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Abstract—Cyber-physical systems, such as avionics, must be
tolerant to cyber-attacks in the same way they are tolerant to
random faults: they either gracefully recover or safely shut down
as requirements dictate. The DARPA Cyber Assured Systems
Engineering program is developing tools for design, analysis,
and verification that enable systems engineers to design-in cyber-
resiliency in a Model-Based Systems Engineering environment.
This paper describes automated model transformations that
introduce high-assurance cyber-resiliency components into a
system, in particular filters and monitors that prevent mali-
cious input and detect supply chain attacks, respectively. A
formal specification defines each high-assurance component, and
is used to verify that the component addresses system level
cyber requirements. Implementations for these high-assurance
components are directly synthesized from their specifications,
and are automatically proven to preserve the exact meaning of
the specifications all the way down to the binary code level.
The model transformations are integrated into the Open Source
AADL Tool Environment (OSATE). The paper further reports on
a case study applying security-enhancing model transformations
to a UAV system that uses the Air Force Research Laboratory’s
OpenUxAS services for route planning. In the case study, the
model transformations add filters to guard against malformed
input, as well as monitors to guard against ground station
spoofing and malicious flight plans from OpenUxAS.

I. INTRODUCTION

In recent years, aerospace stakeholders have realized that
avionics systems are subject to possible cyber-attacks just like
other cyber-physical systems. Thus, in addition to being fault-
tolerant, safety-critical avionics systems must also be cyber-
resilient. Cyber-resiliency means that the system is tolerant
to cyberattacks just as safety-critical systems are tolerant to
random faults: they recover and continue to execute their
mission function, or safely shut down, as requirements dictate.

Unfortunately, systems engineers are currently given few
development tools to help answer even basic questions about
potential vulnerabilities and mitigations, and instead rely on
process-oriented checklists and guidelines. Cyber vulnerabili-
ties are often discovered during penetration testing late in the
development process; or worse yet, they may be discovered
only after the product has been fielded, necessitating extremely
expensive and time-consuming remediation. This is not a
sustainable development model.

The DARPA Cyber Assured Systems Engineering (CASE)
program is targeted at developing tools for design, analysis,
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and verification that enable systems engineers to design-
in cyber-resiliency for complex cyber-physical systems.1 We
have developed a Model-Based Systems Engineering (MBSE)
environment called BriefCASE which is based on the Architec-
ture Analysis and Design Language (AADL) [1]. BriefCASE
extends the Open Source AADL Tool Environment (OSATE)
to add new design, analysis, and code generation capabilities
for building cyber-resilient systems.

BriefCASE provides access to two analysis tools
(GearCASE [2] and DCRYPPS [3]) that can examine
AADL models for potential cyber vulnerabilities and suggest
cyber-security requirements to mitigate them. A library of
architectural transforms guides systems engineers through
automated model transformations that modify the architecture
to address these requirements, possibly inserting new high-
assurance components into the system. Implementations
for these new high-assurance components are synthesized
from formal specifications using the Semantic Properties
for Language and Automata Theory (SPLAT) tool [4], [5].
Formal verification that the transformed system model
satisfies its cyber requirements is accomplished via the
Assume Guarantee Reasoning Environment (AGREE) [6].
AGREE is a compositional assume-guarantee style model
checker for AADL models that attempts to prove properties
about one layer of the architecture using properties allocated
to its subcomponents. Cyber-resilient code implementing the
verified model is then automatically generated using the High
Assurance Modeling and Rapid Engineering for Embedded
Systems (HAMR) toolkit [7]. If desired, this code can be
targeted to the formally verified seL4 secure microkernel [8].

The two automatic transforms discussed in this paper are (1)
the insertion of a filter to prevent malformed data from a mali-
cious actor from being propagated to downstream components,
and (2) the insertion of a monitor to detect (and alert) unex-
pected behaviors arising from untrusted components. These
transformations not only change the architecture of the model
by adding in new components; they also generate a formal
specification for the behavior of the inserted high-assurance
components in the AGREE language. Those specifications are
sufficient for model checking to prove that with the incorpora-

1This work was funded in part by the Defense Advanced Research Projects
Agency (DARPA). The views expressed are those of the authors and do not
reflect the official policy or position of DARPA or the U.S. Government.



tion of these high-assurance components, the hardened system
meets its cyber-resiliency requirements.

Another novel aspect of the approach is the synthesis of
the AGREE specifications for the high-assurance components
to CakeML, a verified compiler implementation for the func-
tional programming language ML [9]. This paper describes
in detail the synthesis path from specifications to CakeML
code, providing a formal framework in which to argue cor-
rectness. CakeML then provides a verified compilation path
to several different target binaries proving that the meaning
of the CakeML is exactly preserved in the final binaries.
Assuming that the execution schedule of the deployed cyber-
hardened system is as intended by the AADL model, and that
the HAMR-generated communication fabric delivers messages
between components as expected, the AGREE model checking
results hold for the deployed system, i.e., it detects and
prevents the indicated cyber-vulnerabilities over all possible
finite inputs. Work is ongoing to lift this result to infinite input
traces as these systems are inherently reactive and intended to
run forever [10], [11].

The approach is motivated, and illustrated, in a simple
example in Section II. Contract specification in the AGREE
language is presented in Section III, followed by a descrip-
tion of the synthesis pathway in Section IV. A case study
applying these transformations to an Unmanned Aerial Vehicle
(UAV) system that uses the Air Force Research Labora-
tory’s OpenUxAS services for route planning is presented in
Section V. Here the transforms add filters to guard against
malformed input and monitors to guard against ground station
spoofing and malicious flight plans from OpenUxAS. The case
study system is significantly more complex than the simple
example and shows the viability of the modeling approach to
a full-scale industrial design.

The BriefCASE tools are open source and publicly available
[12], as is the motivating example [13], and the full UxAS
model with its deployment in seL4 [14], [15]. Videos demon-
strating the use of the BriefCASE tools to build the UAV
example presented in Section V are also available [16].

II. SIMPLE EXAMPLE

Fig. 1 is an AADL architectural model of a software system
(SW) for route planning and automated control of a UAV. It
is loosely based on the system in the case study introduced in
Section V. The source for the entire model is found at [13].
The system receives an automation request that is forwarded to
an untrusted third-party route planner (AI). The route planner
decides the flight path of the UAV based on its current position
and the requested task. The waypoint manager (WM) receives
the mission command as a set of waypoints from the planner
and starts the UAV flying the mission, issuing waypoints to
the UAV flight controller as the UAV location changes. The
waypoint manager is an as is legacy component.

The expected behavior of the SW system, and the compo-
nents in its implementation, are modeled with AGREE contract
specifications. The contracts constrain input and state proper-
ties of output for component models. AGREE performs model

checking on this assume-guarantee system to hierarchically
prove that the composite system obeys all contract obligations
under all possible finite input streams.

The initial AGREE contract specifications for the com-
ponents and the overall system make no assumptions about
the integrity of the inputs and outputs. A cyber-vulnerability
analysis identifies the potential of the untrusted AI route
planner component to behave maliciously. In response, the
system designer modifies the AGREE specification for the AI
route planner to model this ability to behave maliciously (as
an untrusted component) by removing any guarantees about
its output. In other words, the AI output is unconstrained in
the AGREE specification, allowing it to take on any value and
allowing the AI component to send that value at any time.

The contract specifications for the other components are also
updated with the threat analysis information by adding in new
requirements to mitigate the identified cyber-vulnerabilities.
For example, a designer adds to the specification for the
legacy waypoint manager assumptions about its input being
well-formed since that is no longer known a priori as the AI
route planner output is unconstrained. The systems designer
is also responsible for defining the meaning of well-formed;
in this example, it is a predicate checking that the waypoints
are within bounded value ranges for latitude, longitude, and
altitude, with an additional integrity check on message IDs.

The designer adds two other requirements to the SW
AGREE specification related to the cyber-vulnerability anal-
ysis. The first, Waypoint is well-formed requires all the way-
points sent to the UAV flight controller to be well-formed (it
detects if malformed waypoints are propagated downstream).
The second, Alert if start is not bounded relative to a request,
requires an automation request to correspond with an automa-
tion response either in the same step or within one step (it
detects if a mission is being started without a request or if the
start is delayed more than one step after a request). The goal of
these two requirements is to detect if the untrusted component
is trying to prevent the UAV from flying its intended mission
or to fly a wrong mission.

AGREE examines the composition of the new specifications
for the implementation in Fig. 1(a) to determine whether it
complies with the added cyber requirements, by way of model
checking. The output from the model checker is shown in
Fig. 1(b). The red exclamation points designate properties that
do not hold. Each of these failures comes with a counterex-
ample. The results are not unexpected given the AI route
planner’s unconstrained behavior and the new assumptions
about the wellformedness of the input to the legacy waypoint
manager. The counterexample for Alert if start is not bounded
relative to a request shows a response in the first time step
with no matching request, a clear malicious behavior from the
untrusted component.

The system implementation is cyber-hardened using Brief-
CASE, which automatically transforms the model by inserting
high-assurance components in the form of a filter and a
monitor as shown in Fig. 2(a). A filter enforces an invariant
over each datum in the data stream by not forwarding input to



(a)

(b)

Fig. 1. Automated UAV route planning system. (a) Unhardened system. (b) Failure certificate.

(a)

(b)

Fig. 2. Hardened UAV system. (a) The implementation with high-assurance components. (b) Passing certificate.

its output if that input violates the filter invariant. The auto-
generated AGREE specification states that only well-formed
inputs are passed to the output. The system developer must
provide this filtering policy, but it is usually based on the
existing assumptions made by downstream components that
consume the filter output.

A monitor captures a relation on input data over time and
is thus able to reason about temporal properties of that input.
A monitor raises an alert if the specified temporal properties
are ever violated. The AGREE specification for the monitor
in our example states that an automation response can only
be generated in conjunction with an automation request; and
further, that response must come with the request or in the next
step after the request. As with the filter, the system designer
provides the policy, and that policy is based on the existing
AGREE specification in the SW system.

The AGREE analysis of the cyber-hardened implementation

with the auto-generated high-assurance components is shown
in Fig. 2(b). Here AGREE provides a proof certificate that
the high-assurance components guarantee the correct behavior
of the SW implementation in the presence of the considered
cyber vulnerabilities from the untrusted AI route planner.

The high-assurance components are automatically synthe-
sized by SPLAT from the AGREE specifications to equivalent
models in the CakeML language. CakeML itself provides a
complete verified compilation to binaries for several different
platforms meaning that the resulting binaries exactly preserve
the meaning of the original CakeML code [9].

A similar proof is given for the synthesis of the contract
model for a high-assurance component to CakeML. A high-
assurance component contract has a precise meaning in terms
of data streams, and the synthesis exactly preserves that
meaning in the generated code. In other words, for any set of
input streams that meet the component’s contract assumptions,



eq req : bool = event(AutomationRequest);
eq avl : bool = event(AirVehicleLocation);
eq wp : bool = event(Waypoint);
eq rsp: bool = event(Start);
eq alrt : bool = event(Alert);

assume "Automation request is well-formed" :
req => WELL_FORMED_AUTOMATION_REQUEST(AutomationRequest);

assume "Air vehicle location is well-formed" :
avl => WELL_FORMED_WAYPOINT(AirVehicleLocation);

eq current : bool = (req = rsp);
eq previous : bool = (req and not rsp) ->

pre(req and not rsp) and (not req and rsp);
eq policy : bool = current or previous;
eq since : bool = alrt or (alrt and (false -> pre(since)));

guarantee "Start includes a waypoint" :
rsp => wp;

guarantee "Locations required after the start waypoint" :
(wp and not rsp) => avl;

guarantee "Waypoint is well-formed" :
wp => WELL_FORMED_WAYPOINT(Waypoint);

guarantee "Alert if start is not bounded relative to a request" :
policy or since;

Fig. 3. The SW component contract.

the output streams produced from the synthesized CakeML
exactly match the output streams from the high-assurance
component’s contract.

Preserving the input/output relationship of streams between
the two models lifts the contract verification results to the
deployed system. If the contract model verification succeeds,
then the meaning of those results hold for the deployed system,
given that all other components implement their contracts, an
appropriate schedule exists that follows the dependent data-
flow, and the communication fabric works as expected.

III. AGREE CONTRACT SPECIFICATION

The goal of this section is to illustrate in more detail the
process a system designer follows to add cyber requirements
to the AGREE specifications and then automatically transform
the system to insert the high-assurance components. The
AGREE specifications generated by the transforms for the
high-assurance components are also explained. The section
ends with a concise formal statement of the meaning of an
AGREE specification for a high-assurance component. This
meaning is what must be preserved by the synthesis.

The AGREE specification for the SW component in the
example of Section II with the added cyber requirements
is given in Fig. 3. The AGREE specification language is a
first-order predicate calculus that uses stream concepts, and
operators, from the Lustre language [17]. As with Lustre,
the semantics are synchronous data-flow where the inputs,
outputs, and expressions are characterized by data streams
that comply with the input assumptions. The semantics are
such that the contracts are evaluated in dependency order with
inputs being propagated to outputs through all the contracts
until they stabilize; as such, the contracts, and thereby the
top-level model, must be acyclic. Once the contracts have
stabilized, the model takes a synchronous step to the next input
data in the stream. The semantics do not model computation
or communication delay. The output of one contract is seen at
the input of any downstream contract in the same step of the
input data stream.

The AGREE model checker attempts to prove several prop-
erties of the top-level model being verified. The first is that the
output guarantees of each component implementing the system
are strong enough to validate the input assumptions of any
downstream component as well as to satisfy the guarantees of
the output of the top-level component being verified (i.e., the
system composition meets input assumptions at each input as
well as the guarantees on the system output). These properties
are reported in the expanded lists in Fig. 1(b) and Fig. 2(b).
The next set of properties prove that the contract specifications
for each component are self-consistent (i.e, a contract does
not contradict itself). These are the unexpanded results at the
bottom of the figures.

Returning back to the contract in Fig. 3, it uses eq
statements to define variables local to the contract specifi-
cation. For example, the req variable is equivalent to the
event(AutomationRequest) expression. In the AGREE
semantics, there is an implicit event input (or output) associ-
ated with every named event port in a component. The seman-
tics used here do not buffer these events so the implicit input
(or output) is only a boolean value. An event expression
refers to that implicit input (or output) and is true when data
is placed on the named port. The system contract here states
assumptions on well-formed input, followed by guarantees on
properties about the output.

The Alert if start is not bounded relative to a request
guarantee is an invariant on the expression policy or
since, meaning that either the policy holds or the alert
is sounding. The policy is defined by two local values:
current and previous. The current value is asserted
when in the current time step there is a request with a response,
or there is no request and no response.

The value of previous in the current time step relies on
values from the previous time step. The -> operator designates
initialization, as the previous time step is undefined in the
first step of the system. The left operand to the operator is
the initial value of previous at start, which in this example
is (req and not rsp), because seeing a request with no
response is inconclusive in the first step of the system. The
right operand is the value of previous after the initial step.
Here the pre operator refers to the value of the expression
(req and not rsp) in the prior time step, previous
is true if the previous time step made a request without a
matching response and the current time step has the matching
response to that request with no new request.

The value of since in Alert if start is not bounded relative
to a request relies on its own value in the previous time
step. The intuitive reading of the expression is that the alert
has been true since the time when it first sounded. The first
alrt sets since to true, and once the value of since is
true, that value persists as long as alrt holds. The Alert if
start is not bounded relative to a request guarantee defines
one requirement of a cyber-hardened system implementation.
Together with the other guarantees, the contract models the
expected input and output of the system as a whole.

As noted previously, the original system fails to guarantee



Fig. 4. Wizard for automatically transforming the model with a filter.

eq policy : bool =
WELL_FORMED_AUTOMATION_RESPONSE(Input);

guarantee Filter_Output "Filter output is well-formed" :
if event(Input) and policy then
event(Output) and Output = Input

else not event(Output);

(a)
const is_latched : bool =
Get_Property(this, CASE_Properties::Monitor_Latched);

eq rsp : bool = event(Response);
eq req : bool = event(Request);
eq current : bool = (req = rsp);
eq previous : bool = (req and not rsp) ->

pre(req and not rsp) and (not req and rsp);
eq policy : bool = current or previous;
eq alert : bool = (not policy)

-> ((is_latched and pre(alert)) or not policy);
guarantee Monitor_Alert
"Alert port tracks alert variable" :
event(Alert) = alert;

guarantee Monitor_Output
"Output if not alerted" :
if event(Alert) then (not event(Output)) else
if event(Response) then (event(Output) and (Output = Response))
else (not event(Output));

(b)

Fig. 5. High-assurance component contracts. (a) The filter. (b) The monitor.

the cyber requirements. BriefCASE provides two transforma-
tions to address the failing requirements: inserting a filter and
inserting a monitor. The component is added by selecting the
connection in the model where the high-assurance component
is to be added, and then choosing the appropriate transforma-
tion. The system designer can provide transform configuration
parameters in a wizard, as shown in Fig. 4. The policy of the
high-assurance component can be stated directly in the wizard,
or it can be left blank. In this example, the policy is specified as
WELL_FORMED_AUTOMATION_RESPONSE(Input). Ad-
ditionally, because a transformation is ultimately driven by a
cyber requirement, BriefCASE updates an embedded Resolute
assurance case [18]. Resolute keeps track of the evidential
artifacts necessary for supporting the requirement, and can be
run at any time to determine whether those artifacts are valid.

The AGREE contract specification generated by the trans-
form is shown in Fig. 5(a). The guarantee is stylized for
synthesis and completely defines the meaning of the output
under every possible input. The resulting AGREE specification
for the monitor in this example is shown in Fig. 5(b). The
is_latched value makes the alert persistent, meaning that

once the alert is raised, it is always raised. This behavior
is one of the several options available in the dialogue. The
definition for policy is taken by the system developer from
the contract in Fig. 3. As before, the guarantees for the outputs
are autogenerated by the tool and completely define each
output under every possible input.

A. Brief Semantics Definition

Here the formal semantics of the AGREE contract specifi-
cation are briefly presented to make clear the meaning of a
high-assurance component. These semantics are used in the
next section to argue that the synthesis preserves the same
input to output behavior as the AGREE specification.

Assume that all data is in its raw form which is a contiguous
sequence of bytes representing exactly what is sent over a wire
by the communication fabric, so a datum is given by a string.
This assumption is important to the correctness argument in
the next section. An environment, θ : lval 7→ string, binds L-
values to strings where an L-value is anything that can appear
on the left-hand side of an assignment such as a named port,
a field in a record, a entry in an array, a local value defined
by an eq-statement etc.

Let s be an AGREE contract specification for some high-
assurance component. The notation θs is used to denote the
environment that contains a binding for any L-value in the
scope of s and nothing else, and the notation Θs denotes
the universe of all such environments. The semantics of s
are defined over streams, π = θ1, θ2, . . ., which are finite
sequences of environments, π ∈ Θ∗s .

The function eval s π evaluates s on the stream, π, and
returns true if s is invariant along the entire stream and false
otherwise. A guarantee G in s is invariant if G is true for each
prefix of π, while an eq-statement in s is invariant if its binding
in the context of every step is equivalent to the computed
value of its associated expression in that same context. All
guarantees and eq-statements must be invariant in the stream
for the function to return true.

The meaning of an AGREE contract specification is now
defined as the set of environment streams on which it is
invariant.

L(s) = {π ∈ Θ∗s | eval s π = true}

Intuitively, any stream π ∈ L(s), at each step, binds the L-
values in the eq-statements in a way that is consistent with
their associated expressions and the guarantees are all true in
that same step.

We claim that a synthesized high-assurance component
preserves the input to output relationship in the specification
s over every stream in L(s). Let π′ = SynthEval s π
denote a function that synthesizes s and then evaluates that
synthesized component on the stream π to create a new stream
π′ containing added output and other bindings. We say that two
streams are equivalent in regards to a specification, denoted as
π =s π

′, if and only if the two streams are the same length
and agree on bindings for the input and output for s at every



step of the streams. We now formally state the correctness
claim for synthesis.

∀π ∈ L(s). (SynthEval s Is(π)) =s π

where Is(π) returns the corresponding stream that only retains
bindings for inputs in each step and nothing else. The claim
is that the synthesized component generates the same output
stream as the specification for any stream belonging to the
specification that is restricted to just input bindings at each
step.

IV. SYNTHESIS

Synthesis maps from model and specifications to code. The
synthesis algorithm traverses the system architecture looking
for occurrences of filter and monitor specifications; for each
such occurrence it generates a CakeML program. In the
following, we examine both filter and monitor synthesis. The
latter is typically much more involved, and we will therefore
devote more attention to it.

A. Filter Generation

A filter is intended to be simple, although it may make
deep semantic checks. A filter has one input port and one
output; messages on the input that the filter policy admits
pass unchanged to the output port; all others are dropped
(not passed on). We have investigated two kinds of filter.
In the first, a relatively shallow scan of the input suffices to
enforce the policy. For example, we have used the expressive
power of Contiguity Types [19] to enforce lightweight bounds
constraints on GPS coordinates in UxAS messages. On the
other hand, a filter may need to parse the input buffer into a
data structure specified in AGREE and apply a user-defined
wellformedness property, also specified in AGREE, to the data.
Arbitrarily complex wellformedness checks can be made in
this way. Fig. 6 shows a combination where the checking spec-
ified by WELL_FORMED_AUTOMATION_RESPONSE depends on
an underlying check specified by the contiguity type checking
bounds on waypoints.

The verdict of a filter is made and performed within one
thread invocation. Thus, in its given time slice, the following
steps must be completed:

1) The filter checks to see if there is any input available. If
there is none then it yields control; otherwise:

2) The input is read (and parsed if need be);
3) The wellformedness predicate is evaluated on the input;
4) If the predicate returns true then the input buffer is copied

to the output, otherwise no action is taken; and
5) The filter yields control.

Remark 1 (Partiality). Partiality is an important consideration:
steps 2 and 3 above can fail; the data might not be parseable
or the wellformedness computation could be badly written and
fail at runtime. In such cases, the filter should recover and yield
control without passing the input onwards. In these cases, the
filter is behaving as it should, but we must also guard against
situations in which a correctly specified filter fails at runtime.
This kind of defect arises when the filter ought to accept a

Waypoint =
{Latitude : f64
Longitude : f64
Altitude : f32
Check : Assert
(˜90.0 <= Latitude and Latitude <= 90.0 andp
˜180.0 <= Longitude and Longitude <= 180.0 and
1000.0 <= Altitude and Altitude <= 15000.0)}

AutomationResponse =
{TaskID : i64
Length : u8
Waypoints : Waypoint [3]}

fun WELL_FORMED_AUTOMATION_RESPONSE(aresp) =
(forall wpt in aresp.Waypoints, WELL_FORMED_WAYPOINT(wpt))
and ... ;

Fig. 6. Filter specification.

fun filter_step () =
let val () = Utils.clear_buf buffer

val () = API.callFFI "get_input" "" buffer
in

if WELL_FORMED_AUTOMATION_RESPONSE buffer
then
API.callFFI "put_output" buffer Utils.emptybuf

else print"Filter rejects message.\n"
end

Fig. 7. Synthesized CakeML for the filter.

message, but lack of resources results in the filter failing to
do so. For example, the parse of a message might need more
space than has been allocated; another example could be if
the time slice provided by the scheduler is too short for the
wellformedness computation to finish. Thus resource bounds
need to be included in the correctness argument.

The contiguity type specification and wellformedness pred-
icate for the filter are shown in Fig. 6 and the synthesized
CakeML code is in Fig. 7. The code is called at dispatch
by the scheduler. The API.callFFI is the link to the
communication fabric to capture input and provide output. The
body of the function restates the filter contract to make the
appropriate assignments in a way that matches the truth value
of the predicate in the filter guarantee. The auto-generated
AGREE specification raises an alert output when the relation
is violated.

B. Monitor Generation

Monitors are intended to track and analyze the externally
visible behavior of system components through time. There-
fore, they require more extensive computational ability than
filters. In particular, our basic notion of a monitor is that
it embodies a predicate over its input and output streams,
and is able to access the value of a stream at any earlier
point in time, if necessary. Monitors commonly use state to
keep track of earlier values, unlike filters which, for us, are
typically stateless components. (However, there is nothing in
our approach that forbids stateful filters: they can be realized
by monitors.) A monitor specification is mapped by code
generation to a state transformation function of the following
abstract type:

stepFn : input × stateVars → stateVars × output



The system scheduler activates components in some order.
It is an obligation on the system that the scheduler follows
some sensible partial order of component activation and allows
each component sufficient time for its computation. Activating
a monitor component takes the form of the following pseudo-
code, in which the monitor evaluates the stepFn on its current
inputs and the current values of the state variables, returning
the new state and the output values.

(i1 , . . .) = readInputs();
(v1, . . .) = readState();
(v1
′, . . .), (o1

′, . . .) = stepFn((i1, . . .), (v1, . . .));
writeState(v1

′, . . .);
writeOutputs(o1

′ . . .);

1) Initialization: A monitor may need to accumulate a
certain minimum number of observations before being able to
make a meaningful assessment of behavior. Until that thresh-
old is attained, the monitor is essentially in its initialization
phase. In order for correct code to be generated, monitor
specifications need to spell out the values of output ports when
in their initialization phases. For example, suppose a monitor
does some kind of differential assessment of inputs at adjacent
time slices, alerting when (say) the measured location of a
UAV at times t and t+1 is such that the distance between the
two locations is unusually large. Such a monitor needs two
measurements before making its first judgement, but at the
time of its first output, only one measurement will have been
made. The specification must then explicitly state the correct
value for the first output.

2) Step function: The stepFn works as follows:
1) Each input is parsed into data of the type specified by

the port type;
2) New values for the state variables are computed, in

dependency order. The discussion above on initialization
now comes into play. Suppose the variable declarations
have the following form:

v1 = i1 −→ e1
· · ·
vn = in −→ en

In the generated code, for the first invocation of stepFn
only, the initializations are executed in order:

v1 = i1;
· · ·
vn = in;

In all subsequent steps, the non-initialization assignments
are performed:

v1 = e1;
· · ·
vn = en;

3) Values of the outputs are computed;
4) Outputs are written and the new state is written;
5) The monitor yields control.
The stepFn for the monitor of the example described in

Section II is displayed in Fig. 8.

stepFn (Request,Response)
(req,rsp,current,previous,policy,alert) =

let val stateVars’ =
if !initStep then

let val req = event(Request)
val rsp = event(Response)
val current = (req = rsp)
val previous = req and not(rsp)
val policy = current or previous
val alert = not policy
val () = (intStep := False)

in (req,rsp,current,previous,policy,alert)
end

else
let val req = event(Request)

val rsp = event(Response)
val current = (req = rsp)
val previous = pre(req and not rsp) and (not req and rsp)
val policy = current or previous
val alert = (is_latched and pre(alert)) or not(policy)

in (req,rsp,current,previous,policy,alert)
end

val (_,rsp’,_,_,_,alert’) = stateVars’
val Alert = if alert’ then Some () else None
val Output =

if alert’ then None else
if rsp’ then Some Response
else None

in
(stateVars’, (Alert,Output))

end

Fig. 8. Synthesized CakeML for the monitor.

C. Component Behavior

Intuitively, for monitor specification s, stepFn is the con-
crete embodiment of SynthEval s, as defined in Section III-A.
Its correctness amounts to showing that, given a sequence of
inputs, and an initial state meeting the initialization constraints,
iterating stepFn produces a π s.t. π ∈ L(s); and taking the
union over all input sequences and initial states produces L(s)
itself.

V. UXAS CASE STUDY

In this section, we outline the application of the BriefCASE
tool towards the development of a UAV surveillance system
as a part of the DARPA CASE program. The UAV receives
commands from a ground station to conduct surveillance
over a geographical region. In response, the UAV’s on-board
mission computer generates a flight plan consisting of a series
of waypoints that the UAV must traverse to complete its
mission. The UAV is also given a set of keep-in and keep-
out zones that may constrain its flight path.

We have modeled the system architecture of the UAV in
AADL. The model includes a Mission Computer for communi-
cating with the ground station and generating flight plans, and
a Flight Control Computer for UAV navigation. The Mission
Computer architecture model includes hardware components
such as a processor, memory, and communication devices,
as well as software. The initial software architecture model
(shown in Fig. 9) contains drivers for communication with
the Ground Station and Flight Control Computer, a Waypoint
Manager component that provides flight plan coordinates to
the Flight Control Computer, and the Flight Planner. The
Flight Planner is the open-source UxAS software developed
by AFRL [20].

For this application, UxAS accepts three types of messages.
The Operating Region message defines where the UAV can



and cannot fly. The Line Search Task message contains a series
of waypoints that the UAV should traverse. The waypoints
typically lie along some geographical feature of interest, such
as a river or railway. Note that the UAV may not be able
to directly traverse the Line Search Task waypoints due to
no-fly zone constraints specified in the Operating Region
message. Anytime after receiving the Operating Region and
Line Search Task messages, a Ground Station can transmit
an Automation Request message, which instructs UxAS to
generate a flight plan that satisfies these constraints. UxAS
passes the flight plan in an Automation Response message to
the Waypoint Manager. Because the Flight Control Computer
can only process a small number of waypoints at a time,
the Waypoint Manager parcels a small number of waypoints
corresponding to the current UAV position, and sends them to
the Flight Control Computer over a serial connection via the
UART Driver.

Fig. 9. Initial software architecture.

Within the software model, we have formalized some of
the high-level requirements as assume-guarantee contracts. We
perform a formal analysis using the AGREE tool (which is
integrated with the BriefCASE environment) to verify that
the model satisfies the contracts. For the initial version of
our design, the verification passes. Although we are satisfied
with the results of the formal verification using AGREE, we
have not yet analyzed the design for cyber-vulnerabilities. In
BriefCASE, we analyze the model using one (or more) of the
integrated cybersecurity analysis tools. The tools generate a
list of new requirements corresponding to cyber vulnerabilities
found in the design, and we need to satisfy these requirements
by modifying the design. For example, because we anno-
tated the open-source UxAS component as uncontrolled
(colored red in Fig. 9), the cyber analysis tools generate
requirements for ensuring that unverified or malicious code
(which could potentially be embedded in the component) will
not impact other processes.

In total, seven cyber requirements are generated and im-
ported into our model. These include four wellformedness
requirements, two requirements for monitoring the behavior
of the open-source UxAS component, and an attestation
requirement for ensuring the Ground Station software has
not been tampered with. Requirements are imported into the
model as goals in a Resolute assurance case. Because we
can run Resolute at any time during development, we can
easily determine for a given snapshot of the model which
requirements are not yet supported by evidence.

The intent of the wellformedness requirements is to prevent
malformed messages from causing a buffer overrun or code

injection attack. In the UAV design, such messages are most
likely to originate from a remote source or the uncontrolled
UxAS component. By placing filters on the connections up-
stream of mission-critical components, such attacks could be
mitigated. The Filter transform is therefore applied for each
wellformedness requirement, inserting filter components on
the incoming and outgoing UxAS connections.

The filter behavior for each component is specified in
AGREE. This enables formal verification within the modeling
environment, and also provides a means for synthesizing the
component implementation in a provably correct manner using
the SPLAT tool. Because SPLAT is integrated with Brief-
CASE, the proof it emits when synthesizing component code
is used as evidence in the Resolute goal for the corresponding
mitigation. When Resolute evaluates whether such a goal is
supported by evidence, it checks for the existence of the
synthesis proof in addition to verifying that the architecture
is correct.

The AGREE filter policies for the four UxAS connections
are similar, and check that record values contained in the
messages are within appropriate ranges. For example, the
Automation Response message filter, which drops messages
containing malformed flight plans, is defined as shown in
Fig. 10. Although Latitude, Longitude and Altitude
are defined as 64-bit floating-point values, the filter only passes
messages containing waypoint values between [-90,90], [-
180,180], and [0,15000], respectively.

Fig. 10. Automation Response Filter specification.

In addition to monitoring the UxAS output for malformed
messages, we must also monitor for suspicious behavior. This
requires adding components for detecting that UxAS has
crashed, as well as monitoring the correctness of the flight
plans it produces. The Monitor transform is applied for this
class of mitigation. In general, monitors observe a channel and
compare its contents against a reference signal or constant.



The monitor policy specifies acceptable comparisons, and if
violated, the monitor sends out an alert. A monitor can choose
to gate the observed signal, in which case it also acts as a
special kind of filter and drops the message if the policy is
violated. The monitoring requirements drive two transforms.
The first adds a response monitor to send an alert if UxAS does
not emit a response within a set amount of time from receiving
a request. The second adds a geofence monitor to ensure that
generated flight plans are compliant with the specified keep-in
and keep-out zones. The Geofence Monitor is a gated monitor;
it prevents the observed Automation Response message from
reaching the Waypoint Manager. Similar to the filters, the
monitor policies are specified in AGREE. For example, the
Geofence Monitor specification is shown in Fig. 11.

Fig. 11. Geofence Monitor specification.

So far, we have addressed requirements that mitigate vul-
nerabilities related to malformed messages and malicious be-
havior on-board the UAV. But we also want to protect against
a compromised Ground Station transmitting wellformed, but
malicious commands. The final cyber requirement is mitigated
by the Attestation transform [21] that adds two components
to the UAV software: an Attestation Manager for evaluating
remote systems like the Ground Station, and an Attestation
Gate for filtering messages from sources that have not been
approved by the Attestation Manager. The Attestation Manager
is implemented in CakeML and automatically inserted into the
application code base by BriefCASE. Because the Attestation
Gate acts as a filter, the transform automatically generates its
complete AGREE specification.

After transforming the model to address the cyber require-
ments, the software architecture now appears as shown in
Fig. 12. The components in green were added to the model
by way of an automated BriefCASE transform and are critical

for mitigating cyber attacks. We formally verify the model
with AGREE to show that all of the component contracts
are satisfied, including the new contracts introduced during
the model transformations. Because it is imperative that these
high-assurance component implementations are correct, we
run the SPLAT tool to produce provably-correct code. The
synthesized code is output to a directory in the build file
system with the location specified for each component in the
model. The corresponding correctness proof is used in our
assurance case as additional evidence that the vulnerability
has been properly mitigated.

Fig. 12. Cyber-resilient software architecture.

Once we have determined that the model is correct and
satisfies its cyber requirements, and the software components
in the model have been implemented, either by SPLAT or
other means, the system can be built and deployed. We run the
HAMR tool to generate the component stubs and infrastruc-
ture code necessary to enable component communication and
execution according to a specified schedule. HAMR translates
the AADL system model to code that implements threading
infrastructure and inter-component communication consistent
with the AADL computational model. HAMR then compiles
the software to execute on seL4 [8], a verified capability-based
microkernel (accompanied by formal proof of spatial isolation
properties down to the binary level).

The UAV and Ground Station software were deployed on
ODROID XU4 hardware, and communicated with each other
over ethernet. The AMASE flight simulator, representing the
Flight Control Computer was run on a Linux machine and
connected to the UAV ODROID via a serial connection. The
UxAS implementation on the UAV was modified by adding
malicious code that would prevent it from responding to Au-
tomation Requests or produce flight plans that would violate
the operating region constraints. Some of the Line Search
Task messages transmitted from the Ground Station contained
malformed messages that would modify the UxAS behavior. In
addition, we modified the Ground Station to simulate a breach
for our evaluation of the attestation transform. We performed a
set of tests on the initial system (Fig. 9) prior to applying our
cyber-resiliency mitigations in order to verify the effectiveness
of the malicious code. A third party evaluator repeated the
tests on the hardened system and demonstrated that our mitiga-
tions were successful. The following scenarios were exercised
(status messages from the high-assurance components in the
hardened system are in Fig. 13):



a) Infected Ground Station: An application file is modi-
fied on the Ground Station, which sends the UAV on a mission-
violating trajectory. On the hardened system, messages sent to
the UAV were rejected by the Attestation Manager.

b) Malformed Line Search Task message: The Line
Search Task message contained a waypoint with a longitude
outside the permitted range to exploit vulnerabilities in the on-
board software. The wellformedness filter for Line Search Task
messages prevented this message from reaching the UxAS.

c) UxAS vulnerability exploit: Line Search Tasks with
greater than 90 waypoints were transmitted from the Ground
Station, triggering a vulnerability that crashes UxAS. When
this occurs, UxAS is unable to generate an Automation Re-
sponse. This vulnerability is mitigated by inserting a Response
Monitor that checks to see if UxAS outputs an Automation
Response message shortly after receiving an Automation Re-
quest. For this scenario, we chose for the monitor to output a
status message, which would then be received by the Ground
Station and an appropriate action taken.

d) UxAS trojan modifies flight plan: A trojan embedded
in UxAS attempts to cause the UAV to fly into a specified
keep-out zone by modifying the mission command waypoints
in the Automation Response. On the hardened system the
Geofence Monitor detected that it was being instructed to fly
into a keep-out zone and returned the UAV to Home Base.

Fig. 13. Cyber-resilient system response.

VI. RELATED WORK

Assume-guarantee reasoning for compositional verification
in reactive systems is well-studied [6], [22]–[24]. Automated

proofs of realizability for assume-guarantee reasoning are use-
ful for engineers implementing components in the system [25],
[26]. Algorithms for component synthesis for Lustre models
using k-induction or IC3/PDR provide an automated path from
the assume-guarantee reasoning to an actual satisfying node
implementation [27], [28]. These algorithms synthesize code
in the Lustre modeling language but do not provide a path to
a low-level implementation that could be fielded.

Contracts are similar to assume-guarantee reasoning except
they target programming languages. They are often more
expressive than assume-guarantee reasoning being stateful and
higher-order [29]. As contracts are often written in the target
language, synthesizing monitors is not a problem but comes
with overhead [30]. A monitor for a contract can be removed
when it can be statically proven that the code preserves the
contract under all possible inputs and executions [31].

Data-flow semantics are well studied [17], [32]–[35]. State
machine semantics can be added to synchronous data-flow
[36]. The idea is to translate imperative constructs into equiva-
lent synchronous data flow constructs. The resulting Lustre can
then be compiled. The goal is to provide a seamless connection
between pure data-flow and pure control design.

There is a fully verified compiler that takes Lustre and turns
it into a binary executable that is specified and verified in Coq
[37]. The key is in combining infinite sequences of data-flow
models with incremental manipulation of memories akin to an
imperative model. CompCert is used on the backend to create
the final rendered executable.

VII. CONCLUSION

The DARPA CASE program is creating tools for sys-
tems engineers to integrate cyber-vulnerability analysis and
mitigation into their development workflow. The resulting
BriefCASE tool suite includes analysis tools for generating
cyber requirements, cyber resiliency tools for addressing the
requirements, verification tools for ensuring design correct-
ness, and synthesis tools for generating provably correct code.
Several of the BriefCASE transforms (filter, monitor, gate)
insert components into the model whose behavior can be
formally specified using the AGREE language. The SPLAT
tool can then automatically generate CakeML implementations
for these components, along with proofs of correctness for
assurance that the implementation satisfies the specification.
BriefCASE was applied to a full-scale case study using the Air
Force Research Laboratory’s OpenUxAS software, exercising
a range of built-in cyber resiliency mitigations to meet cyber-
requirements. The size and scale of the study suggests Brief-
CASE meets the complexity demands of real-world design.

We are currently in the process of applying BriefCASE
to the design of an application using the Collins Common
Avionics Architecture System (CAAS) [38] on the CH-47F
Chinook helicopter as part of the DARPA CASE program.
Other ongoing and future work includes adding support
for uninterpreted functions, mechanizing the correctness-of-
synthesis proofs in HOL4, and lifting the proof results to
infinite streams.
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