on the next step. 
On step 3, clock 2 is selected to tick and the Age matrix is updated accordingly. Step 5 is the first 
step in which a clock (clock 1) is not allowed to tick on the next step.  This is because its value in 



Approved for Public Release; Distribution Unlimited 

21 

column 3 indicates that the first of its previous three ticks occurred five steps ago, while the 
values for clocks 2 and 3 in column 2 indicate that the first of their previous two ticks occurred 
six steps ago. That is, clock 1 has ticked three times while clocks 2 and 3 have not yet ticked 
twice. 

Clock 2 is selected to tick on step 6, which makes it possible for clocks 2 and 3 to tick on 
step 7. On step 7, both clocks 2 and 3 tick simultaneously, allowing clocks 1 and 3 to tick on the 
next step. Clock 3 is selected to tick on step 8, leaving clock 1 as the only clock that can tick on 
step 9. After clock 1 ticks on step 9, all three clocks are again enabled, and so forth. 

The Age matrix maintains a partial history of the execution history of the clocks that is 
sufficient to determine which clocks can tick on each step. Column n maintains for each clock 
the number of steps ago that the first of its previous n steps occurred. History that is no longer 
needed is discarded, keeping the matrix to a fixed size. The example presented here illustrates 
3/2 quasi-synchrony, but the algorithm can be extended to any form of quasi-synchrony, 
including forms where different constraints are specified for each pair of clocks. 

The Uppaal process implementing this algorithm is shown in Figure 12. The function 
checkWhichClockTicks() determines which clocks can tick on the next step. The three branches 
nondeterministically select one clock to tick from among the clocks that can tick. The 
performAging() function updates the Age matrix, and clk[id]! generates the clock 
synchronization event just as in Figure 8. 

Figure 12 – Uppaal Process for Selecting Next Clock to Tick 
Since only one clock is selected on each step, this actually implements a subset of true 

quasi-synchrony in which multiple clocks can tick on the same step. However, it does implement 
the maximally asynchronous form of quasi-synchrony which should be equally effective in 
finding errors. 
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3.3 Example Problems. 
To illustrate the issues in the modeling and analysis of quasi-synchronous systems, we 

created four examples of increasing complexity, all derived from actual systems. The Pilot 
Flying example describes a simple system in which left and right Flight Guidance Systems 
(FGS) need to agree on which side is the Pilot Flying Side (PFS) of the aircraft, where either 
pilot may choose to transfer control to the other side at any time. It is one of the simplest 
distributed agreement protocols, but is still complex enough to illustrate the issues in 
constructing these protocols. The Leader Selection example describes a system in which N nodes 
report their current health to all other nodes and then select the healthiest node as the leader. It is 
a useful example since it can be expanded to any number of nodes. It is illustrated here with 
three nodes. The Active Standby example is similar to the Pilot Flying example, but bases the 
selection of the active side on both a pilot input and on the observed health of both sides. In 
addition, it allows either side to fail and heal at any time. This results in a quite complex 
protocol. The Wheel Braking example is derived from an accident report of a commercial air 
transport class aircraft that resulted in a loss of braking on landing. 
3.3.1 Pilot Flying Example. 

A FGS is a component of the overall Flight Control System (FCS) that compares the 
measured state of an aircraft (position, speed, and attitude) to the desired state and generates 
pitch and roll guidance commands to minimize the difference between the measured and desired 
state. In many aircraft, the Flight Guidance function at the system level is implemented as two 
physical sides, or channels, one on the left and one on the right side of the aircraft. These 
redundant implementations communicate with each other over a cross-channel bus as shown in 
Figure 13.  

Left
FGS

Right
FGSCross Channel Bus

Transfer
Switch

Figure 13 – FGS System Function 
In most modes of operation, only one side is active and actually generating guidance 

commands for the aircraft. The active side is referred to as the Pilot Flying side and the other 
side is referred to as the Pilot Not Flying side. The flight crew can choose whether the left or the 
right FGS is the Pilot Flying side by pressing the Transfer Switch (TS) above the Flight Control 
Panel in the cockpit. If the left side is the Pilot Flying side, pressing the Transfer Switch makes 
the right side the Pilot Flying side, and vice-versa. 

Figure 13 provides no indication of whether the two FGS execute synchronously or 
asynchronously. In some designs, such as a Time-Triggered Architecture (TTA), all components 
are driven off of a single master clock and execute synchronously. In other architectures, such as 
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Avionics Full-Duplex Switched Ethernet (AFDX), each component is driven by its own local 
clock and executes asynchronously [37]. To model a range of system architectures from fully 
synchronous to fully asynchronous, we introduce the more detailed model of the FGS system 
shown in Figure 14. 

Left_Side

FGS

Right_Side

FGS

LR_Bus

RL_Bus

Left_Pilot_Flying_Side

Right_Pilot_Flying_Side

Transfer_Switch Transfer_Switch

C1 C2

C3C4

TRUE

Primary_Side

FALSE
Primary_Side

CLK1

CLK2

CLK4

CLK3

 
Figure 14 – Pilot Flying System Top Level Model 

The FGS system of Figure 14 consists of four components - the Left_Side FGS, the 
Right_Side FGS, an LR_Bus and an RL_Bus. Each side produces outputs which are passed to the 
other side across the appropriate bus, introducing a one-step delay in the process. Among its 
outputs, each side produces a Pilot_Flying_Side Boolean output indicating if it believes itself to 
be the current pilot flying side. Each FGS accepts as inputs a Boolean value representing the 
current value of the Transfer_Switch5 and the outputs passed from the other side. Each FGS is 
also assigned a single Boolean constant indicating if it is the Primary_Side. The Primary_Side 
constant for the left side is set to true while the right side is set to false.  

To model system designs ranging from fully synchronous to fully asynchronous, we 
introduce for each component a single Boolean valued clock signal (CLK1 though CLK4 in 
Figure 14). When a clock is true, the associated component will take a step. When a clock is 
false, the component makes no change to its internal state or outputs. This model assumes an 
underlying discrete model of time, where each component clock can tick only when the global 
clock ticks, but the global clock may tick at any rate and the component clocks may tick or not 
tick at any time the global clock ticks. By appropriately constraining the relationships between 
the four clocks, this model can emulate all combinations we are interested in. For example, to 
emulate a synchronous system, the clock signals are all equated to each other ensuring they all 
tick at the same time. To emulate a completely asynchronous system, the clocks are not 
constrained at all and may tick at any time. For a quasi-synchronous system, the clocks are 
constrained as discussed in Section 3.2.2. 

The same informal top-level system requirements hold regardless of the clock constraints. 
These are:  

R1  At least one side is always the pilot flying side. 

                                                 
5 Note that there is an implied assumption that the Transfer_Switch arrives at both sides at the same time. The 
subsequent discussion makes clear why this assumption can be safely made. 
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R2 Both sides shall agree on the pilot flying side except while the system is switching 
sides. 

R3 Pressing the Transfer Switch shall always change the pilot flying side except while 
the system is switching sides. 

R4 The system shall start with the primary side as the pilot flying side. 

R5 The system shall not change the pilot flying side unless the Transfer Switch is pressed 
or when the system is switching sides.  

Verification of these properties for the quasi-synchronous system is discussed in Sections 
4.1.1 and 4.2.1. The following sections describe the synchronous, asynchronous, and quasi-
synchronous solutions. 

3.3.1.1 The Synchronous Pilot Flying Example. 
The top-level architecture of Figure 14 does not change regardless of the relationships 

between the component clocks, but simpler component implementations are possible for the 
synchronous case than for the asynchronous case. This section describes a specification adequate 
for the synchronous case in which all four clocks tick at the same time.  

A synchronous bus simply maintains a copy of its inputs and its outputs. Since its clock 
ticks on every step, on each step it moves its inputs to its outputs and reads in a new set of inputs. 
This introduces a one-step delay in the propagation of its values. 

Each FGS side executes the simple state machine shown in Figure 15 to determine which 
side is the current pilot flying side.  

Pilot_Flying Not_Pilot_Flying

[rise(Other_Side_tilot_Flying)]

[rise(Transfer_Switch)]

[trimary_Side] [NOT trimary_Side]

Start

 
Figure 15 – Synchronous Pilot Flying Logic 

If a side believes itself to be the Not_Pilot_Flying side, it will become the Pilot_Flying 
side when it sees the Transfer_Switch pressed. If it believes itself to be the Pilot_Flying side, it 
will become the Not_Pilot_Flying side when it sees the other side become the pilot flying side. 
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Thus, it is always the Not_Pilot_Flying side that responds to the Transfer_Switch, and the current 
Pilot_Flying side always yields when it sees the other side become the Pilot_Flying side. 

3.3.1.2 The Asynchronous Pilot Flying Example 
Designing and verifying the synchronization logic is more difficult in the asynchronous 

case when the components are not driven by a single master clock [33]. Values may be missed 
entirely by a component if they arrive while it is not executing, leading to race and deadlock 
conditions. If no assumptions are made about the individual component clocks, the Pilot Flying 
example can be implemented correctly only through the use of a hand-shaking protocol. The 
logic for this protocol is shown in Figure 16. 

 

Confirmed
(Ack = True)

Pilot_Flying

Waiting
(Ack = Calse)

[fall(Other_Side_Ack)]

Inhibited
(Ack = Calse)

Not_Pilot_Flying

Listening
(Ack = True)

[Other_Side_Ack]

[rise(Other_Side_tilot_Clying)]

[rise(Transfer_Switch)]

[Lnitial_tilot_Clying_Side] [not Lnitial_tilot_Clying_Side]

Start

 
Figure 16 – Asynchronous Pilot Flying Logic 

The Ack value is used to communicate to the other side when a side has reached a stable 
state. The Primary_Side starts in the Confirmed sub-state of the Pilot_Flying state with its Ack 
set to true. The other side starts in the Listening sub-state of the Not_Pilot_Flying state with its 
Ack set to true. When the Transfer_Switch is pressed, the Not_Pilot_Flying_Side transitions to 
the Waiting sub-state of the Pilot_Flying state. It remains in this sub-state until it sees the other 
side’s Ack fall, indicating that it has yielded control. When the Primary_Side sees the other side 
become the pilot flying side, it transitions to the Inhibited sub-state of the Not_Pilot_Flying state 
and sets its Ack to false. Unlike the synchronous case, it does not respond to the flight crew 
pressing the Transfer_Switch while in the Inhibited state.6 The Not_Pilot_Flying_Side transitions 
to the Listening state and begins listening for the Transfer_Switch when it receives an Ack from 
the other side indicating that it has reached the stable Confirmed state (note that it is not 
necessary for the Not_Pilot_Flying side to observe a rising edge of the Ack). 

The only change necessary to the bus is that each message must contain two Boolean 
values, the Pilot_Flying value produced by a side and an Ack value used to implement the hand 
shake. 
                                                 
6 In an actual system, this could be remedied by incorporating a delay in the delivery of the Transfer Switch longer 
than the time needed for synchronization of the two sides 
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3.3.1.3 The Quasi-Synchronous Pilot Flying Example 
As might be expected, the quasi-synchronous Pilot Flying example is simpler than the 

asynchronous example but not as simple as the synchronous example. Since the system clocks 
are bounded, it is possible to use time rather than hand-shaking to implement a correct protocol. 
The top-level architecture of the system is identical to that shown in Figure 14. There is no need 
for Ack messages as in the asynchronous case and the cross-channel bus is identical to the bus for 
the synchronous example. In fact, the only change is to the logic implemented in each side. The 
state machine specifying the logic for the quasi-synchronous case is illustrated in Figure 17.  

 

Pilot_Flying
Inhibited

[rise(hther_Side_tilot_Flying)]

[rise(Transfer_Switch)]

[trimary_Side] [bhT trimary_Side]

Start

hn Entry: inhibit_count = 0
During: inhibit_count++

Listening

[inhibit_count >= 2]

 
Figure 17 – Quasi-Synchronous Pilot Flying Logic 

As with the synchronous case, there are Pilot_Flying and not Pilot_Flying sides, but the 
not Pilot_Flying side is implemented as Inhibited and Listening states as in the asynchronous 
case. The not Pilot_Flying side listens for the Transfer_Switch only when it is in the Listening 
state.  After entering the Inhibited state, the not Pilot_Flying side sets the inhibit_count to zero, 
then increments it by one on each step, exiting the Inhibited state and entering the Listening state 
when the count becomes two. Ignoring the Transfer_Switch while in the Inhibited state is 
necessary to avoid the case where not Pilot_Flying side becomes the Pilot_Flying side so quickly 
that the current Pilot_Flying side fails to see the rise of the Other_Side_Pilot_Flying signal 
because its clock is low, leading both sides to deadlock as the Pilot_Flying side. Ignoring the 
Transfer_Switch while in the Inhibited state avoids this problem (just as in the asynchronous 
example), but uses the known bounds on the system clocks rather than handshaking to determine 
when to start listening again. 
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3.3.2 Leader Selection. 
The Leader Selection example determines the healthiest node among N nodes and 

ensures that all nodes agree on that leader. The top-level overview for the case of three nodes is 
shown in Figure 18. 

Cross
Node
Bus

Node 1

Health1

Leader1

Leader Health1

Reported Health

Health1

Health2

Health3

CLK1

Node 2

Leader2

Leader Health2

Reported Health

Health1

Health2

Health3

CLK2

Node 3

Leader3

Leader Health3

Reported Health

Health1

Health2

Health3

CLK3

Health2

Health3

CLKB

 
Figure 18 – Leader Selection Example with N=3 

 
Each node computes its own health7 on each step of its clock and communicates that to 

every other node (including itself) through the Cross Node Bus. Health is measured as an integer 

                                                 
7 This is modeled simply as the input Health to that node. 
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from 0 to H, where 0 indicates failed and H indicates fully functioning. On each step, each node 
reads in the health of all nodes (including the value it sent to itself on the previous step) and 
selects the healthiest node as the leader. In the case of a tie, preference is given to the node with 
the lowest index. This is implemented as shown in the state diagram of Figure 19. 

Inhibited

Start

During: 
   Reported_Iealth = Iealth

/ Leader = 1;
   Leader_Iealth = 0;
   Reported_Iealth = 0;

[Iealth1 >= Iealth2 and Iealth1 >= Iealth3]/ 
 Leader = 1;
 Leader_Iealth = Iealth1;
 Reported_Iealth = Iealth;

[Iealth3 > Iealth1 and Iealth3 > Iealth2]/ 
 Leader = 3;

 Leader_Iealth = Iealth3;
 Reported_Iealth = Iealth;

[Iealth2 > Iealth1 and Iealth2 >= Iealth3]/ 
 Leader = 2;

 Leader_Iealth = Iealth2;
 Reported_Iealth = Iealth;

 

Figure 19 – Leader Selection Logic 
The properties to be proven about this example are: 

R1 All nodes agree on the leader. 

R2  The leader is the healthiest node. 
R3 The leader shall not change unless the health of a node changes. 

Verification of these properties is discussed in Sections 4.1.2 and 4.2.1.2. The Leader Selection 
example is useful since it can easily be scaled to any number of nodes to study the scalability of 
the formal verification of quasi-synchronous systems. 
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3.3.3 Active Standby. 
The Active Standby example determines which side (or channel) in a Primary Flight 

Control System (PFCS) is currently the active side. It shares many similarities to the Pilot Flying 
example, but it provides a much more critical function and must deal directly with the failure of 
either side. It also implements more complicated selection logic, monitoring the health of 
systems on each side of the aircraft and selecting the healthiest side as the active side, while 
allowing the pilot to select the active side if both sides are equally healthy. In contrast to the Pilot 
Flying example in which all components were modeled as AADL system components, we model 
the Active Standby example as both AADL system and software components. A top-level 
overview of the Active Standby system is shown in Figure 20. 

Side1 Side2
Bus12

Bus21

Side1Status

Side2Status

Manual Selection ManualSelection

TRUE
PrimarySide

FALSE

PrimarySide

CLK_1

CLK_12

CLK_21

CLK_2

Side1SubSystemsStatus

Side2SubSystemsStatus

Side2SubSystemsStatus

Side1SubSystemsStatus

Side1Failed Side2Failed

 
Figure 20 – Active Standby Top-Level Model 

In the Active Standby example, there are two physically separate computation platforms, 
or cabinets, located on each side of the aircraft. These cabinets host a variety of aircraft functions 
including the Active Standby logic. On each side, the Active Standby logic is executed on a fail-
stop processor (channel) that will declare itself as failed if it detects a failure.8 Each side is 
driven by its own clock and executes asynchronously with respect to the other side. 

Each side is able to sense the health of several aircraft systems located on each side of the 
aircraft (Side1SubsystemsStatus and Side2SubsystemsStatus) and determines if the systems on 
each side are fully available. The pilot has access to a Manual Selection switch that toggles the 
currently active side to switch to the other side if both sides are equally healthy. The failure of a 
side is also treated as an input to its Active Side logic. Each side communicates with the other 
side through a bus that reliably delivers four values to the other side in nondeterministic but 
bounded time: 

1. that side’s determination of whether it is the active side 
2. that side’s determination of whether it is failed 
3. that side’s assessment of whether the aircraft systems on that side are fully available 
4. that side’s assessment of whether the aircraft systems on the other side are fully available 

                                                 
8 Typically implemented by two processors executing in lockstep and checking each other’s computation. 
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The details of each side are shown in Figure 21. Since the channel is implemented in 
software, each component is modeled as a thread rather than as a system. The ThisSubDemux 
and OtherSubDemux threads unpack the status messages containing the health of each subsystem 
on a side into Boolean values for input to the Monitor.9 The Monitor thread accepts the health 
indication of each subsystem on each side and outputs two Boolean values indicating if this side 
and the other side are fully available. The ThisSideDemux threads unpack the individual fields 
from the status message from the other side into Boolean values indicating whether the other side 
is active, the other side is failed, the monitor on the other side believes this side is fully available 
and the monitor on the other side believes the other side is fully available. The ActiveSideLogic 
uses all of these inputs to determine if it is the active channel. Finally, the Mux thread packs the 
individual fields from this side into a single status message to be sent to the other side. 

Monitor

ThisSideSubSystemsStatus

OtherSideSubSystemsStatus

OtherMonThisSideFullyAvail

OtherMonOtherSideFullyAvail

ThisSideFailed
OtherSideFailed

ThisMonThisSideFullyAvail

ThisMonOtherSideFullyAvail

Other
Side

Demux

riseOtherSideActive

ThisSideActive

This
Side
Mux

ThisSideFailed

Manual Selection

ThisMonThisSideFullyAvail

ThisMonOtherSideFullyAvail

ThisSideFailed
ThisSideStatus

OtherSideStatus
ActiveSideLogic

riseManualSelection

Other
Sub

Demux

This
Sub

Demux

OtherSideSubNStatus

OtherSideSubAStatus

ThisSideSubNStatus

ThisSideSubAStatus

Figure 21 – Active Standby Channel Software 
The logic determining the active side is shown in Figure 22. On startup, a side determines 

if it is failed or running based on its built-in self-test logic. If failed, it enters the ThisSideFailed 
state and sets its Active status to false. This will be delivered through the bus so the other side 
knows this side is failed. Both sides initially assume the other side is failed until they are notified 
otherwise. 

If this side is not failed it enters the ThisSideRunning state and checks whether it 
currently believes the other side is failed.  If the other side is failed (or if this side has not yet 
received any information from the other side), this side enters the OtherSideFailed state and sets 
its Active status to true (since it believes the other side to be failed). If the other side is not failed, 
this side enters the BothSidesRunning state and enters the Init sub-state, setting its Active status 
to whether or not it is designated as the PrimarySide as indicated in Figure 20. It also initializes 
the InitCount variable to zero. This counter is incremented on each subsequent state until it 
becomes two. This wait in the Init state is necessary to ensure all messages from both sides have 
arrived before attempting to synchronize on which side is the active side. 

Once the InitCount reaches the threshold value of two, the side enters the ThisSideActive 
state if it is the PrimarySide and set its Active status to true. It will remain the active side until it 
sees the other side become the active side, at which time it enters the Inhibit state and sets its 
Active status to false and its InhibitCount to zero. Just as in the Pilot Flying example, while in the 
Inhibited state the side will ignore any inputs (such as the Manual Selection switch) that would 
cause it to become the active side, causing both sides to deadlock as the active side. 

9 Mux and Demux blocks were introduced to accommodate an early limitation of the AADL Behavior Annex that 
has since been removed. 
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Active := True

 [   (ThisMonThisSideFullyAvail and OtherMonThisSideFullyAvail) and
 (not ThisMonOtherSideFullyAvail or not OtherMonOtherSideFullyAvail) ]

BothSidesRunningOtherSideFailed

[not OtherSideFailed]

[OtherSideFailed]

[not OtherSideFailed][OtherSideFailed]

ThisSideRunning

Active := False

ThisSideFailed

[not ThisSideFailed]

[ThisSideFailed]

[not ThisSideFailed][ThisSideFailed]

[not PrimarySide &
InitCount >= 2]

              Init
On Entry
   Active := PrimarySide
   InitCount := 0

During
   InitCount++

Inhibit
On Entry
   Active := False
   InhibitCount := 0

During
   InhibitCount++

OtherSideActive

ThisSideActive

Active := True

[InhibitCount >= 2]

[riseManualSelection]

[riseOtherSideActive]

[PrimarySide &
InitCount >= 2]

 
Figure 22 – Active Standby Active Side Logic 

After waiting in the Inhibit state until the InhibitCount becomes two, the side enters the 
OtherSideActive state. From here the side can change its state only if a) it detects that it is failed 
causing a transition to ThisSideFailed, b) the other side reports that it is failed causing a 
transition to OtherSideFailed, c) the pilot presses the Manual Selection switch causing a 
transition to ThisSideActive, or d) this side determines that the other side is not fully available 
(not ThisMonOtherSide2FullyAvail) or the other side reports that it is not fully available (not 
OtherMonOtherSideFullyAvail) while both sides believe this side to be fully available 
(ThisMonThisSideFullyAvail and OtherMonOtherSide1FullyAvail).  

There are several requirements (or properties) that should hold about the Active Standby 
system, including:  

R0 At least one side should always be active unless a side has just failed. 

R1  Both sides should agree on which side is active provided neither side has failed, the 
availability of a side has not just changed and the pilot has not just made a manual 
selection. 

R2  A side that is not fully available should not be the active side if the other side is fully 
available provided neither side has failed, the availability of a side has not just 
changed and the pilot has not just made a manual selection. 
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R3  The pilot can always change the active side except if a side is failed or the availability 
of a side has just changed. 

R4  If a side is failed the other side should become active unless the other side is also 
failed. 

R5  The active side should not change unless the availability of a side changes, the failed 
status of a side changes, or manual selection is selected by the pilot. 

Verification of these properties is discussed in Section 4.1.3. 
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3.3.4 Wheel Braking System. 
The WBS example is drawn from the report of an Airbus A-320 accident that occurred on 

May 21, 1998 [38].  In this accident, an A-320 with 180 passengers and a crew of 7 lost both the 
Normal and Alternate braking systems on landing, forcing the pilot to steer the aircraft into a low 
earth embankment to avoid going through a sea wall. Though no passengers or crew were 
injured, the nose landing gear collapsed and the engines and nacelles suffered damage. The 
failure of the Alternate Braking system was attributed to the presence of frozen water and 
detergent. The failure of the Normal Braking system was attributed to a logic disagreement in 
both channels of the Brakes & Steering Control Unit (BSCU). 

The BSCU (Figure 23) is a computer that controls the Normal braking, Autobrake, Nose 
Wheel Steering Aid and Antiskid functions. It has two physically distinct but functionally 
identical channels (1 and 2) which have independent power sources. The system is controlled by 
either of the two channels (the active channel), whichever is powered up first at start-up. If a 
fault develops in the active channel, the passive channel takes over. Once declared faulty, a 
channel cannot become non-faulty until it is serviced, so this is a non-redundant mode. Failure of 
both channels results in a switch from Normal braking to Alternate braking. 

 

COM
(20 ms)

MON
(20 ms)

CH 1

CMD

CMD ERR
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COM
(20 ms)

MON
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CH 2

CMD

CMD ERR
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Pedal
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Figure 23 – Brakes & Steering Control Unit 

Each of the two channels has a command function, COM, and monitor function, MON. 
Both the COM and MON functions compute the same output specifying the braking pressure to 
be applied. If the MON function detects a disagreement between its computed value and that of 
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the COM function for six seconds, it logs a “disagree” condition within the BSCU that is also 
sent to the Centralized Fault Data Interface Unit. After four seconds, control is passed to the 
other channel. 

The COM and MON units operate in four modes of operation. In MANUAL mode, the 
computed breaking pressure is determined by the pressure applied by the pilot to the brake pedal 
and other factors such as the Antiskid function. The pilot can also select one of three Autobrake 
modes in which the computed breaking pressure provides a LO, MED, or MAX level of 
deceleration. For example, in LO mode, the computed breaking pressure would provide 0.17g of 
deceleration. The Autobrake mode is selected by the pilot by pressing one of three buttons on the 
AUTO BRK panel. The status of the Autobrake selector pushbuttons is acquired asynchronously 
by the command and monitor functions every 20 ms. 

To demonstrate the possible source of the BSCU logic disagreement, we create a SysML 
model that can be translated to AGREE and supplemented with assume/guarantee contracts. 
While this model is consistent with the accident report, some details must be inferred from the 
report and some simplifying assumptions must be made.  These are pointed out in the following 
discussion. 

The COM and MON functions respond to presses of the LO, MED, and MAX buttons as 
depicted in Figure 24. Each unit starts in the MANUAL mode and transitions to the LO, MED, or 
MAX mode when the associated button is pressed. Pressing the same button a second time returns 
the unit to the MANUAL mode. Pressing a different button while in an Autobrake mode selects 
the appropriate mode, e.g., pressing the MAX button while in LO mode selects MAX mode. 
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Figure 24 – COM and MON Modes 

We assume that since the COM and MON functions acquire the selector pushbutton status 
asynchronously every 20ms, the COM and MON functions execute asynchronously with a 20ms 
period. Also, since channel 1 and channel 2 are physically distinct with their own power 
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supplies, we assume they also execute asynchronously. Since the AGREE tool allows only the 
clocks of subcomponents of a single component to be constrained to execute quasi-
synchronous10, we eliminate channel 1 and channel 2 from the BSCU architecture, maintaining 
the physical isolation by restricting the communication between the channels to the 
synchronization logic between the MON1 and MON2 units as shown in Figure 25. 
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Sync_To Sync_From

Status
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Figure 25 – BSCU Logical Architecture 
This model brings in the selector pushbutton values as three Boolean values (LO, MED, 

and MAX) through the Panel port and the current pedal position as an integer value through the 
Pedal port. Synchronization information is exchanged between the MON functions of the two 
channels through the Sync_To and Sync_From ports. The brake command computed by the COM 
unit is passed to the MON unit of the same channel to be compared against the brake command 
computed by the MON unit. The output of each channel is a Status message containing fields 
Active (whether the channel believes it is the active side), Error (whether the channel believes it 

10 This restriction will be lifted in an upcoming version of AGREE. 
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is in error), and Cmd (the brake command computed by the MON unit). In addition, each MON 
and COM unit has a single Boolean input value indicating whether it is failed. This “pseudo-
input” is used to simulate the failure of a unit during verification. The behavior of the COM and 
MON units are specified as AGREE contracts. They are discussed in Section 4.1.4 as part of the 
verification of the WBS example. There are six requirements (or properties) that should hold of 
the Wheel Braking System:  

 
R1  At least one channel shall be error free if no components have failed. 
R2  At least one channel shall be error free if at most one component has failed. 
R3  At least one channel shall be active if no components have failed. 
R4  At least one channel shall be active if at most one component has failed. 
R5  At most one channel shall be active if no components have failed. 
R6  At most one channel shall be active if at most one component has failed. 
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3.4 Translation of the System Models 
Several translations are necessary to transform the initial SysML models into a form that 

can be analyzed by the Kind and Uppaal model checkers. First, SysML is translated into AADL. 
State machines contained within a SysML block are translated into both an AADL AGREE 
Annex and an AADL Behavior Annex. The AGREE Annex is used when doing verification with 
AGREE and the Behavior Annex is used when doing verification with Uppaal. Additional 
behavior can be specified as AGREE contracts which are inserted into the appropriate 
component during translation.  

Formal verification can then be performed directly using the AGREE tool from the 
AADL model supplemented with AGREE contracts. The AGREE tool translates the model into 
the Lustre language which can be read by the Kind model checker, submits the translated Lustre 
file to Kind for analysis, reports on the status of the proofs, and formats counterexamples for  
review by the user. 

Formal verification using Uppaal requires an additional translation step to generate an 
Uppaal model from the AADL model and the Behavior Annex specifications. The generated 
Uppaal mode can then be verified using the user interface provide by the Uppaal model checker.  

The following sections discuss the translation from SysML to AADL, AGREE, and the 
Behavior Annex and from AADL to the input language of Uppaal. Additional details are 
available in the appendices. 
3.4.1 Translating SysML to AADL. 

The SysML/AADL translator translates system architectural models specified in a subset 
of the SysML modeling language to models specified in a subset of the AADL modeling 
language. Translating to AADL provides an intermediate textual format based on the SAE 
standard for AADL, ensures the models have been screened for many common errors that 
SysML does not address, and makes accessible the analysis tools already developed for AADL, 
while still allowing the system developers to keep their models in the SysML modeling 
environment. Using AADL as an intermediate step will also simplify the translation to additional 
verification tools in the future. 

As a general rule, SysML blocks that have no internal structure are translated into AADL 
component types, SysML blocks that realize a SysML block through an explicit realization 
relationship are translated into AADL component implementations, and SysML ports and 
connections are translated into AADL ports and connections. If a SysML block does not realize 
another block and contains internal structure such as parts and internal connections, it is split into 
an AADL component type and an AADL component implementation.  

The SysML models must be created using the Sparx Systems Enterprise Architect® tool 
and stored in an Enterprise Architect repository [8]. A SysML profile for AADL extends SysML 
with constructs commonly used in AADL. These include AADL component categories such as 
system, process, thread, data, device, processor, bus and memory and AADL features such as 
port, data access, and bus access. These constructs are provided on an AADL toolbar palette in 
Enterprise Architect to simplify the development of SysML models that can be translated to 
AADL.  

The translator is invoked from within OSATE. The translator is packaged as plug-ins for 
the Eclipse development environment containing Java source code, executable byte code, and 
supporting Extensible Markup Language (XML) files. It can be installed simply by copying the 
plug-ins into the Eclipse drop-ins directory. Once installed, new menu items are provided to the 
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OSATE user to import a SysML model as an AADL model and to export an AADL model as a 
SysML model11. Users can modify and extend the translator by modifying the Java source code 
and recompiling the plug-ins.  

Detailed instructions for creating SysML models that can be translated into AADL are 
provided in the SysML to AADL User’s Guide included in the tool distribution. 
3.4.2 Translating SysML State Machines to AGREE and to the Behavior Annex. 

SysML state machines contained within a block are translated into both an AGREE 
Annex and a Behavior Annex contained within the corresponding AADL component type or 
implementation. The AGREE Annex is used when doing verification with AGREE and the 
Behavior Annex is used when doing verification with Uppaal. Maintaining both the AGREE 
Annex and the Behavior Annex does not cause any conflicts in OSATE. 

As an example, the SysML state machine for the Pilot Flying logic of Figure 17 is 
translated into the Behavior Annex shown in Figure 26.  

 

 
Figure 26 – Behavior Annex for Pilot Flying Logic State Machine 

The mapping from the states of Figure 17 to the states of Figure 26 is immediate except 
for the prefix “St_” (which helps to prevent name clashes) and the addition of the St_Stop state. 
The Behavior Annex requires a final state which must be modeled as a Final State in SysML (the 

                                                 
11 The translator from AADL to SysML is only partially implemented. 

 
  annex behavior_specification {** 
       
      variables 
        inhibit_count: Base_Types::Integer; 
      states 
        St_Inhibited :  state ; 
        St_Listening :  state ; 
        St_Pilot_Flying :  state ; 
        St_Start :  initial state ; 
        St_Stop :  complete final state ; 
      transitions 
        T4 : St_Inhibited -[ inhibit_count >= 2 ]-> St_Listening ;  
        Do_St_Inhibited :  
  St_Inhibited -[ not (inhibit_count >= 2) ]-> St_Inhibited 
          { inhibit_count := inhibit_count + 1 }  ;  
        T6 : St_Listening -[ riseTS ]-> St_Pilot_Flying 
          { PFS := true }  ;  
        T3 : St_Pilot_Flying -[ riseOSPF ]-> St_Inhibited 
          { PFS := false; inhibit_count := 0 }  ;  
        T1 : St_Start -[ QS_Properties::Primary_Side ]-> St_Pilot_Flying 
          { PFS := true }  ;  
        T2 : St_Start -[ not QS_Properties::Primary_Side ]-> St_Inhibited 
          { PFS := false; inhibit_count := 0 }  ;  
 
**}; 
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Stop state is omitted from Figure 17). If a state machine does not terminate, the Stop state is 
included in the SysML state machine, but cannot be reached from any other state. 

The inhibit_count variable is modeled in SysML as an integer attribute of the Inhibited 
state and translated into a Behavior Annex local variable. The transitions between states are 
labeled with their SysML name and identify the starting state, the transition guard, and the 
destination state. Transition guards may reference local variables (such as the inhibit_count), 
input ports, or AADL properties. Transition actions may change local variables or set values on 
output ports. SysML during actions that occur while in a state (such as incrementing the 
inhibit_count in the Inhibited state) are translated into transitions to and from the same state 
(such as the Do_St_Inhibited transition in Figure 26). Note that the guard for this transition 
ensures that precedence is given to the exit transition T4 when T4 is enabled. 

A portion of the AGREE Annex generated for the same Pilot Flying logic of Figure 17 is 
shown in Figure 27. States are translated into AGREE integer constants. The current state is 
translated into an integer valued stream12 named state that is defined in an eq (equation) 
statement.13 Local variables such as the inhibit_count are also translated into AGREE stream 
variables. The values these variables can assume are specified with AGREE assert statements if 
the enclosing component is an AADL implementation as in Figure 27 or AGREE guarantee 
statements if the enclosing component is an AADL type.14 For example, the first assert statement 
of Figure 27 states that the state stream variable must equal St_Start in the initial state. The value 
of state on subsequent steps is not specified by this statement since the -> 15 operator specifies 
only that the predicate true must (trivially) hold in all subsequent steps. The value of state on 
steps other than the initial step is specified in other assert (or guarantee) statements. For example, 
the next assert statement states that the value of state on any step must be one of the allowed 
state constants defined earlier. 

The next eq statement introduces a Boolean stream variable named T4 that defines when 
the transition from St_Inhibited to St_Listening can occur. This transition is enabled whenever 
the state on the previous step was St_Inhibited and the previous value of the inhibit_count is 
greater than or equal to two. The next assert statement guarantees that whenever T4 is enabled, 
the value of state is St_Listening. If other local variables were affected by the execution of T4, 
there would also be an assert statement defining the new value of each affected variable. For 
example, the Boolean variable Do_St_Inhibited defining when the during transition from 
St_Inhibited to St_Inhibited is enabled is followed by assert statements defining the new values 
for state and inhibit_count.  

These definitions define the new values of state and local variables when a transition is 
taken. Since AGREE is constraint based specification language, it is also necessary to define 

                                                 
12 AGREE variables are streams, which are mappings from an execution step 0, 1, 2 … to the value of the variable 
on that step, similar to variables in the Lustre language [22].  
13 AGREE variables are defined in equation (eq) statements similar to the style of PSL [36]. 
14 The AGREE contract for an AADL type specifies the behavior any instance of that and only guarantees are 
allowed in the contract for an AADL type. The contract for an AADL implementation specifies how the 
subcomponents of the implementation satisfy the contract for the type and can only contain assertions (i.e., 
statements of fact) and lemmas that can be proved about the subcomponents. 
15 The followed-by operator -> is an infix operator whose left hand expression specifies the initial value of stream 
and whose right hand expression specifies its value in all subsequent steps, just as in the Lustre Language  [22]. 
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their value when it is not changed by a transition. The last three assert statements do this for the 
output PFS and for the variables state and inhibit_count. 

 

 
Figure 27 – AGREE Annex for Pilot Flying Logic State Machine 

If a SysML state machine has hierarchical states such as in the Active Standby logic of 
Figure 22, the state machine is first flattened into a state machine without hierarchy.  One state is 
generated for each leaf-level state in the original machine and transitions are generated from each 
source state to each destination state in the flattened state machine. The guards and actions are 
accumulated on these transitions in the same order they would be evaluated in the hierarchical 
state machine. However, since the evaluation of guards and actions in the original hierarchical 
state machine are interleaved when making a transition from a state at one level to a state at a 
different level (i.e., the action at one level will be performed before the guard at the next level), 
the flattened state machine may not perfectly preserve the semantics of the hierarchical state 
machine. For example, in Figure 22 if the transition to the Init sub-state of the BothSidesRunning 

    annex agree {** 
       
        const St_Inhibited : int = 1; 
        const St_Listening : int = 2; 
        const St_Pilot_Flying : int = 3; 
        const St_Start : int = 4; 
        const St_Stop : int = 5; 
 
        eq state : int; 
        eq inhibit_count: int; 
 
        assert (state = St_Start) -> true; 
 
        assert (state = St_Start) or (state = St_Inhibited) or  
               (state = St_Listening) or (state = St_Pilot_Flying) or  
               (state = St_Stop); 
 
        eq T4: bool =  
  (false -> (pre(state) = St_Inhibited) and pre(inhibit_count) >= 2); 
 
        assert T4 => (state = St_Listening); 
 
        eq Do_St_Inhibited: bool =  
  (false -> (pre(state) = St_Inhibited and not (T4))); 
 
        assert Do_St_Inhibited => (state = St_Inhibited); 
        assert Do_St_Inhibited => (inhibit_count = pre(inhibit_count) + 1); 
 
   ● ● ●     ● ● ● 
 
        assert true -> (not (T6 or T1 or T3 or T2) => (PFS = pre(PFS))); 
        assert true -> (not (T6 or T4 or Do_St_Inhibited or T1 or T3 or T2) => 
   (state = pre(state))); 
        assert true -> (not (Do_St_Inhibited or T3 or T2) =>  
  (inhibit_count = pre(inhibit_count))); 
**}; 
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state included a guard that interrogated a variable set by an action on a transition entering the 
BothSidesRunning state, the flattened state machine would likely behave differently than the 
hierarchical state machine since the corresponding check in the flattened state machine would be 
made before the value of the variable was set. For this reason, guards in a hierarchical state 
machine should not depend on actions performed by their parent states during the same 
transition. 
3.4.3 Translating AADL to Uppaal. 

The primary advantage of Uppaal over Kind is that it provides explicit support for time. 
Uppaal supports the creation of global and local clocks that can be set to positive integer values.   
This allows models and properties to be specified with references to durations so that real-time 
properties can be specified and verified. At the same time, several issues complicated the 
translation from AADL to Uppaal. This section first describes how the translation was 
implemented, then discusses some of these issues. 

Models can be specified in Uppaal in either a textual .xta format or as an .xml file. The 
AADL to Uppaal translator generates an .xml file. Each AADL component implementation (or 
component type if an implementation is not defined) is translated into an Uppaal process 
template, which  can be thought of as a parameterized process definition.  Each process template 
specifies the name of the template, the template’s parameters, and the behavior associated with 
the process. For example, the template name and parameters generated for the Side and Cross 
Channel Bus in the Pilot Flying example are shown in Figure 28. 

 
 
 
 
 

Figure 28 – Uppaal Process Definitions  
By convention, the first parameter of each template is an integer id that will be assigned 

to the process when it is instantiated. This id should be unique for each instantiation of the 
template. Inputs and outputs of the process are specified as pass-by-reference parameters, which 
are prefixed in Uppaal by “&”. For example, in Figure 28, the inputs and outputs of the Side 
process are &TS, &OSPF, and &PFS.  

Since Uppaal does not allow processes to be nested, the process id of each AADL 
subcomponent is specified as a pass-by-value parameter so that the correct instance of the 
process can be referenced in the template. For example, in Figure 28 the process ids of the 
riseTS, riseOSPF, and PFSL AADL subcomponents are specified as parameters with those 
names. AADL properties may also be passed as template parameters. In Figure 28, the initial 
output of the Cross_Channel_Bus is specified as the constant parameter Init_Bool. Finally, since 
each AADL component instance is associated with a unique local clock, the integer id of that 
clock is specified as the last template parameter.   

Each AADL component instance is then translated to Uppaal as an instantiation of its 
corresponding template with the appropriate input parameters. For example, the instantiations of 
the four top-level subcomponents of the Pilot Flying system are shown in Figure 29.  

 

Side (int id, bool &TS, bool &OSPF, bool &PFS, int riseTS, int riseOSPF, int PFSL, int clk_id) 

Cross_Channel_Bus( int id, const bool Init_Bool, bool &I, bool &O, bool &prev_I,  int clk_id) 
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Figure 29 – Uppaal Instantiations of Pilot Flying Top-Level Processes 

The LS process corresponding to the Left_Side component is assigned an instance id of 0. 
Inputs TS and RL_O and output LPFS are passed by reference, and instance id 0 for the riseTS 
process, 1 for the riseOSPF process, and 0 of the PFSL process are passed by value. Finally, the 
process will be clocked by clock 2.  Note that processes LS and RS cannot both have the same 
process id, but LS and LR may since they are based on different templates.  

Since Uppaal does not allow a process to directly refer to the outputs of another process, 
connections are made through the use of global variables. The system inputs and outputs are 
defined as global variables and connections between system inputs and subcomponents are made 
by using the system input as an argument in the process instantiation. For example, in Figure 29, 
the system input TS is passed-by-reference as an argument to both process LS and RS. 
Connections from the output of a subcomponent to another subcomponent are made by defining 
a global variable for the output port and passing that variable by reference to both processes. For 
example, the RL process is passed the global variable RL_O, which it uses for its output, and the 
same global variable is passed to the LS process as an input argument.  

The definition of these global variables is illustrated in Figure 30. The system inputs and 
outputs are defined first. Note that the initial values of output ports are also provided. Following 
that, global variables are defined for the output ports or internal values of each process instance. 

 

 
Figure 30 – Ports Declared as Uppaal Global Variables 

The behavior of each process is also defined in its template. For example, the behavior of 
the Cross_Channel_Bus is shown in Figure 31.  The process begins in location (state) St_Start by 

LS = Side (0, TS, RL_O, LPFS, 0, 1, 0, 2); 

LR = Cross_Channel_Bus(0, true, LPFS, LR_O, LR_prev_I, 0); 

RS = Side(1, TS, LR_O, RPFS, 2, 3, 1, 3); 

RL = Cross_Channel_Bus(1, false, RPFS, RL_O, RL_prev_I, 1); 

/*****Input and output****/ 

bool TS; 

bool LPFS = true; 

bool RPFS = false; 

/**** Internal ports for pilot flying system****/ 

bool LR_O = true; 

bool RL_O = false; 

bool LR_prev_I = true; 

bool RL_prev_I = false; 

/**** Internal ports for Side LS****/ 

bool LS_riseTS_O; 

bool LS_riseOSPF_O; 
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setting the value of its output port O (passed as the argument &O) to the value of prev_I, storing 
the current value from its input port I into prev_I, and transitioning to location St_Step.  From 
location St_Step it repeats this behavior each time it receives a synchronization event clk from its 
local clock clk_id. 

 
Figure 31 – Uppaal Specification of Cross Channel Bus Behavior 

The processes for the top-level components are constrained to execute quasi-
synchronously by the synchronization event from their local clocks, which are in turn 
constrained as described in Section 3.2.2.2. However, the subcomponents within a top-level 
component need to execute synchronously and a very different approach must be taken. Just as 
for the top-level components, we translate AADL subcomponent instances into Uppaal process 
instances. Since Uppaal processes execute asynchronously, the subcomponent instances must be 
constrained to execute synchronously. This is accomplished by having a component recursively 
invoke each of its subcomponents in the proper sequence. In this way, the top-level components 
are executed quasi-synchronously, but all of their subcomponents are executed synchronously in 
the proper execution order. To illustrate this approach, we show how the synchronization is 
managed for the top-level Side component of the Pilot Flying example. The internal structure of 
the Side component is shown in Figure 32.   

I O
riseTS

I O
riseOSPF

riseTS

riseOSPF

PFSL

PFS PFS

TS

OSPF

 
Figure 32 – SysML Internal Block Diagram for the Pilot Flying Side 

Each Side has three subcomponents. Subcomponent riseTS detects a rising edge of the 
Transfer Switch. Subcomponent riseOSPF detects a rising edge of the pilot flying output from 
the other side (after being transmitted across the bus). Subcomponent PFSL uses these inputs to 
compute the pilot flying status of this side. These subcomponents execute synchronously with 
riseTS and riseOSPF executing first and providing their inputs to PFSL. To force the 
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synchronous execution of these three subcomponents, the Side process executes the state 
machine shown in Figure 33.  

 
Figure 33 – Synchronizing Subcomponent Execution in Uppaal 

In reading Figure 33, recall that the Side process is passed arguments riseTS, riseOSPF, 
and PFSL identifying the subcomponent processes with which it is associated. It also is passed 
an argument id identifying its own process identifier. The execution of the Side begins in 
location Start, but since this is an Uppaal committed state, it immediately transitions to location 
Step0. Execution of a “step” for the Side process starts from location Step0 when it receives a clk 
synchronization event allowing it to transition to location Step1. This event is generated in the 
parent process for the entire Pilot Flying system in response to a tick of the quasi-synchronous 
clock associated with this Side. From Step1, the Side process issues a stepRise event for the 
riseTS process and sets the side_done semaphore to false. This allows the riseTS process to 
execute its next step, setting the side_done semaphore to true when it completes. The Side 
process then transitions to location Step3, issuing a stepRise event to allow the riseOSPF process 
to execute its next step. When riseOSPF completes, it sets the side_done semaphore true, 
allowing the Side process to enable the PFSL process and transition to Step4. When the PFSL 
process completes its step it sets the side_done semaphore true, allowing the Side process to 
transition from Step4 to Step0. In this way, synchronization flows downward from each 
component to its child components.  

Determining the execution order of subcomponents is not an issue in the translation from 
AADL to Kind, since the semantics of the Lustre language specify that a set of equations is 
evaluated in dependency order.  In the above example, Kind will determine that PFSL depends 
on riseTS and riseOSPF and will pick a sequence in which they are evaluated first. It does not 
matter whether riseTS or riseOSPF executes first since no dependency exists between them.  

Determining the execution order of the subcomponents in Uppaal requires a similar 
dependency analysis to be performed. In the current implementation of the AADL to Uppaal 
translator, we require that the designer specify the execution order of each subcomponent by 
attaching an Execution_Order AADL property to the subcomponent. The translator then uses 
that property to generate the synchronization state machine such as that shown in Figure 33. 

As can be seen from the preceding discussion, several factors complicated the translation 
from AADL to Uppaal. One of the most difficult issues arose from the fact that Uppaal’s main 
construct for modularity, the process, is also its main construct for concurrency, since all 
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processes execute asynchronously unless constrained otherwise. Since the systems of interest 
here are predominantly synchronous with some asynchrony, the subcomponent processes had to 
be explicitly scheduled to execute synchronously by their parent processes. Since Uppaal does 
not determine the dependency order of subcomponents as Kind does, the determination of the 
execution order of the subcomponents also has to be performed by the translator. 

Another issue arose from the fact that Uppaal processes cannot be nested within 
processes. This required the ids of the subcomponents of a process to be passed as parameters to 
that process. Finally, since an Uppaal process cannot directly reference the outputs of other 
processes, outputs had to be declared as global variables that were passed by reference to the 
connected processes. 
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4.0 RESULTS AND DISCUSSION 
This section discusses the formal verification of the Pilot Flying, Leader Selection, 

Active Standby, and WBS examples. Verification with AGREE using the Kind model checker is 
discussed in Section 4.1and verification with Uppaal is discussed in Section 4.2. 

4.1 Formal Verification with AGREE and Kind 
The first step in verifying the correctness of the quasi-synchronous examples with the 

AGREE and the Kind model checker is to state the system requirements described in Section 3.3 
as formal properties. This is done by creating an AGREE annex for the top-level system 
component specifying the properties as guarantees to be provided by the system.   
4.1.1 Pilot Flying Verification with AGREE and Kind. 

The AGREE contract specifying  the formal requirements for the Pilot Flying example 
described in Section 3.3.1 is shown in Figure 34. This contract is associated with the AADL 
system block for the entire Pilot Flying example. The Boolean variable initializing is true when 
the system is starting up. It is introduced here so that we can exclude verification of properties 
during initialization when they may not hold. While referenced here, it is specified in contract for 
the implementation of the Pilot Flying system and will be explained later. The next two 
statements introduce assumptions about the Transfer Switch necessary for property R3 to hold. 
They will be discussed along with the verification of property R3. 

The first property, R1 states that at least one side is always the pilot flying side.  This is 
specified as the guarantee that either the output LPFS or RPFS is always true.  

Property R2 states that both sides shall agree on which is the Pilot Flying side except 
while the system is switching sides. Ideally, both sides would always agree on which side was 
the Pilot Flying side, but this is not the case. The example is designed so that immediately after 
the Transfer Switch is pressed, the not pilot flying side becomes the pilot flying side and conveys 
this information across the bus to the other side. Until the other side responds and becomes the 
not pilot flying side, both sides will behave as the pilot flying side. Such transitory system states 
are unavoidable in systems where change has to propagate across the system and intermediate 
states are externally observable. However, if the system is not subjected to additional stimuli, it 
should eventually reach a stable state where no component is changing. We refer to such stable 
system states as quiescent states.  

If the duration of a transitory state is short, it is often the case that a safety property only 
needs to hold during a quiescent state. For example, in the Pilot Flying example, we are willing 
to accept a transitory state in which both sides are the pilot flying side since the inertia of the 
aircraft can tolerate this situation for a short period of time. Property R2 makes use of the 
PRESSED(p) function, which is true if p was false on the previous step and true on the current 
step, and the Duration(p) function, which returns the number of steps p has been true. R2 states 
that if the system has not been initializing and the Transfer Switch has not been pressed for 
previous 25 steps16, either the left side or the right side, but not both, will be the pilot flying side. 
Since this holds for all possible system states, it ensures that exactly one side will be the pilot 
flying side except during the transitory period when the system is switching sides.  

 
 

                                                 
16 The value of 25 is discovered through experimentation with the model checker. 
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Figure 34 – Pilot Flying Contract 

Property R3 states that the pilot can always change the pilot flying side except when the 
system is in the process of switching sides. It makes use of three functions. Duration(p) has 
already been explained. Since(p) returns the number of steps since p was last true. Within (p, n) is 
true if p has been true within the last n steps. R3 states that if the Transfer Switch was pressed 
seven steps ago, and the system was not initializing and the Transfer Switch was not pressed in 
the 46 steps previous to that, then either the Right Side or the Left Side will become the pilot 
flying side within the last seven steps. 

eq Initializing : bool; 
      
-- Transfer Switch presses must be long enough to be seen by both sides 
assume "No Short Presses": Agree_Nodes.True_At_Least(TS, 7); 
assume "No Rapid Presses": Agree_Nodes.True_At_Least(not TS, 7); 
           
---------------------------------------------------------------------------------- 
-- R1. At least one side shall always be the pilot flying side. 
---------------------------------------------------------------------------------- 
guarantee "At Least One Side Pilot Flying" : (LPFS or RPFS); 
      
---------------------------------------------------------------------------------- 
-- R2. Both sides shall agree on the pilot flying side  
-- except while the system is switching sides. 
---------------------------------------------------------------------------------- 
guarantee "Agree On Pilot Flying Side" :  
   (Agree_Nodes.Duration(not Initializing and not PRESSED(TS)) > 24 =>  
      (LPFS = not RPFS));  
        
---------------------------------------------------------------------------------- 
-- R3. The pilot can always change the pilot flying side 
--     except while the system is switching sides.   
--------------------------------------------------------------------------------- 
guarantee "Pilot Can Change Active Side" : 
   Agree_Nodes.Since(Agree_Nodes.Duration( 
    pre(not Initializing and not PRESSED(TS))) > 46 and PRESSED(TS)) = 7 => 
   Agree_Nodes.Within(Agree_Nodes.Rise(LPFS) or Agree_Nodes.Rise(RPFS), 7); 
           
---------------------------------------------------------------------------------- 
-- R4. The system shall start with the left side as the pilot flying side. 
---------------------------------------------------------------------------------- 
guarantee "Left Side Initial Pilot Flying Side" : 
   (LPFS -> true) and ((not RPFS) -> true); 
          
---------------------------------------------------------------------------------- 
-- R5. If the transfer switch is not pressed the system  
-- shall not change the pilot flying side. 
---------------------------------------------------------------------------------- 
guarantee "Pilot Flying Side Unchanged Unless Transfer Switch Pressed" :  
  (Agree_Nodes.Duration(not Initializing and not PRESSED(TS)) > 25 =>  
       (not (CHANGED(RPFS) or CHANGED(LPFS)))); 
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Attempting to prove this without further constraining the Transfer Switch generates a 
counterexample in which the press of the Transfer Switch is not seen by the not pilot flying side 
because its clock is false on the step when the Transfer Switch is pressed and the Transfer Switch 
returns to false before its clock ticks again. To fix this, we add the assumption No Short Presses 
at the start of the contract of Figure 34 which assumes that the Transfer Switch remains true for 
at least seven steps once it becomes true. Since the quasi-synchronous constraint requires that no 
clock can tick more than twice before every other clock has ticked at least once, a value of seven 
ensures that the clock of the not pilot flying side will tick at least once while the Transfer Switch 
is true, ensuring that its press is seen. 

However, attempting to prove R3 even with this assumption reveals another counter 
example. This occurs when the next press of the Transfer Switch occurs so quickly that not pilot 
flying side fails to see the Transfer Switch go false. In this case, the last time the not pilot flying 
side observed the Transfer Switch, its value was true. The Transfer Switch subsequently became 
false, but the clock of the not pilot flying side did not tick until the after the Transfer Switch 
became true again, causing it to miss the press of the Transfer Switch. The fix for this situation is 
to add the constraint No Rapid Presses that assumes that the Transfer Switch remains false for at 
least seven steps once it becomes false. 

With the addition of these two constraints, property R3 proves. Note that these 
assumptions are requirements pushed back onto the environment, specifically the 
implementation of the Transfer Switch, which must be satisfied for R3 to hold. 

Property R4 states the system starts with the primary (left) side as the pilot flying side. 
The followed by operator -> defines a variable that has the value of its left hand side on the initial 
step and the value of its right hand side on all subsequent steps. So property R4 states that the 
output LPFS must be true on the first step and the output RPFS must be false on the first step. 
Following their initial value by true assures that R4 is trivially true for all subsequent steps.  

Property R5 states that if the system has not been initializing and the Transfer Switch has 
not been pressed for twenty five steps, then the system will not change sides. In other words, that 
the system does not spontaneously change its state without an external stimuli.   

Additional information needs to be added to some of the contracts of the AADL Pilot 
Flying model for the proofs of these properties to be completed. Just as the contract of Figure 34 
is associated with the AADL system component for the Pilot Flying example, the contract shown 
in Figure 35 is associated with the AADL implementation of the Pilot Flying system. Since the 
AADL implementation specifies the subcomponents (Left Side, Right Side, LR_Bus, and 
RL_Bus) and their connections, this contract is able to refer to these subcomponents, something 
that could not be done in the contract of Figure 34.  

The synchrony statement states that the clocks of the subcomponents are constrained to 
follow 2/1 quasi-synchrony17, i.e., no subcomponent’s clock can tick more than twice before 
every other subcomponent’s clock has ticked at least once. Higher forms of quasi-synchrony, 
such as 3/2 quasi-synchrony (no clock can tick more than three times before every other 
subcomponent’s clock has ticked at least twice) can be specified as “synchrony: 3, 2”. It is also 
possible to specify the constraints between individual pairs of subcomponents A and B with a 
synchrony statement A,B:3,2, which states that nodes A, B must each observe 3/2 quasi-
synchrony with respect to the other. For example, an alternative way to specify that the Pilot 

                                                 
17 It is also possible to specify 2/1 quasi-synchrony as “synchrony: 2, 1”, but this generates the less efficient set of 
clock constraints as discussed in Section 3.2.2.1. 
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Flying example observes 3/2 quasi-synchrony would be “synchrony : LS,LR:3,2  LS,RS:3,2  
LS,RL:3,2 LR,RS:3,2  LR, RL:3,2  RS, RL:3,2;”. 

 

 
Figure 35 – Contract for the Pilot Flying Implementation 

The next section specifies that each subcomponent is initializing until its clock has ticked 
at least once (the ctF(n, clk) function returns false until the clock clk has been true n times and 
returns true thereafter).  The next statement assigns a definition to the Initializing variable 
introduced in the contract of Figure 34. This is possible since variables introduced in the contract 
of an AADL system are within scope of the contract of an implementation of that component. 
This allows us to introduce variables that can be used in specifying guarantees of a component, 
but whose definition requires knowledge of the component’s implementation. 

The next section asserts that the outputs of the subcomponents have specific values 
during initialization. The Pilot Flying system is very sensitive to the output values of its 
subcomponents during initialization and only behaves correctly if these assertions hold. These 
are effectively design constraints that have to be implemented by the actual system.18 Later, in 
the discussion of Active Standby example, we will consider a more robust design in which these 
constraints are relaxed. 

The Side Bus Consistency lemma introduces an auxiliary property that can be proven true 
given the contracts of the system subcomponents. Since the Kind model checker proves 
properties through the use of k-induction, some properties may not prove without first proving 
auxiliary lemmas such as these that simplify the induction for the main property. This lemma 
                                                 
18 For example, a component receiving a value from another component might default to the value specified in the 
assertion until the first actual value is received. 

synchrony : 2; 
            
-- A subcomponent is initializing if its clock has not ticked once      
eq LS_Initializing : bool = Agree_Nodes.ctF(1, LS._CLK); 
eq RS_Initializing : bool = Agree_Nodes.ctF(1, RS._CLK); 
eq LR_Initializing : bool = Agree_Nodes.ctF(1, LR._CLK); 
eq RL_Initializing : bool = Agree_Nodes.ctF(1, RL._CLK); 
       
-- The system is initializing if any component is not running 
assert(Initializing = LS_Initializing or RS_Initializing or 
                       LR_Initializing or RL_Initializing); 
                          
-- Set the outputs of each subcomponent during initialization   
assert LS_Initializing => LS.PFS; 
assert RS_Initializing => not RS.PFS; 
assert LR_Initializing => LR.O; 
assert RL_Initializing => not RL.O; 
     
---------------------------------------------------------------------------------- 
-- This lemma speeds up higher level proofs 
---------------------------------------------------------------------------------- 
lemma "Side Bus Consistency" :  
       Agree_Nodes.Duration(LS.PFS and RS.PFS and RL.O and LR.O) <  10; 
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states that the longest the outputs of the four subcomponents can all be true is nine steps. 
Introduction of this lemma is necessary for the proofs of Figure 34 to complete. Auxiliary 
lemmas such as this are developed by studying the inductive counterexamples produced by the 
AGREE tool when a property does not prove. Even if a property can be proven without such 
auxiliary lemmas, the proofs will often complete faster if the simpler lemmas are proven first.  

The time required to prove properties can also be reduced through the use of 
compositional verification, in which a contract for a component is proven about its 
implementation so that the simpler contract can be used in the verification of higher level 
properties.  For example, the AGREE specification automatically generated from the SysML 
state machine for the Pilot Flying Side logic shown in Figure 27 can be proven to be equivalent 
to the specification shown in Figure 36.  

 

 
Figure 36 – Contract for Pilot Flying Side Logic 

Here, the function tF(n) returns a Boolean value that is true for the first n steps, then false 
for every step after that. It is introduced here since it takes one clock tick for a SysML state 
machine to enter its initial state. For example, in the quasi-synchronous Pilot Flying Side logic 
shown in Figure 17, the state machine enters its initial Start state at the end of the first step, and 
either the Inhibited or the Pilot Flying state at the end of its second step. In the contract of Figure 
36, the value of PFS is unspecified in the initial step. In the next step, the state machine enters 
either the Pilot_Flying or Inhibited state and sets the value of PFS to the value of the AADL 
property Primary_Side for the component. For subsequent steps, the value of the PFS output is 
specified by one of the three else branches. This simpler contract is used by AGREE instead of 
the auto-generated contract of Figure 27.   

Proving that implementation of Figure 27 satisfies the guarantee of Figure 36 requires 
extending the contract of Figure 27 with three auxiliary lemmas as shown in Figure 37. These 
lemmas are easily proven given the auto-generated contract of Figure 27. With them, the model-
checker is able to prove the guarantee of Figure 36, allowing it to be used instead of the auto-
generated contract of Figure 27. 

 
 

eq ttF: bool = Agree_Nodes.tF(2); 
        
guarantee "PFS Correct" : true ->  (PFS =  
   if ttF then 
      Get_Property(this, QS_Properties::Primary_Side) 
   else if (pre(PFS) and riseOSPF) then 
      false -- when the other side is observed becoming PFS 
   else if (Agree_Nodes.Duration(not ttF and not(pre(PFS))) > 3 and riseTS) then 
      true --  when TS is pressed while listening 
   else pre(PFS)); 
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Figure 37 – Auxiliary Lemmas for the Pilot Flying Side Logic Contract 
With the auxiliary lemma for Side Bus Consistency and the use of compositional 

verification as just described, the proofs of system properties R1 through R5 can be completed 
using jKind on an Intel® Core™ i73720QM processor running at 2.6 GHz with 8 GB of RAM 
with the times shown in Table 3. 

Table 3 – Pilot Flying Proof Times with AGREE and jKind 

R1 R2 R3 R4 R5 
276 sec 276 sec 344 sec < 1 sec 166 sec 

The time required to prove properties of quasi-synchronous systems is surprising, as is 
the number stimuli-free steps required to reach a quiescent state. To some extent, this is due to 
the inherent complexity of systems that are not synchronous. However, some of it is due to the 
fact that quasi-synchrony is a conservative over-approximation of what actually occurs in real 
systems. For example, in the Pilot Flying system it is often the case that only one of the four 
subcomponents can progress on a given step. Since the quasi-synchronous constraints allow the 
clocks of the other components to tick up to twice before the clock of that component is forced to 
tick, there are often sequences of six steps in counterexamples in which nothing occurs other 
than the ticking of the clocks of the other three components. This leads to very long traces that 
are expensive to verify using k-induction. This also manifests itself in the large number of steps 
required in reach a quiescent state.   

lemma "Stop_Unreachable": (state != St_Stop); 

lemma "Inhibit_Count_Bounded" : 
    state = St_Inhibited => (inhibit_count >= 0 and inhibit_count <= 2); 

lemma "PFS_State_Consistency" : 
    (not (state = St_Start) => (PFS = (state = St_Pilot_Flying))); 
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4.1.2 Leader Selection Verification with AGREE and Kind. 
Verification of the Leader Selection example described in Section 3.3.2 with AGREE is very 
similar to the verification of the Pilot Flying example.  As indicated in Figure 18, the Leader 
Selection example has four clocks, one for each node and one for the Cross Node Bus. The 
contract for the Leader Selection system is shown in Figure 38. 

Figure 38 – Leader Selection Contract 
To constrain the range of the input values for the health of each node, three assertions are 

added at the start of the formal requirements so that only input values of 0 to 100 are considered. 

eq Initializing: bool; 

assume "Health1_Valid": Health1 >= 0 and  Health1 <= 100; 
assume "Health2_Valid": Health2 >= 0 and  Health2 <= 100; 
assume "Health3_Valid": Health3 >= 0 and  Health3 <= 100; 

---------------------------------------------------------------------------------- 
-- CHANGED - returns true when input changes value 
---------------------------------------------------------------------------------- 
node CHANGED (i : int) returns (r : bool); 
  let r = false ->  not (i = pre(i)); tel; 

---------------------------------------------------------------------------------- 
-- Defines of input changed 
----------------------------------------------------------------------------------  
eq input_changed: bool =   
     CHANGED(Health1) or CHANGED(Health2) or CHANGED(Health3); 

---------------------------------------------------------------------------------- 
-- R1. All nodes agree on the leader. 
---------------------------------------------------------------------------------- 
guarantee "All Nodes Agree on the Leader" :  
    Agree_Nodes.Duration(not Initializing and not input_changed) > 40 => 

 (Leader1 = Leader2) and (Leader2 = Leader3);  

---------------------------------------------------------------------------------- 
-- R2. The leader is the healthiest node. 
---------------------------------------------------------------------------------- 
guarantee "Leader is the Healthiest Node" : 
    Agree_Nodes.Duration(not Initializing and not input_changed) > 40 => 
      ((Leader1 = 1 => (Health1 >= Health2 and Health1 >= Health3)) and 
       (Leader1 = 2 => (Health2 >  Health1 and Health2 >= Health3)) and 
       (Leader1 = 3 => (Health3 >  Health1 and Health3 >  Health2)) ); 

---------------------------------------------------------------------------------- 
-- R3. The leader shall not change unless a node's health changes. 
---------------------------------------------------------------------------------- 
guarantee "Leader Unchanged Unless Health Changes" :  
    Agree_Nodes.Duration(not Initializing and not input_changed) > 40 => 

 not (CHANGED(Leader1) or CHANGED(Leader2) or CHANGED(Leader3));  
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Unlike the Pilot Flying example that only had one Boolean input, Leader Selection inputs the 
three integer values for the health of each node. An external stimulus for the Leader Selection 
example thus occurs whenever any of these inputs change value. This is formally defined as the 
Boolean input_changed.  

Property R1 states that if the system was not initializing and no input has changed for 40 
steps, all three nodes will agree on who the leader is. Property R2 states that if the system is not 
initializing and no input has changed for 40 steps, the leader will be the healthiest node (with ties 
awarded to the node with the smaller index). Property R3 states that if the system is not 
initializing and no input has changed for 40 steps, the leader will not change. 

As in the Pilot Flying example, compositional verification using simpler contracts for 
each Node and the Cross Node Bus are used to reduce the time needed for verification of these 
three requirements. The time needed to complete the proofs on an Intel® Core™ i73720QM 
processor running at 2.6 GHz with 8 GB of RAM using the jKind model checker are shown in 
Table 4. 

Table 4 – Leader Selection Proof Times with AGREE and jKind 

R1 R2 R3 
664 sec 664 sec 667 sec 
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4.1.3 Active Standby Verification with AGREE and Kind. 
The Active Standby example described in Section 3.3.3 is a more robust version of the Pilot 
Flying example suitable for use in a highly critical system such as the Primary Flight Control 
System. The key differences between it and the Pilot Flying example are that a side can fail at 
any time and later heal and that the active side can be changed by a side failing, by one side 
becoming more available than the other side, or by the pilot manually changing the side.  The top 
level contract for the Active Standby system is shown in Figure 39 through Figure 41.  

Figure 39 – Active Standby Contract (Part 1) 
The contract first specifies definitions helpful in writing the system requirements. This is 

followed by assumptions the system must make about its inputs in order for the verification to 
succeed. For example, we assume that during the initialization of each side, it behaves as though 

eq NeitherSideFailed : bool = not (Side1Failed or Side2Failed); 

eq Side1FullyAvail : bool = Side1SubsystemStatus.Subsystem_A_Avail and 
      Side1SubsystemStatus.Subsystem_N_Avail; 

eq Side2FullyAvail : bool = Side2SubsystemStatus.Subsystem_A_Avail and 
      Side2SubsystemStatus.Subsystem_N_Avail; 

eq Side1AvailabilityChanged : bool = Agree_Nodes.Changed(Side1FullyAvail); 

eq Side2AvailabilityChanged : bool = Agree_Nodes.Changed(Side2FullyAvail); 

eq NoChangeInAvailability : bool = 
     not (Side1AvailabilityChanged or Side2AvailabilityChanged); 

eq NoChangeInFailedStatus : bool = not (Agree_Nodes.Changed(Side1Failed) or 
     Agree_Nodes.Changed(Side2Failed)); 

eq ManualSelectionPressed : bool = Agree_Nodes.Rise(ManualSelection); 

eq Side1_Initializing: bool; 
eq Side2_Initializing: bool; 

eq Initializing : bool; 

-- Each side is failed during initialization 
assume "Side1 Failed Until Initialized" : Side1_Initializing => Side1Failed; 
assume "Side2 Failed Until Initialized" : Side2_Initializing => Side2Failed; 

-- At most one side can be failed after initialization 
assume "At Most One Side Failed": not(Side1Failed and Side2Failed); 

-- Manual selection presses must be long enough to be seen by both sides 
assume "No Short Presses": Agree_Nodes.True_At_Least(ManualSelection, 7); 
assume "No Rapid Presses": Agree_Nodes.True_At_Least(not ManualSelection, 7); 

-- A side cannot heal too quickly after failing 
assume "No Fast Healing":  Agree_Nodes.True_At_Least(Side1Failed, 7) and 

     Agree_Nodes.True_At_Least(Side2Failed, 7); 
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it is failed. This assumption must be satisfied by the implementation of each side. We also 
assume that once the system is initialized, at most one side can be failed at a time. This 
assumption must be validated as part of the system safety assessment. Just as for the Pilot Flying 
example, we assume button presses of the Manual Selection switch cannot be so short or so rapid 
that they are not seen by a component. New to the Active Standby system is the assumption that 
a side cannot heal too rapidly after failing.   

The system assumptions are followed by the system requirements shown in Figure 40. 
 

 
Figure 40 – Active Standby Contract (Part 2) 

Requirement R0 states that the longest neither side is the active side after initialization is 
25 steps or less. Ideally, there would always be an active side, but since the active side can fail at 
any time and it will take a finite time for the other side to become the active side, this is the best 
that can be done assuming quasi-synchronous clocks. 

Property R1 states that the two sides will agree on which side is the active side once a 
quiescent state is reached. Stimuli can be provided to the Active Side logic whenever the pilot 
presses the Manual Selection button, the availability of the aircraft systems on a side changes, or 
a side hosting the Active Standby logic fails. Property R2 states that once a quiescent state is 

---------------------------------------------------------------------------------- 
-- R0. At least one side should always be active. 
--------------------------------------------------------------------------------- 
guarantee "At Least One Side Active": 
   Agree_Nodes.Duration(not Initializing and  
         not (Side1Status.Active or Side2Status.Active)) < 25; 
    
--------------------------------------------------------------------------------- 
-- R1. Both sides should agree on which side is active provided neither side has 
-- failed, the availability of a side has not just changed and the pilot has not 
-- just made a manual selection. 
--------------------------------------------------------------------------------- 
guarantee "Both Sides Agree" :  
   (Agree_Nodes.Duration(not Initializing and NeitherSideFailed and  
      NoChangeInAvailability and not ManualSelectionPressed) > 43 => 
   (Side1Status.Active = not Side2Status.Active)); 
             
---------------------------------------------------------------------------------- 
-- R2. A side that is not fully available should not be the active side if  
-- the other side is fully available, provided neither side has failed, the 
-- availability of a side has not changed, and the pilot has not made a manual 
-- selection. 
-------------------------------------------------------------------------------- 
guarantee "Side 1 Not Fully Available" :  
   (Agree_Nodes.Duration(not Initializing and NeitherSideFailed and  
      NoChangeInAvailability and not ManualSelectionPressed) > 31 => 
   ((Side2FullyAvail and not Side1FullyAvail) => Side2Status.Active)); 
  
guarantee "Side 2 Not Fully Available" :  
   (Agree_Nodes.Duration(not Initializing and NeitherSideFailed and  
      NoChangeInAvailability and not ManualSelectionPressed) > 31 => 
   ((Side1FullyAvail and not Side2FullyAvail) => Side1Status.Active)); 
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reached, a side should not be the active side unless that side’s aircraft systems are at least as 
available as those on the other side. Requirements R3 through R5 are shown in Figure 41.  

 

 
Figure 41 – Active Standby Contract (Part 3) 

Property R3 states that the pilot can always change the active side if the system is in a 
quiescent state (otherwise it is already in the process of changing sides). However, the 
component clocks may delay the response to a press of the Manual Selection button, the 
formalization of this property is rather complicated. The Since(p) function returns the number of 
steps since p has been true and Within(p ,n) returns true if p has been true during the preceding n 
steps. Property R3 asserts that if it has been seven steps since the Manual Selection button was 
pressed while the system was in a quiescent state19 on the previous step, then either Side1 or 

                                                 
19 Duration(not Initializing and NeitherSideFailed and NoChangeInAvailability and not ManualSelectionPressed)) > 
43. 

---------------------------------------------------------------------------------- 
-- R3. The pilot can always change the active side except if a side is failed,  
-- the availability of a side has changed, or the pilot has requested a manual 
-- selection 
---------------------------------------------------------------------------------- 
guarantee "Pilot Can Change Active Side": 
   Agree_Nodes.Since( 
     Agree_Nodes.Duration(pre(not Initializing and NeitherSideFailed and  
      NoChangeInAvailability and not ManualSelectionPressed)) > 43 and 
      ManualSelectionPressed) = 7 => 
   Agree_Nodes.Within(Agree_Nodes.Rise(Side1Status.Active) or 
                      Agree_Nodes.Rise(Side2Status.Active),7); 
 
---------------------------------------------------------------------------------- 
-- R4. If a side is failed then the other side should become the active side 
-- unless the other side is also failed. 
---------------------------------------------------------------------------------- 
guarantee "Side1 Failed" :  
   (Agree_Nodes.Duration(not Initializing and Side1Failed and not Side2Failed) > 
      25 => Side2Status.Active); 
         
guarantee "Side2 Failed" :  
   (Agree_Nodes.Duration(not Initializing and Side2Failed and not Side1Failed) > 
      25 => Side1Status.Active);  
         
---------------------------------------------------------------------------------- 
-- R5 The active side should not change unless the availability of a side changes, 
-- the failed status of a side changes, or manual selection is selected by the 
-- pilot. 
---------------------------------------------------------------------------------- 
guarantee "No Spontaneous Change" : 
    (Agree_Nodes.Duration(not Initializing and NoChangeInAvailability and 
           NoChangeInFailedStatus and not ManualSelectionPressed) > 44 => 
    (not (Agree_Nodes.Changed(Side1Status.Active) or  
     Agree_Nodes.Changed(Side2Status.Active)))); 
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Side2 will become the active side within the next seven steps. Property R4 states that if a side 
fails, then the other side should become the active side within 25 steps unless the other side is 
also failed. Finally, property R5 states that the system does not spontaneously change the active 
side unless the pilot presses the Manual Selection button, the availability of the aircraft systems 
on a side changes, or a side fails. 

The Active Standby system makes some use of compositional verification to speed up the 
proofs, but constructing a more abstract contract for the subsystem illustrated in Figure 21 and 
Figure 22 is a non-trivial task. Instead, the contract for the implementation shown in Figure 21 
uses the “lift” operator to tell AGREE to construct a contract based on the contracts of its 
subcomponents as shown in Figure 42. This eliminates the need to manually construct a contract, 
but it also eliminates the opportunity to reduce proof time by substituting a simpler contract. 

 

 
Figure 42 – Constructing a Contract Using Lift 

The contract for the top-level implementation of the Active Side system is shown in 
Figure 43. It includes the usual synchrony command and the definition of when each component 
is initializing. Note that the entire system is considered to be initializing for an additional seven 
steps after each component finishes initializing. This is necessary to avoid a logical inconsistency 
due to the assumptions that each component is failed while it is initializing, a component cannot 
heal (become not failed) in fewer than seven steps, and that only one side can be failed once the 
overall system is initialized.   In effect, the system has to be considered to be initializing for 
seven steps after all its components have initialized to provide one side sufficient time to heal 
without violating the assumption that a side must stay failed for at least seven steps after failing. 

      lift Monitor; 
      lift ActiveSideLogic; 
      lift OtherSideDemux; 
      lift ThisSideMux; 
      lift riseOSA; 
      lift ThisSubDemux; 
      lift OthrSubDemux; 
      lift riseMS; 
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Figure 43 – Contract for Active Side Implementation 

Given the assumptions of Figure 39, properties R0 through R5 can be proved on an 
Intel® Core™ i73720QM processor running at 2.6 GHz with 8 GB of RAM using the jKind 
model checker with the times shown in Table 5. 

Table 5 – Active Standby Proof Times with AGREE and jKind 

R0 R1  R2  R3  R4 R5 
1752 sec 3215 sec 1088 sec 3215 sec 608 sec 1890 sec 

 
 
 

synchrony : 2; 
 
-- Each side is initializing until its clock has ticked twice 
assert Side1_Initializing = Agree_Nodes.ctF(1,Side1._CLK); 
assert Side2_Initializing = Agree_Nodes.ctF(1,Side2._CLK); 
       
-- Each bus is initializing until its clock has ticked twice 
eq Bus_LR_Initializing : bool = Agree_Nodes.ctF(1,Bus12._CLK); 
eq Bus_RL_Initializing : bool = Agree_Nodes.ctF(1,Bus21._CLK); 
       
-- The system remains in initialization for seven steps after all its components 
-- have initialized to ensure that at least one side has time to heal 
-- (both sides are assumed failed during the side's initialization) 
assert(Initializing =  
   (Agree_Nodes.Since(Side1_Initializing or Bus_LR_Initializing or 
                       Side2_Initializing or Bus_RL_Initializing) < 8));  
       
-- This lemma speeds up the system level proofs 
lemma "Side Bus Consistency" :  
   (Agree_Nodes.Duration(not Initializing and  
                         Side1.ThisSideStatus.Active and  
                        Side2.ThisSideStatus.Active and  
                         Bus12.O.Active and Bus21.O.Active) < 12); 



Approved for Public Release; Distribution Unlimited 

59 

4.1.4 WBS Verification with AGREE and Kind. 
The top level contract for the Wheel Braking System described in Section 3.3.4 is shown in 
Figure 44 and Figure 45. As discussed in section 3.3.4, the WBS model is derived from the 
accident report and includes a number of assumptions and may not accurately describe the actual 
implemented system. For this reason, the verification described here only claims to identify 
errors in this model. The contract begins with definitions helpful in specifying properties and 
assumptions about the inputs as shown in Figure 44. 

 
Figure 44 – WBS Contract (Part 1) 

The variables COM1Failed, COM2Failed, MON1Failed, and MON2Failed latch the 
inputs indicating if the associated component has failed. For the WBS system, we will treat a 
component as permanently failed if it has failed at any time. The variables 
No_Failed_Component and At_Most_One_Failed_Component allow us to state properties about 
the cases where no component has failed and a single component has failed. Based on the system 
safety analysis we can assume that at most one component will ever fail during a normal period 
of operation. This is captured in the assertion “At Most One Failed Component”.  

The assumption “ Fixed Pedal Pressure” is made to eliminate counterexamples caused by 
rapid changes in the pedal pressure. Since the analysis of the WBS system focuses on how 
pressing the LO, MED, or MAX buttons can cause the logic error identified in the accident 
report, the portion of the model dealing with pedal pressure and anti-skid computation have been 
deliberately simplified. As a consequence, rapid changes in the pedal pressure can cause spurious 
counterexamples. A higher fidelity model would include limits on how quickly the pedal 
pressure could change and thresholds for the detection of disagreements leading to error states. 

eq Initializing : bool; 
      
eq COM1Failed: bool = Agree_Nodes.Latch(FailCOM1); 
eq COM2Failed: bool = Agree_Nodes.Latch(FailCOM2); 
eq MON1Failed: bool = Agree_Nodes.Latch(FailMON1); 
eq MON2Failed: bool = Agree_Nodes.Latch(FailMON2); 
      
eq No_Failed_Component: bool =  
   not (COM1Failed or COM2Failed or MON1Failed or MON2Failed); 
         
eq At_Most_One_Failed_Component: bool =  
   (COM1Failed => not (COM2Failed or MON1Failed or MON2Failed)) and 
   (COM2Failed => not (COM1Failed or MON1Failed or MON2Failed)) and 
   (MON1Failed => not (COM1Failed or COM2Failed or MON2Failed)) and 
   (MON2Failed => not (COM1Failed or COM2Failed or MON1Failed)); 
         
assume "At Most One Failed Component" : At_Most_One_Failed_Component; 
      
assume "Fixed Pedal Pressure" : Pedal = 100; 
      
assume "Only One Button Pressed at a Time" :   
        (Panel.LO  => not (Panel.MED or Panel.MAX)) and 
        (Panel.MED => not (Panel.LO  or Panel.MAX)) and 
        (Panel.MAX => not (Panel.LO  or Panel.MED)); 
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The last assumption states that only one button is ever pressed at a time. This is 
essentially a design constraint on how the button panel is implemented. The guarantees for the 
WBS are shown in Figure 45. 

 

 
Figure 45 – WBS Contract (Part 2) 

The first two guarantees state that at least one WBS channel will be error free if no 
component and at most one component is failed.  Of course, the proof for when no component is 
failed is redundant since it is implied by the proof for when at most one component is failed. 
Also, the antecedent At_Most_One_Failed_Component is unnecessary since we assume in 

----------------------------------------------------------------------------------         
-- R1. At least one channel shall be error free if no components have failed.    
----------------------------------------------------------------------------------                                                       
guarantee "At Least One Channel Error Free - No Failures" :  
   No_Failed_Component => 
      (not Initializing => (not CH1.Error or not CH2.Error)); 
 
----------------------------------------------------------------------------------               
-- R2. At least one channel shall be error free  
-- if at most one component has failed. 
----------------------------------------------------------------------------------                  
guarantee "At Least One Channel Error Free - One Failure" :  
   At_Most_One_Failed_Component => 
      (not Initializing => (not CH1.Error or not CH2.Error)); 
 
----------------------------------------------------------------------------------           
-- R3. At least one channel shall be active if no components have failed. 
----------------------------------------------------------------------------------                
guarantee "At Least One Channel Active - No Failures" : 
   No_Failed_Component => 
       (not Initializing => CH1.Active or CH2.Active); 
       
----------------------------------------------------------------------------------           
-- R4. At least one channel shall be active if at most one component has failed. 
----------------------------------------------------------------------------------                                           
guarantee "At Least One Channel Active - One Failure" : 
   At_Most_One_Failed_Component => 
     Agree_Nodes.Duration(not Initializing and not(CH1.Active or CH2.Active)) < 7; 
                                
---------------------------------------------------------------------------------- 
-- R5. At most one channel shall be active if no components have failed. 
----------------------------------------------------------------------------------  
guarantee "At Most One Channel Active - No Failures" : 
   No_Failed_Component => 
     Agree_Nodes.Duration(not Initializing and CH1.Active and CH2.Active) < 7; 
 
----------------------------------------------------------------------------------  
-- R6. At most one channel shall be active if at most one component has failed.   
----------------------------------------------------------------------------------                     
guarantee "At Most One Channel Active - One Failure" : 
   At_Most_One_Failed_Component => 
     Agree_Nodes.Duration(not Initializing and CH1.Active and CH2.Active) < 7;                                                                  



Approved for Public Release; Distribution Unlimited 

61 

Figure 44 that it is always the case that at most one component is failed. It is included in 
specification of the second property both as documentation and to ensure the property is still 
stated correctly even if the assumption were removed. The next two guarantees state that at least 
one channel is active if no component or at most one component is failed. Finally, the last two 
guarantees state that at most one channel is active if no component or at most one component is 
failed. 

The COM and MON units compute their next brake mode (corresponding to Figure 24) 
using the Brake_Mode function defined in Figure 46. 

 

 
Figure 46 – Computation of the WBS Brake Mode 

The COM and MON units compute their break command using the Brake_Cmd function 
defined in Figure 47. The actual values returned are irrelevant to the analysis so long as they are 
different. 

 

 
Figure 47 – Computation of the WBS Brake Command 

The contract for the COM units is shown in Figure 48. Note that the brake command is 
only specified if the COM unit is not failed. Otherwise, the brake command is unspecified and 
can take on any value. 

 
 
 

node Brake_Cmd(mode: int, pedal: int) returns(r: int); 
let 
    r = if (mode = Agree_Constants.LO)  then 170 else 
        if (mode = Agree_Constants.MED) then 340 else 
        if (mode = Agree_Constants.MAX) then 510 else pedal; 
tel;  
                                                                  

node Brake_Mode(mode: int, lo: bool, med: bool, max: bool) returns(r: int); 
let 
  r = Agree_Constants.MANUAL ->  
      if (pre(mode) = Agree_Constants.LO        and Rise(lo))  then 
         Agree_Constants.MANUAL  
      else if (pre(mode) = Agree_Constants.MED  and Rise(med)) then 
         Agree_Constants.MANUAL  
      else if (pre(mode) = Agree_Constants.MAX  and Rise(max)) then 
         Agree_Constants.MANUAL  
      else if (pre(mode) != Agree_Constants.LO  and Rise(lo))  then 
         Agree_Constants.LO 
      else if (pre(mode) != Agree_Constants.MED and Rise(med)) then 
         Agree_Constants.MED     
      else if (pre(mode) != Agree_Constants.MAX and Rise(max)) then 
         Agree_Constants.MAX     
      else pre(mode); 
tel;              
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Figure 48 – Contract for WBS COM Unit 
The contract for the MON units is shown in Figure 49. The Error variable defines 

whether the channel is in error. This occurs when the brake command computed by the COM 
unit differs from the brake command computed by the MON unit for more than six steps. Later, 
we prove that the longest the two values can differ due to the ticking of the clocks is six steps, so 
a miscompare of more than six steps is sufficient to identify a channel error. 

 

 

 Figure 49 – Contract for WBS MON Unit 
The Active variable holds whether the channel believes it is the active side. Active status 

is initially given to the first MON unit to execute, with ties broken in favor of the Primary Side 

eq Primary_Side: bool = Get_Property(this, QS_Properties::Primary_Side); 
                     
eq Mode: int = Agree_Nodes.Brake_Mode(Mode, Panel.LO, Panel.MED, Panel.MAX); 
       
eq Error: bool =   
   Agree_Nodes.Latch(Agree_Nodes.Duration(not (Status.Cmd = CMD_From_COM)) >= 7); 
       
eq Active : bool =      
   -- first side started becomes the active side  
    (not Sync_From.Active ->   
   -- A side in error is never active  
        if (Error) then false  
        -- Resolve ties at start-up in favor of the primary side  
        else if (pre(Active) and Sync_From.Active and  
                 not Sync_From.Error and not Primary_Side) then false    
        -- Other side is no longer active or is in error so we become active 
        else if (not pre(Active) and  
                (not Sync_From.Active or Sync_From.Error)) then true 
        -- Otherwise no change 
        else pre(Active)); 
           
-- The CMD output is reliably output if the component is not failed 
   guarantee "MON Brake Command" :  
        not Fail => (Status.Cmd = Agree_Nodes.Brake_Cmd(Mode, Pedal)); 
              
-- The Error status is reliably output even if the component is failed       
   guarantee "Status Error" : Status.Error = Error;      
   guarantee "Sync To Error" : Sync_To.Error = Error; 
       
-- The Active status is reliably output even if the component is failed    
   guarantee "Status Active" : Status.Active = Active; 
   guarantee "Sync To Active" : Sync_To.Active = Active;         

eq Mode: int = Agree_Nodes.Brake_Mode(Mode, Panel.LO, Panel.MED, Panel.MAX); 
         
-- The CMD output is reliably output if the component is not failed 
guarantee "Valve Command" :  
   not Fail => CMD = Agree_Nodes.Brake_Cmd(Mode, Pedal);                                                                  
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on the next step. A side will become active if it sees the other side declare itself in error or no 
longer active.  

Just as with the COM unit, a MON unit will only reliably output it’s computed brake 
command if it is not failed. However, a MON unit must reliably output its Error and Active 
status if the two channels are to agree on who is the active side. If this is not an implementable 
guarantee, the WBS architecture would have to be revised. 

In addition, additional definitions, implementation constraints, and auxiliary lemmas need 
to be added to the contract for the BSCU implementation just as in the other examples. These 
include the lemmas shown in Figure 50 stating that a channel can only be declared in error if it’s 
COM or MON component has failed.  
 

 

Figure 50 – Contract for WBS MON Unit 
Trying to prove the lemmas of Figure 50 generates the counterexample20 of Figure 51.  
 

Step 0 1 2 3 4 5 6 7 8 9 10 11

BSCU_BSCU_Impl_Instance
CH1.Error FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
CLOCK_COM1 FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
CLOCK_MON1 FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
Panel.LO FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
Panel.MAX FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Panel.MED FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

COM1
COM1.CMD 101 101 101 101 100 100 100 100 100 100 100 100

MON1
MON1.CMD_From_COM 101 101 101 101 100 100 100 100 100 100 100 100
MON1.Status.Cmd 100 100 100 100 100 100 100 170 170 170 170 170
MON1.Status.Error FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE  

Figure 51 – Counterexample Caused by Short Button Presses 
The counterexample of Figure 51 demonstrates how a channel can be declared in error 

even when neither it’s COM nor MON unit have failed. In step 6, COM1 and MON1 are in 
MANUAL mode and are generating brake command values of 100 (the pedal pressure). In step 
7, the LO button on the BSCU panel is pressed for one step. The clock for MON1 is true on step 
7, so it observes the button press and switches into LO mode and outputs 170 as its brake 
command.  However, the clock for COM1 is false on step 7, so it does not observe the button 
press and remains in MANUAL mode. At this point, the actual fault has occurred, but the error is 
not reported until MON1 observes a miscompare for seven steps in step 11. While it may appear 
that step 11 is too soon for a miscompare of seven steps to occur, note that clock of MON1 is 
true in step 2 and step 3 and in steps 7 through 11. Since the brake command from COM1 differs 
from the value computed by MON1 on all those steps, to MON1 it appears that a miscompare 
has occurred for seven steps, causing it to declare itself in error. 
                                                 
20 To generate this counterexample it is necessary to add an assumption that no button presses occur in the first six 
steps. This eliminates a spurious counterexample that arises in the absence of the full set of assumptions. Since it is 
possible that no button presses occur in the first six steps, the resulting counterexample is still valid.  

lemma "CH1 Error Only if Failed" : CH1.Error => COM1Failed or MON1Failed; 
lemma "Ch2 Error Only if Failed" : CH2.Error => COM2Failed or MON2Failed;  
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The cause of this error is that the button press is so short that it was observed by MON1 
but missed by COM1 since its clock was false. The same scenario can occur in channel 2.  Thus, 
even though none of the components had failed, both channels can declare themselves in error. 
This is the error described in the accident report. One fix to this problem is to force button 
presses to last long enough that they will always be observed by all components. This is easily 
done in the model by adding the assumptions shown in Figure 47. The first assumption requires 
that a button press must stay true for at least seven steps, ensuring that all nodes will see the 
button press. The second assumption requires that button presses stay true for at most 20 steps. 
This eliminates counterexamples that occur when a button is never released (any large value 
could be used). 

 

 
Figure 52 – Constraining the Duration of WBS Button Presses  

However, trying to verify the WBS system with these assumptions generates another 
counterexample21 shown Figure 53. 

 
Step 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

BSCU_BSCU_Impl_Instance
CH1.Error FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
CH2.Error FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
CLOCK_COM1 TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
CLOCK_MON1 TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
Panel.LO TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Panel.MAX FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Panel.MED FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

COM1
COM1.CMD 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170

MON1
MON1.CMD_From_COM 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170
MON1.Status.Cmd 170 170 170 170 100 100 100 100 100 100 100 100 100 100 100 100 100
MON1.Status.Error FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE  

Figure 53 – Counterexample Caused by Rapid Button Presses 
In step 13, both the COM1 and MON1 units are in LOW mode and are generating brake 

command values of 170. The LO button on the BSCU panel is true on step 13, but neither unit 
responds to it since it was also true on the preceding six steps. In step 14, the LO button becomes 
false and then becomes true again on step 15.  The MON1 unit does not respond to the LO button 
press on step 15 because its clock is false on that step. However, on step 16 its clock is true. The 

                                                 
21 To generate the counterexample in reasonable time, we set the quasi-synchronous constraint to 1/1 quasi-
synchrony, i.e., no clock can tick more than once before every other clock has ticked once. This constrains the 
clocks to tick in the same order, but not necessarily at the same time. Since a 2/1 quasi-synchronous system can 
always behave like a 1/1 quasi-synchronous system, a counterexample produced assuming 1/1 quasi-synchrony is 
still a valid counterexample for the 2/1 quasi-synchronous system. 

assume "Button Presses are Long Enough to be Seen by All Nodes" :  
        Agree_Nodes.True_At_Least(Panel.LO,  7) and 
        Agree_Nodes.True_At_Least(Panel.MED, 7) and  
        Agree_Nodes.True_At_Least(Panel.MAX, 7);  
   
assume "Button Presses are Bounded in Duration" :  
        Agree_Nodes.True_At_Most(Panel.LO,  20) and 
        Agree_Nodes.True_At_Most(Panel.MED, 20) and  
        Agree_Nodes.True_At_Most(Panel.MAX, 20);                                                                 
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last time MON1 saw the LO button on step 14, the LO button was false, so on step 16 the MON1 
unit sees the LO button press and reverts from LO mode to MANUAL mode, outputting a brake 
command of 100 (the pedal pressure). In contrast, the clock of COM1 was false on step 14, so it 
never saw the LO button go false. On step 15, it observes that the LO button is true, but the last 
time it observed the LO button on step 13, it was also LO, so it fails to observe the LO button 
press and remains in LO mode. At this point, the actual fault has occurred, but the error is not 
reported until MON1 observes a miscompare for seven steps in step 28 and declares itself in 
error. 

In contrast to the counterexample of Figure 51 which was caused by the button press 
being too short, this counterexample was caused by the button press being false for such a short 
time that the next button press was missed by COM1. In effect, the next button press arrived too 
quickly. One fix for this problem is to force button presses to remain false long enough to ensure 
that the next button press is observed by all components, i.e., to ensure that button presses cannot 
arrive too quickly. This is easily done in the model by adding the assumptions shown in Figure 
54 to ensure that a button must remain false for at least seven steps.  

 

 
Figure 54 – Constraining the Arrival of WBS Button Presses  

As it turns out, the proofs still do not complete even with these assumptions. Examining 
the inductive counterexample22 indicates that the problem lies with button presses that move a 
COM or a MON unit from one mode to a different mode to a third mode every seven steps. 
Gradually increasing the number of steps a button must remain true or false reveals that all 
requirements prove when the button presses are assumed to be true for at least 13 steps and false 
for at least 13 steps. The final set of assumptions that must be made about the button presses to 
complete the proofs of Figure 45 are shown in Figure 55. 

With these assumptions, properties R1 through R6 can be proved on an Intel® Core™ 
i73720QM processor running at 2.6 GHz with 8 GB of RAM using the jKind model checker 
with the times shown in Table 6. 

Table 6 – WBS Proof Times with AGREE and jKind 

R1 R2  R3  R4  R5 R6 
816 sec 816 sec 816 sec 816 sec 34 sec 34 sec 

 
 
 
 

                                                 
22 An inductive counterexample is generated when a proof fails to complete or generate a true counterexample 
before the timeout is reached. Examining the inductive counterexample can provide clues as to why the proof is not 
completing. 

assume "Button Presses Do Not Occur Too Quickly" :  
        Agree_Nodes.True_At_Least(not Panel.LO,  7) and 
        Agree_Nodes.True_At_Least(not Panel.MED, 7) and  
        Agree_Nodes.True_At_Least(not Panel.MAX, 7);    
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Figure 55 – WBS Button Press Assumptions  

 
assume "Only One Button Pressed at a Time" :   
       (Panel.LO  => not (Panel.MED or Panel.MAX)) and 
       (Panel.MED => not (Panel.LO  or Panel.MAX)) and 
       (Panel.MAX => not (Panel.LO  or Panel.MED)); 
                                 
assume "Button Presses are Long Enough to be Seen by All Nodes" :  
        Agree_Nodes.True_At_Least(Panel.LO,  13) and 
        Agree_Nodes.True_At_Least(Panel.MED, 13) and  
        Agree_Nodes.True_At_Least(Panel.MAX, 13);    
                                                              
assume "Button Presses are Bounded in Duration" :  
        Agree_Nodes.True_At_Most(Panel.LO,  20) and 
        Agree_Nodes.True_At_Most(Panel.MED, 20) and  
        Agree_Nodes.True_At_Most(Panel.MAX, 20);    
              
assume "Button Presses Do Not Occur Too Quickly" :  
       Agree_Nodes.True_At_Least(not Panel.LO,  13) and 
       Agree_Nodes.True_At_Least(not Panel.MED, 13) and  
       Agree_Nodes.True_At_Least(not Panel.MAX, 13);    
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4.2 Formal Verification with Uppaal 
This section discusses issues in formally verifying the example problems with Uppaal. As 

discussed in Section 3.2.2.2, in Phase 1 of the project, verification with Uppaal was done with 
actual values for period and jitter assigned to each clock. This is not as general as verifying all 
possible quasi-synchronous assignments of period and jitter as was done with Kind, but it has the 
advantage that it produces actual values for how long it takes the system to reach a quiescent 
state after being stimulated. In Phase II of the project, the verification was done constraining the 
clocks to satisfy the quasi-synchronous constraint without using real-time values (also discussed 
in Section 3.2.2.2). Verification of the Pilot Flying example with Uppaal is discussed in Section 
4.2.1 and verification of the Leader Selection example is discussed in Section 4.2.2. The Uppaal 
model checker timed out without completing verification of the properties for the Active Standby 
and WBS, so results for those examples are not presented. 
4.2.1 Pilot Flying Verification with Uppaal. 

This section discusses the formal verification of the Pilot Flying example with Uppaal. 
Section 4.2.1.1 discusses verification using real-time clocks and Section 4.2.1.2 discusses 
verification using quasi-synchronous clocks.  

4.2.1.1  Pilot Flying Verification in Uppaal with Real-time Clocks 
The values chosen for the period and jitter of each clock in the Pilot Flying example are 

shown in Table 7 (the units in which time are measured are immaterial).These are easily seen to 
satisfy the quasi-synchronous constraints described in Section 3.2.1. 

Table 7 – Pilot Flying Clock Periods and Jitter for Real-time Uppaal Verification 

Clock Subsystem Period Jitter 
CLK1 Left Side 46 4 
CLK2 LR Bus 50 0 
CLK3 Right Side 54 2 
CLK4 RL Bus 78 5 

 
To formally verify the Pilot Flying example in Uppaal, the auto-generated model must be 

supplemented with a process to generate the system inputs. Inputs in Uppaal are typically 
modeled as events arriving from the environment. However, most avionics systems are sampled 
data systems that read all the input values at the start of each step. In the Pilot Flying example, 
there is a single input, the Transfer Switch that each side reads through its TS port as shown in 
Figure 32.  

In Uppaal this is modeled as a global variable TS that is passed to both sides.23 To 
emulate this as a sampled input in Uppaal, we add the process shown in Figure 56. This process 
has a single location Start with a single transition. In making this transition, it randomly sets the 
value of its local Boolean variable next_TS, calls the local function IsPressed with argument 

                                                 
23 Since only the Pilot Not Flying side listens to this port and since there is never more than one Pilot Not Flying 
side, we do not need to model asynchronous arrivals of this input at each side. 
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next_TS, then sets the new value of TS to next_TS. The function IsPressed has two side-effects. It 
sets the local variable pressed to (not TS and next_TS) and, if pressed is true, it resets a local 
clock q to 0. In this way, Uppaal treats TS as sampled input that changes randomly. The local 
variable pressed detects a rising edge of TS indicating whether the Transfer Switch was pressed. 
The local clock q tracks the time since TS was last pressed. Pressed and q are used only in stating 
properties to be checked and are not used in the model itself.  

 
Figure 56 – Uppaal Input Process for Pilot Flying Example 

With a process defined to generate inputs, the next step is to formally state the Pilot 
Flying requirements. The first Pilot Flying requirement R1 from Section 3.3 states that at least 
one side is always the pilot flying side. The Uppaal query for this is shown in Figure 57. This 
property states that for all states and all paths (i.e., always henceforth) either the output LPFS is 
true or the output RPFS is true. Uppaal is able to prove this in 142 seconds. 

 
Figure 57 – Pilot Flying Requirement R1 for Real-time Uppaal 

Formally stating requirement R2 that both sides shall agree on the pilot flying side is 
slightly more complicated. Just as in Section 4.1.1, property R2 only holds when the system is 
not switching sides, i.e., when in a quiescent state.  This can be stated formally in Uppaal as 
shown in Figure 58. Recall that q is the time since the Transfer Switch was last pressed. The 
property of Figure 58 thus states that for all states and all paths, if the Transfer Switch has not 
been pressed for 240 time units24, the output LPFS will not equal output RPFS, i.e., the two sides 
will agree on who is the pilot flying side. This property can be proven with Uppaal in 
approximately 191 seconds. 

 

 
Figure 58 – Pilot Flying Requirement R2 for Real-time Uppaal 

Property R3 stating that pressing the Transfer Switch will change the pilot flying side 
presents a slightly different challenge. Recall that in verifying this property using Kind, we stated 
that if in the previous step the Transfer Switch had not been pressed for 46 steps and the side was 
not the pilot flying side, pressing the Transfer Switch so that the not pilot flying side observed it 
                                                 
24 This property fails for values smaller than 240. 

A[] LPFS || RPFS 

 

A[] q >= 240  imply LPFS != RPFS 
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being pressed would cause the side to become the pilot flying side.  Uppaal does provide an 
eventually temporal operator, but it does not provide a next state temporal operator. However, a 
similar capability can be achieved by defining synchronous observer processes such as that 
shown in Figure 59. 

 
Figure 59 – Observer for Pilot Flying Requirement R3 in Real-time Uppaal 

A synchronous observer executes in parallel with the system and emits the value true 
when the property holds and the value false when the property is falsified.  The observer of 
Figure 59 transitions from location Waiting to location Checking whenever the Transfer Switch 
has not been pressed for more than 240 time units and the side is not the pilot flying side, setting 
valid to true since the property has not yet been falsified. If the Transfer Switch is not pressed 
while in location Waiting, no change occurs since property R3 is only concerned with what 
happens when the Transfer Switch is pressed. If the Transfer Switch is pressed and seen by the 
side while in location Checking, it returns to location Waiting, setting valid to true if the side is 
now the pilot flying side (PFS is true) and to false if the side is not the pilot flying side (PFS is 
false). For the pilot flying system, the template for Figure 59 is named R3 and takes parameters 
&PFS and &pressedSeen. Process instances for the left and right sides are instantiated as shown 
in Figure 60. 

 

 
Figure 60 – Uppaal Instantiations of Pilot Flying Property R3 

The variables LS_riseTS_O and RS_riseTS_O contain the values of the output of the 
riseTS component (Figure 32) indicating if the press of the Transfer Switch was actually seen by 
the side. The query presented to Uppaal is shown in Figure 61. Unfortunately, the proof of 
property R3 does not complete. Instead, Uppaal runs out of memory or continues without 
completing verification. 

 

R3_left  = R3(LPFS, LS_riseTS_O) 
R3_right = R3(RPFS, RS_riseTS_O) 
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Figure 61 – Pilot Flying Requirement R3 in Real-time Uppaal 

Property R4 stating that the system starts with the primary (left) side as the pilot flying 
side can be stated in Uppaal as shown in Figure 62. This property states that if the global time t is 
one or less, the output LPFS is true. Since the initial value of the port LPFS is set to true, this is 
the expected behavior. This proof completes in 171 seconds. 

 

 
Figure 62 – Pilot Flying Requirement R4 in Real-time Uppaal 

Finally, property R5 stating that the pilot flying side does not spontaneously change must 
be stated using the synchronous observer shown in Figure 63. 

 
Figure 63 – Observer for Pilot Flying Requirement R5 in Real-time Uppaal 

As with property R3, the observer starts in the location Waiting and transitions to location 
Checking when the Transfer Switch has not been pressed for more than 240 time units and this 
side is the pilot flying side, setting valid to true since the property has not yet been falsified. If 
the Transfer Switch is pressed while in location Checking, the observer transitions to the location 
Waiting since property R5 is only concerned with the system behavior when the Transfer Switch 
is not pressed. If the Transfer Switch is not pressed while in location Checking, valid is set to 
true if the side has remained the pilot flying side (PFS is true) and to false if the pilot flying side 
has spontaneously changed (PFS is false). The template for Figure 63 is named R5 and takes the 
single parameter &PFS. Process instances for the left and right sides are instantiated as R5_left = 
R5(LPFS) and R5_right = R5(RPFS). The query presented to Uppaal is shown in Figure 64. 
Unfortunately, the proof of property R5 does not complete, with Uppaal running out of memory 
or continues without completing verification. 

.  

 
Figure 64 – Pilot Flying Requirement R5 in Real-time Uppaal 

Proof times for requirements R1 through R5 for the Pilot Flying example with Uppaal running 
on an Intel® Core™ i73720QM processor running at 2.6 GHz with 4 GB of RAM are 
summarized in Table 8. 

A[] R5_left.valid && R5_right.valid 

A[] t <=1 imply LPFS == true 

 

A[] R3_left.valid && R3_right.valid 
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Table 8 – Pilot Flying Proof Times with Real-time Clocks in Uppaal 

R1 (sec) R2 (sec) R3 (sec) R4 (sec) R5 (sec) 
142 191 - 171 - 

 

4.2.1.2  Pilot Flying Verification in Uppaal with Quasi-synchronous Clocks  
Verification of the Pilot Flying example completed successfully for all the requirements 

using the general quasi-synchronous clock approach described in Section 3.2.2.2. As shown in 
Figure 65, when one of the clocks tick a variable q is incremented by one to record a step of 
execution. This allows measurement of the number of steps it takes for a property to be satisfied. 
The Age matrix described  in Section 3.2.2.2 is declared to be an Uppaal meta variable, greatly 
reducing the time needed for verification. Without this change the verification runs out of 
memory. Incrementing the value q on each tick ensures that all possible transitions are 
considered even with the Age matrix declared as a meta variable. 

 
Figure 65 – Pilot Flying Quasi-synchronous Clock Constraints in Uppaal 

In Uppaal the Transfer Switch is modeled as a global variable TS that is passed to both 
sides. To emulate this as a sampled input, we add the process shown in Figure 66. This process 
has three locations Start, CheckTS, and TSPressed. The transition from Start to CheckTS, 
randomly sets the value of its local Boolean variable next_TS, calls the local function IsPressed 
with argument next_TS, then sets the new value of TS to next_TS. The function IsPressed has 
two side-effects. It sets the local variable pressed to (not TS and next_TS) and, if pressed is true, 
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it resets the global variable q. In this way, Uppaal treats TS as sampled input that changes 
randomly. The local variable pressed detects a rising edge of TS indicating whether the Transfer 
Switch was pressed. The variable q tracks the number of steps since TS was last pressed. Pressed 
and q are used only in stating properties to be checked, i.e., they are not used in the model itself. 
If TS is pressed, the process transitions to the state TSPressed where it waits for seven steps 
before transitioning to the Start state. This ensures that the value pressed must be true for at least 
seven steps, ensuring the non-Pilot Flying side sees the button press.25  If TS is not pressed the 
process transitions to the Start state directly from the CheckTS state.  

 
Figure 66 – Transfer Switch Input Process in Quasi-synchronous Uppaal 

With a process defined to generate the Pilot Flying inputs, the next step is to formally 
state the Pilot Flying requirements. The first Pilot Flying requirement R1 from Section 3.3 states 
that at least one side is always the pilot flying side. The Uppaal query for this is shown in Figure 
67. This property states that for all states and all paths (i.e., always henceforth) either the output 
LPFS is true or the output RPFS is true.  

 
Figure 67 – Pilot Flying Requirement R1 in Quasi-synchronous Uppaal 

For this property to prove in Uppaal, the value of q must be periodically reset to zero, 
otherwise the state space grows without bound and Uppaal runs out of memory. The sooner this 
reset occurs, the faster the proofs complete, but the larger q is allowed to grow, the more 
confidence one can have that all important behaviors have been checked. For all the properties 
verified, the value of q was reset after 50, 500 and 1000 steps. As shown in Table 9, property R1 
proves in seven to 26 seconds depending on when q is reset.  

The formal statement of requirement R2 that both sides shall agree on the pilot flying 
side is shown in Figure 68. This states that for all states and paths, if the Transfer Switch has not 

                                                 
25 This serves the same purpose as constraining Transfer Switch to remain true for at least seven steps in AGREE. 

A[] LPFS || RPFS 
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been pressed for 25 steps, the output LPFS will not equal output RPFS, i.e. the two sides will 
agree on who is the pilot flying side. As shown in Table 9, this property can be proven with 
Uppaal in seven to 26 seconds depending on when q is reset. 

 
 

 
Figure 68 – Pilot Flying Requirement R2 in Quasi-synchronous Uppaal 

Stating Property R3 that pressing the Transfer Switch will change the pilot flying side 
requires the use of the synchronous observer processes shown in Figure 69. 

 
Figure 69 – Observer for Pilot Flying Requirement R3 in Quasi-synchronous Uppaal 

The observer of Figure 69 transitions from location Start to location NPF whenever the 
Transfer Switch has not been pressed for more than 42 steps and the side is not the pilot flying 
side. If the Transfer Switch is not pressed while in location NPF, no change occurs since 
property R3 is only concerned with what happens when the Transfer Switch is pressed. If the 
Transfer Switch is pressed while in location NPF, the observer transitions to location Listen. 
When a step? event arrives indicating that the side has taken a step, the observer transitions to 
the location Check.  If the side is the pilot flying side, the observer then returns to the Start 
location. Otherwise, it transitions to the Invalid location indicating that the property has been 
violated. The template for the process of Figure 69 is named R3. The actual query verified by 
Uppaal (shown in Figure 70) checks that the Invalid location is never reached. 

 

 
Figure 70 – Pilot Flying Requirement R3 in Quasi-synchronous Uppaal 

Property R4 stating that the system starts with the primary (left) side as the pilot flying 
side can be stated in Uppaal as shown in Figure 71.This property states that at initialization 
before the first clock tick, the output LPFS is true. This proof completes in seven to 24 seconds. 

 

A[] !R3L.Invalid 

A[] !R3R.Invalid  

A[] q >= 25  imply LPFS != RPFS 
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Figure 71 – Pilot Flying Requirement R4 in Quasi-synchronous Uppaal 

 
 
Property R5 stating that the pilot flying side does not spontaneously change can be stated 

using the synchronous observer shown in Figure 72. 

 
Figure 72 – Observer for Pilot Flying Requirement R5 in Quasi-synchronous Uppaal 

The observer starts in the location Checking and remains at that location until the 
Transfer Switch is pressed. If both sides become the pilot flying side while in this location, the 
observer transitions to the Invalid location, indicating that a side has spontaneously changed its 
status. When the Transfer Switch is pressed, the observer transitions to the Waiting location, 
indicating that the system is in a transient state during which a side may spontaneously change. 
The observer remains in the Waiting location for 23 steps before returning to the Checking 
location. The template for Figure 72 is named R5 and the query presented to Uppaal is shown in 
Figure 73. The proof of property R5 completes in nine to 49 seconds.  

 

 
Figure 73 – Pilot Flying Requirement R4 in Quasi-synchronous Uppaal 

A[] !R5.Invalid 

A[] age[0][0]==1 && age[1][0]==1 && age[2][0]==1 && age[3][0]==1 
imply LPFS == true 
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Table 9 below shows the time required to prove the Pilot Flying properties in Uppaal using 
quasi-synchronous clocks. The proofs were run on an Intel® Core™ i5-3320M processor 
running at 2.6 GHz with 4 GB of RAM. 

Table 9 – Pilot Flying Proof Times with Quasi-synchronous Clocks in Uppaal 

Property q Reset at 50 Steps q Reset at 500 Steps q Reset at 1000 Steps 

R1 7 seconds 15 seconds 26 seconds 
R2 7 seconds 15 seconds 26 seconds 
R3 5 seconds 9 seconds 15 seconds 
R4 7 seconds 15 seconds 24 seconds 
R5 9 seconds 29 seconds 49 seconds 

 
4.2.2 Leader Selection Verification with Uppaal. 
This section discusses the formal verification of the Leader Selection example with Uppaal. 
Section 4.2.2.1 discusses verification using real-time clocks and Section 4.2.2.2 discusses 
verification using quasi-synchronous clocks.  

4.2.2.1 Leader Selection Verification in Uppaal with Real-time Clocks 
The values chosen for the period and jitter of each clock in the Leader Selection example are 
shown in Table 10. These are easily seen to satisfy the quasi-synchronous constraints described 
in Section 3.2.1. 

Table 10 – Leader Selection Clock Periods and Jitter for Uppaal Verification 

Clock Subsystem Period Jitter 
CLK1 Node 1 46 4 
CLK2 Node 2 50 0 
CLK3 Node 3 54 2 

CLK_CNB Cross Node Bus 78 5 
 

In the Leader Selection example, there are three inputs providing the measured health of 
each node as shown in Figure 18. These inputs are represented in Uppaal as three global 
variables, Health1, Health2 and Health3. To emulate the system inputs, we instantiate three 
processes, passing each process one of the global health variables as the parameter &Health. The 
template for these processes is shown in Figure 74. 
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Figure 74 – Leader Selection Input Process for Real-time Uppaal 

Each process has a single location Start with a single transition. In taking this transition, 
it randomly sets the value of its local integer variable next_Health to a value between 0 and H, 
calls the local function InputChanged with arguments Health and next_Health,  then sets the new 
value of Health to next_Health. The function InputChanged sets a global clock q to 0 if the 
health changed on this step. In this way, Uppaal treats Health1, Health2, and Health3 as sampled 
inputs that change randomly. The local variable pressed detects a change in any of the three 
inputs. The local clock q tracks the time since any of the three inputs was changed. It is used 
only in stating properties to be checked, i.e., it is not used in the model itself.  

The first Leader Selection requirement R1 from Section 3.3.2 states that all nodes will 
agree on the leader. However, this property only holds when the system is in a quiescent state, 
The Uppaal query for this is shown in Figure 75. It states that for all states and all paths that if 
none of the inputs have changed for more than 100 time units, all nodes will agree on which 
node is the leader. This property can be proven with Uppaal in approximately 1 second with 
Health assigned a value ranging from [0-1], 14 seconds with Health assigned a value ranging 
from [0-2] and 152 seconds when the range for Health is [0-3]. 

 
Figure 75 – Leader Selection Requirement R1 in Real-time Uppaal 

The second Leader Selection requirement R2 states that the leader will always be the 
healthiest node. Again, this property only holds when the system is in a quiescent state. This is 
formulated as the three Uppaal queries shown in Figure 76. Since Requirement R1 should hold 
for q > 100, it does not matter which node’s leader is used in the antecedent. Also note that ties 
are broken in favor of the node with the lower index. This property can be proven with Uppaal in 
approximately 1 second with Health assigned a value ranging from [0-1], 14 seconds with 
Health assigned to a value ranging from [0-2], 151 seconds when the range for Health is [0-3]. 

 

A[] q > 100 imply (Leader1 = Leader2 && Leader2 = Leader3) 
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Figure 76 – Leader Selection Requirement R2 in Real-time Uppaal 
The third Leader Selection requirement R3 states that the leader will not change if the 

health of a node does not change. Specifying this property requires a way to identify when a 
leader has changed. Since Uppaal does not have a pre or next operator, this must be done by 
introducing three synchronous observers such as the one shown in Figure 77. 

 
Figure 77 – Uppaal Synchronous Observer for Detecting Leader Change  

The template of Figure 77 is passed the current Leader output of a node and the clk_id of 
that node’s clock. Each time the node’s clock ticks, it stores away the current value of the node’s 
leader in its local variable prev_Leader. Three instances of this process are created, one for each 
node, named prevLeader1, prevLeader2 and prevLeader3 such that they execute prior to the 
process for their node. Requirement R3 can then be stated as shown in Figure 78. This property 
can be proven with Uppaal in approximately 1 second with Health assigned a value ranging from 
[0-1], 15 seconds with Health assigned to a value ranging from [0-2] and 160 seconds when the 
range for Health is [0-3]. 

 

 
Figure 78 – Leader Selection Requirement R3 in Uppaal 

A[] q >= 100 imply  
  !prevLeader1.change && !prevLeader2.change && !prevLeader3.change 

 

 

 

A[] q > 100 imply  
     (Leader1 = 1 imply (Health1 >= Health2 && Health1 >= Health3)) 

A[] q > 100 imply  
     (Leader2 = 2 imply (Health2 >  Health1 && Health2 >= Health3)) 

A[] q > 100 imply  
     (Leader3 = 3 imply (Health3 >  Health1 && Health3 >  Health2) 
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Proof times for requirements R1 through R3 for the Leader Selection example with 

Health ranging from [0-3] with Uppaal running on an Intel® Core™ i73720QM processor 
running at 2.6 GHz with 4 GB of RAM are summarized in Table 11.  

Table 11 – Leader Selection Proof Times with Real-time Clocks in Uppaal 

R1 (sec) R2 (sec) R3 (sec) 
152 151 160 

4.2.2.2 Leader Selection Verification in Uppaal with Quasi-synchronous Clocks 
The quasi-synchronous clocks for the Leader Selection example are implemented just as 

for the Pilot Flying example (Sections 3.2.2.2 and 4.2.1.2). The first Leader Selection 
requirement R1 from Section 3.3.2 states that all nodes will agree on the leader when the system 
is in a quiescent state. The Uppaal query for this is shown in Figure 79. It states that for all states 
and all paths that if none of the inputs have changed for more than 26 steps, all nodes will agree 
on which node is the leader. This property can be proven with Uppaal in approximately 140 to 
200 seconds with Health ranging from [0-1], but for values of Health ranging from [0-2] the 
Uppaal model checker runs out of memory in about 3 seconds. 

 

 
Figure 79 – Leader Selection Requirement R1 in Quasi-synchronous Uppaal 

The second Leader Selection requirement R2 states that the leader will always be the 
healthiest node. Again, this only holds when the system is in a quiescent state. This is formulated 
as three Uppaal queries as shown in Figure 80. Since Requirement R2 should hold for q > 26, it 
does not matter which node’s leader is used in the antecedent. This property can be proven with 
Uppaal in approximately 167 to 177 seconds with Health ranging from [0-1] but for values of 
Health ranging from [0-2] the Uppaal model checker runs out of memory in about 3 seconds. 

 

 

Figure 80 – Leader Selection Requirement R2 in Quasi-synchronous Uppaal 
The third Leader Selection requirement R3 states that the leader will not change if the 

health of a node does not change. Specifying this property requires a way to identify when a 
leader has changed. This is done by creating three instances of the process of Figure 77 just as 
was done for the real-time verification of requirement R3. Requirement R3 can then be stated as 

A[] q >= 27 imply  
   (Node1.Leader == Node2.Leader && Node1.Leader == Node3.Leader) 

A[] q >= 27 imply (Node1.Leader == 1 imply  
(Node1.Health1 >= Node2.Health2 && Node1.Health1 >= Node3.Health3)) 

A[] q >= 27 imply (  Node2.Leader == 2 imply  
(Node2.Health2 > Node1.Health1 && Node2.Health2 >= Node3.Health3)) 

A[] q >= 27 imply (  Node3.Leader == 3 imply  
(Node3.Health3 > Node1.Health1 && Node3.Health3 > Node2.Health2)) 
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shown in Figure 81. This property can be proven with Uppaal in approximately 164 to 180 
seconds with Health ranging from [0-1] but for values of Health ranging from [0-2] the Uppaal 
model checker runs out of memory in about 3 seconds. 

 

 
Figure 81 – Leader Selection Requirement R3 in Quasi-synchronous Uppaal 

Proof times for requirements R1 through R3 for the Leader Selection example with 
Health ranging from [0-1] with Uppaal running on Intel® Core™ i5-3320M processor running at 
2.6 GHz with 4 GB of RAM are summarized in Table 12. 

Table 12 – Leader Selection Proof Times with Quasi-synchronous Clocks in Uppaal  

Property q Reset at 50 Steps q Reset at 500 Steps q Reset at 1000 Steps 

R1 140 seconds 171 seconds 200 seconds 
R2 167 seconds 178 seconds 177 seconds 
R3 164 seconds 172 seconds 180 seconds 

 

A[] q >= 27 imply  
  !prevLeader1.change && !prevLeader2.change && !prevLeader3.change 
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5.0 CONCLUSIONS 
The main goals of this project were to provide system designers with an intuitive 

modeling environment that 1) allows systems engineers to easily specify the high-level 
architecture and synchronization logic of quasi-synchronous systems using widely available 
system engineering notations and tools, and 2) integrates and enhances innovative formal 
verification tools to provide system engineers with immediate feedback on the correctness of 
their designs.  

To provide a realistic path for technology transfer, system developers can create high-
level models of the system architecture and synchronization logic using the Enterprise Architect 
SysML [7] modeling environment enhanced with a SysML profile for quasi-synchronous 
systems. Translators import these models into the OSATE development environment for AADL. 
Component behaviors specified as SysML state machines are translated into AGREE and 
Behavior Annex specifications within AADL.  

Verification of the AADL model supplemented with the AGREE annexes can be 
performed directly using the AGREE tool [10], [11], where AGREE can be configured to invoke 
either the Kind [12]  or jKind SMT-based model checker. Verification of the AADL model 
supplemented with the Behavior Annexes can be performed using the Uppaal model checker 
[13] for timed automata by first invoking a translator that converts the AADL and Behavior 
Annex specifications into an Uppaal model. This model can then be verified using the graphical 
user interface provided with the Uppaal tool. 

Four examples of quasi-synchronous systems were created and verified: the Pilot Flying 
example, the Leader Selection example, the Active Standby example, and the WBS example. All 
of these are based on actual examples seen in industry. The WBS example is derived from an 
accident report in which a commercial air transport aircraft lost all braking capability on landing. 

Another significant accomplishment was formalizing the notion of quasi-synchrony and 
relating it back to real-time parameters such as the period, jitter and offset of each clock. Logic 
was developed in AGREE and in Uppaal to constrain clocks to be synchronous, quasi-
synchronous, or asynchronous, allowing a user to easily verify their design assuming any of 
these models of clock synchronization. In addition the notion of quasi-synchrony described in [4] 
was generalized and stated formally so that arbitrary relations between the clocks can be 
specified. 

We developed two approaches for the verification of quasi-synchronous systems in 
Uppaal. The first approach takes advantage of the real-time capabilities of Uppaal and models 
clocks with actual periods and jitter that met the quasi-synchronous constraints. Though this is 
not as general as verifying all possible quasi-synchronous assignments of period and jitter as was 
done with Kind, it has the advantage of producing actual values for how long it takes after the 
system is stimulated before a property holds. It is also likely that system developers are more 
likely to accept an analysis based on the actual parameters of their system than one based on the 
abstraction of quasi-synchrony.  

The second approach constrains the clocks so that they meet the quasi-synchronous 
constraint. On each step, one clock is selected to tick, but no clock is allowed to tick in violation 
of the quasi-synchronous constraint. This was implemented in a general way that allows the user 
to specify any version of n/m quasi-synchrony, where 0 < m < n. Since only one clock can tick 
on each step, this is actually a subset of true quasi-synchrony. In fact, it is the maximally 
asynchronous subset of quasi-synchrony. However, this is sufficient to compare the effectiveness 
of the two approaches.  
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Verification of the four examples was conducted using both AGREE/Kind and Uppaal. 
The properties of all four models were ultimately verified using AGREE/Kind. While the Pilot 
Flying and Leader Selection examples were verified using Uppaal, Uppaal was unable to 
complete the verification of Active Standby and WBS examples. As discussed later, we attribute 
this to a mismatch between the strengths of Uppaal and the specific challenges posed by quasi-
synchronous systems. Constraining the order in which the clocks of the distributed nodes can 
tick using the quasi-synchronous abstraction eliminates the need for real-time analysis. In other 
domains where there is a need for real-time analysis, Uppaal would have clear advantages over 
the use of AGREE/Kind.  

Currently, the greatest shortcoming of the tools is that the formal verification can take 
several minutes or even hours.  Systems with more clocks take longer to verify and the time 
appears to grow exponentially with the number of clocks. We were not able to develop strategies 
to reduce the verification time solely by exploiting the properties of the quasi-synchronous 
constraints. A direction for future research is to investigate alternate strategies for model 
checking, such as the use of Property Directed Reachability (PDR) [40], [41] or partial-order 
reduction [42]. 

5.1 Observations 
An underlying hypothesis of this project was that the development of distributed 

agreement protocols could be simplified by exploiting the quasi-synchronous clocks found in 
most actual systems. This was motivated by the observation that many engineers achieve 
distributed agreement by inserting wait states rather than by implementing the hand-shaking 
protocols necessary for fully asynchronous systems. 

This hypothesis does hold – it is possible to insert wait states that exploit the timing 
constraints of quasi-synchronous clocks to develop distributed agreement protocols that can be 
proven correct. These protocols are simpler than those required for fully asynchronous systems 
in that they do not have to have to exchange acknowledgements as required by hand-shaking 
protocols.  

At the same time, the development of distributed agreement protocols, even under an 
assumption of quasi-synchrony, remains a difficult task. The interleaving of clocks allowed by 
the quasi-synchronous constraints still results in a significant increase in the number of reachable 
states over that seen for a synchronous system. While formal verification can determine whether 
a wait state is too short or has not been inserted in the correct place, it does not automatically 
identify where wait states need to be inserted or how long they need to be. Debugging a counter-
example may provide valuable insight into where wait states are needed and how long they need 
to be, but designing distributed agreement protocols still requires considerable human insight.  

On the other hand, providing developers with immediate feedback on the correctness of 
their designs is an enormous improvement on the current state of affairs. Formal verification 
identified numerous errors in early versions of the protocols and made explicit assumptions, such 
as the duration of button presses, that the developers are depending on. The WBS example was 
particularly illustrative.  In that example, the failure of the Braking System on an air transport 
class aircraft was traced to an error in sampling button presses by the MON and CON units that 
executed at the same period but that were not synchronized.  The cause of this error was easily 
found using formal verification of quasi-synchronous systems, but had been missed in the 
rigorous review and testing required of civil avionics systems. This analysis also produced a 
different counter-example whose cause was not described in the accident report. 
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Without formal verification, developers must rely on reviews and testing, both of which 
are inadequate for the verification of distributed systems. This almost certainly results in the 
deployment of systems that appear to work but can still fail due to latent design errors. Quasi-
synchrony also appears to be the simplest approximation of realistic systems short of 
implementing a synchronous system.  In previous work with the University of Illinois we 
developed an approach called Physically Asynchronous/Logically Synchronous (PALS) that 
implements logical synchrony over a physically asynchronous platform [34]. Later work showed 
that even for simple distributed agreement protocols PALS reduced the reachable state space 
almost three orders of magnitude over that for a fully asynchronous system [35]. Experiments 
conducted on the example models verified here confirm that formal verification for a 
synchronous system is considerably faster and easier than for a quasi-synchronous or 
asynchronous systems. This confirms that approaches to achieve logical synchrony such as 
PALS or Loosely Time-Triggered Architectures (LTTA) [39] have merit. Unfortunately, it is 
difficult to convince developers of this when existing protocols verified through testing appear to 
work most of the time. 

The other alternative is to develop distributed agreement protocols for fully asynchronous 
systems, which will work for either synchronous or asynchronous systems. Many such protocols 
are described in the literature [1], [2], they do not seem to be widely known by system 
developers. 

At this time, the Kind model checker and the Lustre language appear to be a better fit for 
the verification of quasi-synchronous systems than the Uppaal model checker and language. It is 
easier to introduce bounded asynchrony at the higher levels of a model in a synchronous 
language such as Lustre than it is to introduce synchrony at the lower levels of a model in an 
asynchronous language such as Uppaal. This makes Lustre a more natural target language for the 
translation of the globally asynchronous, locally synchronous AADL models of interest here. It 
is also easier to specify the properties of interest in the Lustre language than in the temporal logic 
of Uppaal.  The availability of the pre operator in Lustre to refer to the previous state of a 
variable is more appropriate for stating the bounded safety properties than the eventually liveness 
operator of Uppaal. A next-state operator in Uppaal would address this need, but does not appear 
to be offered at this time. As a result, several properties could be stated in Uppaal only through 
the use of synchronous observers.  Finally, constraining the order in which the clocks of the 
distributed nodes can tick using the quasi-synchronous abstraction eliminated the need for real-
time analysis.  However, Uppaal would have had a clear advantage analyzing systems with a 
large number of concurrent, asynchronous components, particularly if real-time properties were 
of interest. 

5.2 Future Directions 
There remain several possible directions for further research. The general version of 

quasi-synchrony is being implemented in the AGREE tool. It would be interesting to investigate 
other forms of quasi-synchrony than 2/1 quasi-synchrony. For example, do higher values of n/m 
reduce or increase the time needed for formal verification?  Are other forms of quasi-synchrony, 
e.g., 7/4 quasi-synchrony, of practical use?  

If some of the clocked nodes in a system are independent of each other (i.e., do not 
exchange messages or share memory), it would seem that the order in which their clocks execute 
are irrelevant. Can this be exploited to reduce the time needed for verification of such sparsely 
connected quasi-synchronous systems? 
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Finally, it may be possible that different types of model checkers may be more 
appropriate for the verification of quasi-synchronous systems. Since many quasi-synchronous 
systems have a relatively small number of system states, Binary Decision Diagram (BDD) based 
model checkers may actually be more appropriate than SMT-based model checkers for some 
systems. Still other directions to explore include the use of Property Directed Reachability [40], 
[41] or partial-order reduction [42]. 
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LIST OF ACRONYMS 
AADL Architecture Analysis and Design Language 

AFDX Avionics Full-Duplex Switched Ethernet 

AGREE Assume Guarantee Reasoning Environment 

BA Behavior Annex 

BDD Binary Decision Diagram 

BMC Bounded Model Checking 

BSCU  Brakes & Steering Control Unit 

DARPA Defense Advanced Research Projects Agency 

DFA Deterministic Finite Acceptor  

FCS Flight Control System 

FGS Flight Guidance System 

IDE Integrated Development Environment 

LTTA Loosely Time-Triggered Architectures 

NASA National Aeronautics and Space Administration 

OMG Object Management Group 

OSATE Open Source AADL Tool Environment 
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PDR Property Directed Reachability 

PFCS Primary Flight Control System 

PFS Pilot Flying Side 

SAE Society of Automotive Engineers 

SCADE Safety Critical Application Development Environment 

SMT Satisfiability Modulo Theories 

SysML System Modeling Language 

UML Unified Modeling Language 

TS Transfer Switch 

TTA Time-Triggered Architecture 

WBS Wheel Braking System 

XML Extensible Markup Language 
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 APPENDIX A:  TRANSLATION FROM AADL TO KIND 
A translator from AADL and Behavior Annex specifications to the Lustre [22] language 

was developed in Phase 1 of this project. The Kind mode checker will input the Lustre language 
and generate proof obligations in the standard SMT-LIB format [26], or in SMT solver-specific 
formats, and uses an SMT solver to discharge them.  This translator was later superseded by the 
development of the AGREE translator, but the original AADL to Lustre translator has been 
included with the other tools.  This appendix describes how the translator converts AADL and 
Behavior Annex specifications into Lustre. 

We have implemented a translator from a declarative AADL model where component 
behavior is specified with the Behavior Annex of AADL to a program in the fragment of the 
synchronous data-flow language Lustre that is accepted by the Kind model checker. Following 
the translation of the components, a constraint is generated to make all clocks pairwise quasi-
synchronous and invariants to be verified are inserted from a separate file together with auxiliary 
nodes used in the specification of the invariants. In order to increase performance of the 
verification, the translator recognizes frequently used components of certain packages by their 
name and inserts optimized Lustre nodes from a library instead of invoking the generic 
translation. 

The translator takes a declarative AADL model as input and it is not necessary to 
instantiate the declarative model to an instance model as required by other tools. In an instance 
model all connections are flattened to physical connections between subcomponents. This allows 
reasoning on the physical level, but we are also interested in structural properties of the system. 
Further, in order to support modular reasoning, it is necessary to preserve the hierarchy in the 
declarative model and in particular the hierarchical structure of connections between 
components.  
A.1 Translation of AADL Models 

A declarative AADL model consists of component types and implementations of 
component types. A component type defines externally observable features, in our case just input 
and output data ports. An implementation of a component type C is a composition of 
subcomponents of types Cj, which are in turn either component types or implementations, and 
connections between the input and output ports of Cj and the input and output ports of C. Due to 
limitations of the Behavior Annex, some component implementations contain data 
subcomponents for which properties can be set, which is not possible for variables in a Behavior 
Annex. Such data subcomponents are not used for any other purpose and in particular are not 
accessible from other components. 

There can be several implementations of the same component type, a component always 
refers to one particular implementation. Both component types and implementations can have a 
Behavior Annex that specifies the input-output relation of the component as a finite state 
machine. The Behavior Annex of an implementation overrides a Behavior Annex of its type. 

The translation takes as input a component implementation CI in a declarative model and 
creates a Lustre program that models the behavior of CI its subcomponents and their 
subcomponents. 

Each component type or implementation must have a clock associated with it through the 
property QS_Properties::Clock_Name. Clocks of the same name are identical; the property is 
inherited, so that components that do not explicitly set a clock, run on the clock of their 
containing component. 
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A.2 Component Types 
The only supported sections of a component type are features and annexes, no distinction is 
made between different component categories such as systems or threads. A feature may only be 
a data port; event ports or event data ports are not supported. The annex must only be a 
behavior_specification. 

We view a component type C = (Fin, Fout, B) as consisting of  

• a set of input data ports Fin, 

• a set of output data ports Fout, and 

• an optional behavior annex B. 
A port is in both Fin and Fout if it is a bidirectional port.  

A component type C with n input and m output ports is translated to a Lustre node with the 
signature 
node C (i1 : ti1, …, in : tin) returns (o1 : to1, …, om : tom); 

where for 1 ≤ j ≤ n and 1 ≤ k ≤ m each ij and ok is a stream variable corresponding to a port 
ij ∈ Fin and ok ∈ Fout, respectively, andtij and tok are the Lustre types corresponding to the types 
of ij and ok, respectively. 

If the component type is one of the defined component types, the node body is taken from there. 

If the component type has a behavior annex B, the body of the node is the translation of B 
described below.  
A component that is not a defined component and does not have a behavior annex must not occur 
as a subcomponent of a component implementation. 

A.2.1 Component Implementations 
Supported sections of a component implementation are subcomponents, connections and 
annexes, which must be a behavior_specification.  

A component implementation CI = (S, L, B) of the component type C consists of 

• a set of subcomponents S, which are either component implementations or component 
types, 

• a set of connections L, and 

• an optional behavior annex B. 
Notably, a component implementation does not specify input or output ports, since those are 
already defined in its type that is shared by all implementations. 

The starting point of a connection psource → ptarget in L can be an input port of the component type 
C, an output port in Fout of some component type Cj ∈ S of a subcomponent or an output port in 
Fout of the component type Cj of some component implementation CI

j ∈ S. In the analogous way, 
the endpoint of a connection ptarget is either an output port in Fout of the component type C, an 
input port in Fin of some component type Cj ∈ S or in Fin of the component type Cj of some 
component implementation CI

j ∈ S. 



Approved for Public Release; Distribution Unlimited 

90 

The component implementation CI must connect to each input port of the type Cj of each 
subcomponent Cj ∈ S or CI

j ∈ S either one of the input ports of C or an output port of the type Ck 
of a subcomponent Ck ∈ S or CI

k ∈ S. If the component implementation CI or its type C has a 
Behavior Annex, this restriction is relaxed so that instead of a connection to an input port of type 
Cj of a subcomponent the port may also be assigned to the action part of a transition. 

There must be at most one connection to each input port of a subcomponent Cj and to the output 
port of the component implementation CI; the number of connections from an output port of a 
subcomponent or from the input ports of the component implementation is not restricted. The 
data types of connected ports must match, however, this is not checked in the translation. 

Let the component implementation CI contain k subcomponents in S. If the j-th subcomponent in 
S is a component type, let Cj be this component type, otherwise if the j-th subcomponent of S is a 
component implementation CI

j, let Cj be its component type. Let Nj be the node translated from 
the j-th subcomponent of C and let (tj

om1, …, tj
omj) be the type of its mj-tuple output.  

The component implementation CI is translated to a node with a signature identical to the 
signature of its component type C as described above. In addition, the node contains mj stream 
variables for each subcomponent Cj or CI

j with mj output ports. 
node CI (i1 : ti1, …, in : tin) returns (o1 : to1, …, om : tom); 

var 

s11 : t
1
1; …; s

1
m1 : t

1
m1; 

⁞ 

sk1 : t
k
1; …; s

k
mk : t

k
mk; 

let  

(s11, …, s
1
m1) = N

1(p11, …, p
1
n1); 

⁞ 

(sk1, …, s
k
mk) = N

k(pk1, … p
k
nk); 

tel 

Each pi
j is identified with a stream variable in the following way. If there is a connection from 

the u-th output port of the v-th subcomponent, then pi
j = sv

u. Otherwise, if the connection source 
is the u-th input port of the component implementation, then pj

i = iu. If there is no connection to 
an input port of a subcomponent, the input port must be assigned by a transition of the Behavior 
Annex of that subcomponent and pi

j is identified with the stream created there, see below. 

For each connection from the u-th output port of the v-th subcomponent to the j-th output port of 
the component, an equation 
oj = s

v
u 

is added to the node. 
A.3 Properties 
An AADL model may include user-defined property sets and annotate component types and 
implementations or specific instances in a model with properties defined in property sets. 
Properties are inherited by subcomponents if specified in the property set with the keyword 
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inherit and can be overridden by subcomponents if not forbidden in the property set with the 
keyword constant.  
We define a property set QS_Properties containing specific properties of quasi-synchronous 
models. The translator recognizes the not constant and inheriting Clock_Name property and 
requires it to be set for every component. The property set may be extended further to 
accommodate model-specific properties.  

The translator also recognizes the property Data_Model::Initial_Value of data subcomponents. 
This property is defined in the Data Modeling Annex of AADL standard. It is used to initialize 
variables in state machines in the Behavior Annex as discussed below. 

Each property that is read in the Behavior Annex of a component type or implementation or by 
one of its subcomponents is added as an input to the Lustre node. In particular, since every 
component must define the QS_Properties::Clock_Name property, every Lustre node N 
translated from a component type or implementation has its signature extended to 
node N (…, QS_Properties_Clock_Name : bool) returns (…); 

where the property, which is in fact of type string, is translated to a Boolean input parameter. 

If a component implementation CI contains a subcomponent D, a property that is an input 
parameter to D must be set when the node of CI calls the node of D. If the property of D is set for 
the particular subcomponent, the specified value is passed to the node of D as its input 
parameter. If the property is inherited, the value of the property of the component 
implementation CI is propagated. The value of the property of CI is itself an input to the node of 
CI and the node of D is called with this value. Otherwise the input parameter is set to a default 
value.  

The Clock_Name property is inherited and used by every node, but never set to a value. A 
component implementation thus has one input for each clock it or one of its subcomponents uses, 
the topmost component implementation has all clocks of the model as inputs. 
A.4 Behavior Annex 
A Behavior Annex describes the behavior of a component or a component implementation as a 
finite state machine and consists of three sections, defining variables, states and guarded, 
prioritized transitions between states, respectively. If a component implementation contains a 
data subcomponent, it can be treated in the same way as a variable. Transition actions are 
assignments to variables, data subcomponents or output ports and are executed simultaneously. 
The translator only supports sets of assignment actions, sequences of assignment actions are 
treated as sets, and, in particular, loops and conditional blocks are not supported. 

A BA occurs as part of a component type C or implementation CI and a transition can read the 
input ports of C and assign to the output ports of C. In addition, a transition in the BA of a 
component implementation CI can read the output ports and assign to the input ports of its 
subcomponents, as well as read and assign to its data subcomponents.  

We view a BA as a tuple B = (S, T, V, I), where 

• S = {1, …, n} is the set of states, 

• T is the set of transitions, 
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• V is the set of typed state variables v: R, where R is a type, and 

• I ∈ S is the initial state. 

We expect the state machines to be continuous: a final or complete state will never be reached. 

A transition is a tuple (s, s', p, F, A) ∈ T, where 

• s ∈ S and s' ∈ S are the source and the target state, respectively, 

• p ∈ IN is the priority of the transition, 

• F is the guard of the transition, a Boolean expressions over the input ports of the 
component type C and the output ports of its subcomponents, and 

• A is the set of assignments to state variables, data subcomponents or output variables, 
seen as a set of pairs (v, a), where v is a state variable v: R ∈ V, an output port in Fout of 
the component type C or, if the BA is of a component implementation CI, an input port in 
Fin of some subcomponent of CI. The assigned value a is of type R or the type of the port, 
respectively. 

In the node of the component type C or implementation CI that contains the Behavior Annex B 
we create a stream 
state : subrange [1, n] of int 

for the current state of the transition system, where n is the number of states in S. The syntax 
subrange is an extension to Lustre that results in the model checker assuming the variable to be 
in the given range and to treat the variable as a mode variable to which some heuristics are 
applied. 

Further, we create a stream 
t : bool 

for each transition t ∈ T, a stream 
v : R 

for each variable v: R ∈ V, where R is the type of v, and a stream 
pji : t

j
oi 

if there is some assignment to the i-th input port of the j-th subcomponent of the component 
implementation CI. 

Together the streams model the state of the finite state machine as follows. The state machine is 
in state state and is executing the transition t whose corresponding stream is true. The guard of a 
transition reads the values of the input ports in the current state and the values of local variables 
in the previous state. Hence each occurrence of a local variable pi

j is under a pre operator. The 
local variables and data subcomponents are set based on the assignment action in the currently 
executed transition, again from values of input ports in the current state, local variables and data 
subcomponents in the previous state. 

Every node of a component type or component implementation has an input parameter that 
corresponds to its clock. In the following, let clk be this Boolean input parameter.  



Approved for Public Release; Distribution Unlimited 

93 

For each s ∈ S let Ts = ts1, …,tsks be the sequence of the ks transitions (s, s'si, psi, Fs, Asi) ∈ T with 
the same source state s, ordered by their priorities such that ts1 is the transition out of s with the 
highest priority. For each tsi ∈ Ts and each s ∈ S we define  
ts1 = clk and (1 -> pre(state) = s) and Fs1; 

and 
tsi = clk (1 -> pre(state) = s) and Fsi and not ts1 and … and not ts(i-1); 

for i > 1. For each s' ∈ S let T's' = t's'1,…,t's'ms be the sequence of the ms' transitions 
(ss'i, s',ps'i, Fs'i, As'i)∈  T with the same target state s', then we define  
state = if t'11 or … or t'1m1 then 1 

else … 
else if t'n1 or … or t'nmn then n 
else (1 -> pre(state)); 

where I is the initial state. 

For each variable v: R ∈ V and each input port v in Fin of a subcomponent of the component 
implementation CI that occurs in some assignment action, let Av = {(t1, at1), …, (tp, atp)} be the set 
of p pairs where ti is a transition (si, s'i, pi, Fi, Ai) ∈ T and (v, ati) ∈ Ai. We define for each v: R ∈ 
V 
v =  if t1 then at1 

else … 
else if tp then atp 
else (vi -> pre(v)); 

The value vi is the initial value of the variable v. Since local variables in the BA cannot be 
annotated with the Data_Model::Initial_Value property, a local variable that is meant to have a 
specific initial value must be turned into a data subcomponent instead. In this way, if v is a data 
subcomponent, vi is the value of the property if it is set, otherwise, if the property is not set or v 
is a local variable of the BA, vi is 0 for integers and false for Booleans.  

The same applies to a variable v that is read in assignment actions or guards. The state machine 
refers to the value of the variable in the previous step, hence the pre operator must be guarded 
with the -> operator. Every occurrence of a variable v is translated to the expression 
(vi -> pre(v)), where vi is as above. 

A BA must be written such that at least one transition applies in any state. However, it may be 
the case that the guards of two transitions of equal priority out of the same state are satisfied, in 
which case one is chosen non-deterministically. The above translation assumes a fixed order of 
priorities and must be refined to account for the required non-determinism. 
A.5 Types 
The translation currently assumes all input and output data ports to be Boolean or integer. No 
structured types are supported at the moment. 
A.6 Predefined Components 
The following components have defined semantics and are translated to the respective Lustre 
nodes without the need to specify their behavior in the AADL model. 
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A.6.1 Signals::Rise: A rising edge detector 
AADL 
system Rise 

features 

 I: in data port Base_Types::Boolean; 

 O: out data port Base_Types::Boolean; 

end Rise; 

Lustre 
node Signals_Rise (I : bool; clk : bool)  

returns (O : bool); 

var pre_I: bool; 

let  

  pre_I = (clk => I) and (not clk => (false -> pre(pre_I))); 

  O = false -> not pre(pre_I) and I; 

tel; 

A.7 Quasi-synchronous Constraint Generation 
Based on the DFA of Figure 4 we can define the following Lustre node 

node qs_dfa (p, q : bool) returns (ok : bool); 

var r : int; 

let 

  ok = not (((0 -> pre r) = 2 and p) or ((0 -> pre r) = -2 and q)); 

  r = if p and q then 0  
else if p then (if (0 -> pre r) < 0 then 1 else ((0 -> pre r)) + 1) 
else if q then (if (0 -> pre r) > 0 then -1 else ((0 -> pre r)) - 1) 
else (0 -> pre r); 

tel; 

The inputs p and q are two clocks, the output ok is true if the clocks are running quasi-
synchronous. The variable r can be understood as the relative advance of clock p over q, it 
ranges between -2 and 2. One can map the values of r to the states of the DFA by realizing that 
r=0 corresponds to the state 0, r=1 to 1P, r=2 to 2P, r=-1 to 1Q and r=-2 to 2Q. The transitions 
out of 2P and 2Q that are not accepted lead to r=3 and r=-3, respectively and result in the output 
ok becoming false. 
Since all clocks have to be pairwise quasi-synchronous, we create a node calendar with all 
clocks clk1, …, clkn of the model as input parameters and a single output parameter ok defined as 
the conjunction of calls to the qs_dfa node for all pairs of clocks (clki, clkj) with 1 ≤ i < j ≤ n. 
node calendar(clk1, …, clkn : bool) returns (ok : bool); 

  ok = qs_dfa(clk1, clk2) and … and qs_dfa(clkn-1, clkn); 

tel 
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The node N of the topmost component type or component implementation has all clocks 
used by subcomponents as inputs and we wrap this node in another node main that has the same 
signature as N and add a stream and two assertions  
clocks_are_quasi_synchronous = calendar(clk1, …, clkn); 

assert clocks_are_quasi_synchronous; 

assert (clk1 or … or clkn); 

This constrains the input clocks to be quasi-synchronous and ensures progress by forcing 
at least one clock to tick at each step.  
A.8 Specification of Properties 

Properties to be proved are specified in a file with the ending .lustre_props that is a 
Lustre file containing nodes as well as one special node that contains the properties to prove. 
This node is delimited by the keywords node_properties and tel, it does not have inputs or 
returns. Local variables can be declared and as usual, in addition a statement check that is similar 
to the assert statement marks a stream as a property to be proved. 

The translator reads a .lustre_props file and adds each plain node from this file to the 
translated Lustre file in verbatim. Each stream defined in the node_properties section is added to 
the main node and each check statement is turned into a --%PROPERTY comment for the model 
checker. 
A.9 Using the Translator 

The translator is available at http://github.com/kind-mc/AADL2Kind, where installation 
instructions are provided. 

The menu entry of the translator plug-in is only activated when a component 
implementation is selected in the outline view in the Eclipse IDE. To open the outline view, use 
Window > Show View > Outline in the menu bar. 

To translate an AADL component, right click on the component implementation and 
select AADL to Kind from the pull-down menu. A Lustre file will be generated in a lus directory 
in the project. 
A.10 Code Overview 

The menu entry of the translator plug-in is only activated when a component 
implementation is selected in the outline view of eclipse IDE.  Then the selected component 
implementation is fed to the runjob method in class Aadl2kindAction to start the translation 
process. 

A.10.1 Data structures 
CTNode is used to store the intermediate representation of a Lustre node translated from a 
component type.  

CINode is used to store the intermediate representation of a Lustre node translated from a 
component implementation. Since a component implementation is an implementation of a 
component type, CINode is a subclass of CTNode, where its input ports, output ports Behavior 
Annex are declared. 

BAnnex, State and Transition along with Equation are used to store an intermediate 
representation of Lustre stream definitions. 

http://github.com/kind-mc/AADL2Kind
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PropertySetEntity is used to store an intermediate representation of AADL properties defined in 
property set. 

BoolType, IntType, RealType, StringType and RecordType correspond to the respective Lustre 
types, where the types record, string and real are not fully supported yet. 

PortOccurence is used to create a port occurrence for a port used in a connection for later 
reference. PortOccurence along with IdExpr are used to store the port information, including 
port name, type, which component type it belongs to, and under what context it occurs. 

A.10.2 Translation Process 
With a component implementation passed to the runjob method in the Aadl2kindAction class, 
ParseLibNodes.parseLib is first called to parse library node files including quasi-synchronous 
clocks and other predefined Lustre nodes. The Lustre property file ending with .lustre_props is 
processed using the XText library that is also used by OSATE. The static fields of Utils are 
populated after that. Then the actual translation process starts by invoking the constructor of 
Translator.  

In the Translator class, the method traverseAADLModel is used to traverse the AADL model in a 
bottom-up manner. Whenever a component type or component implementation is encountered, 
the methods createCTNode and createCINode are called, respectively, to instantiate an object of 
class CTNode or CINode. If there is an optimized predefined Lustre node for the component, it is 
used and put in the hashtable Utils.staticNodes instead of the generic translation.  

In the method createCTNode, ports and properties are parsed by calling parsePorts and 
parseCTPropertyAssociation respectively. Since we are assuming that every component has a 
clock associated with it, a Boolean input for this clock is added in this parsing process. The static 
field CICTPropertySet in class ParseAadl is used to store a mapping from a component name 
qualified with the name of its package name to a list of properties used in that component. The 
parsing process of ports and properties for a component implementation is done in a similar 
fashion in the method createCINode.  

If a component has a behavior specification, parseBAnnex in ParseAadl.java is called in 
createCTNode or createCINode to process the behavior specification in that component. Then an 
object of BAnnex is instantiated, with states, transition names and all local variables of that 
behavior specification as well as data subcomponents of the component implementation as local 
variables of a corresponding Lustre node. ParseBehaviorActionBlock, parseBasicAction, 
parseAssignmentAction, ParseBehaviorActionSequenceorSet along with some other auxiliary 
methods are used to process transitions in behavior specification. In this process, all the 
transition guards and assignment actions are eventually flattened to strings.  

In the method createCINode, properties associated with subcomponents such as clock names and 
initial values for data subcomponents are parsed and propagated by calling the method 
injectPropertyIntoSubcomponent. Those properties are translated as inputs of a Lustre node if 
they are used in a component.  

An additional step is needed in createCINode to parse the port connections in the component 
implementation. This is done by parsePortConnections in the class ParseAadl, where 
subcomponent port connections are translated into node calls and the output ports are translated 
to output streams without ports of other subcomponent as its definition in the Lustre node.  
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After all the components have been translated to Lustre nodes, Utils.printNodes is called to print 
all nodes to a buffered string, which is then written to a Lustre file with the same name as the 
topmost component type in the lus directory. 
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