
Qualification Considerations of Machine Learning
Based Tools for Avionics System Development

Cong Liu, Heber Herencia-Zapana, Scott Nagel, Kyle Ford, Darren Cofer
Collins Aerospace

{first.last}@collins.com

Abstract—Machine learning (ML) technology has advanced
significantly in recent years, enabling its practical application in
various domains, including avionics. However, before ML can be
integrated into avionics systems, it must comply with certification
or qualification standards. While much attention has been given
to the certification of ML applications, the qualification of
ML-based tools has been less extensively studied. This paper
explores the qualification of ML-based tools in avionics system
development, examining the unique characteristics of ML and
their impact on tool qualification. We propose a methodology for
qualifying low-criticality ML-based tools, aligned with the DO-
330 software tool qualification standard, treating the ML tool as
a black box. To demonstrate this approach, we present a case
study of a ML-based avionics display testing tool.

Index Terms—machine learning, tool qualification

I. INTRODUCTION

The recent rapid advancements of artificial intelligence (AI)
and machine learning (ML) have attracted a lot of interests in
using this technology in the aerospace domain. This includes
the next-generation airborne collision avoidance system for
unmanned aircraft (ACAS Xu) [1], airport runway detection
for autonomous vision-based taxi, takeoff, and landing systems
[2] and vertiport detection for precision navigation in urban
air mobility (UAM) [3]. However, airborne systems with
AI/ML component must demostrate compliance with rigorous
certification standards. The novelty of the ML technology
brings great challenges, as certain aspects of the existing
standards could be either inapplicable or insufficient.

To address the certification concerns, the Federal Aviation
Administration (FAA) has published a techinical concept paper
[4] and the European Union Aviation Safety Agency (EASA)
has published several guidances [5] [6]. However, these doc-
uments so far have been focused on ML applications. There
is a lack of clear guidance on the qualification of ML-based
tools.

Tool qualification is the process by which certification credit
maybe claimed for the use of a software tool. ML-based tool
qualification presents unique challenges and opportunities in
safety-critical systems development. Unlike traditional soft-
ware, ML algorithms are often developed using data-driven
processes, making their behavior difficult to understand. Qual-
ification of ML-based tools may require a tailored approach
that addresses data integrity, model training, and performance
consistency under varying conditions. Regulatory frameworks,
such as DO-330, must be carefully interpreted and extended
to accommodate the characteristics of ML. As the adoption of

ML continues to grow, a rigorous and evolving qualification
methodology is essential to ensure compliance, safety, and
trust in these advanced technologies.

II. BACKGROUND

A. Machine Learning Tools

The RTCA DO-178C standard [7] defines a software tool as
a computer program used to assist in the development, testing,
analyzing, producing, or modification of another program. In
the development of avionics systems, tools play a critical role
at every stage, from initial design to final validation. ML is
a field of AI where neural network models are trained to
identify patterns or make decisions without being explicitly
programmed for every task. ML represents a paradigm shift
in software development, moving from explicitly rule-based
instructions to systems that learn behaviors from data. We
classify the tools related to ML into two categories.

• The first category contains the tools used in the ML appli-
cation development lifecycle (MLDL) [16]. These tools
themselves are often traditional software. This includes
data collection tools, synthetic data generation tools, data
processing tools, ML training tools, ML optimization
tools and ML verification tools.

• The second category contains the tools that have a ML
component. These tools are often used in a traditional
software or system development lifecycle. This includes
generative-AI tools (e.g., used to generate source code,
formal specification or test cases), ML-based computer
vision tools and ML-based speech recognition tools.

We refer the second category of tools as ML-based tools.
This paper mainly discusses the qualification of ML-based
tools.

B. Tool Qualification Standards

RTCA DO-330 ”Software Tool Qualification Considera-
tions” [8] defines the objectives and processes required to
qualify a software tool used in the development of safety-
critical systems. It has been widely used as the tool qualifica-
tion standard for airborne systems. We will discuss it in more
details in Section III.

ISO/DIS 26262 ”Road vehicles — Functional safety” [9],
is an international standard that establishes guidelines for
the safe design and development of electrical and electronic
systems in road vehicles. Part 8 ”Supporting Processes” of the
standard provides detailed guidance on tool qualification. The

tool qualification process starts with Tool Confidence Level
(TCL) determination. First, the tool impact is analyzed. Only
if a tool could insert or fail to detect an error, tool qualification
applies. Then the probability of the tool error being detected
in the subsequent process is analyzed. Higher probability of
error detection means higher degree of confidence (i.e., lower
TCL). The required TCL, together with the Automotive Safety
Integrity Level (ASIL) of the software developed or verified
using the tool, determines the appropriate tool qualification
methods. Compared to DO-330, ISO 26262 does not dis-
tinguish between development or verification tools. Recent
advances in ML for automotive applications have led to the
development of techniques [10] to enable ML-based systems
to comply with ISO 26262.

RTCA DO-200 “Standards for Processing Aeronautical
Data” [11] provides guidance and requirements for the pro-
cessing of aeronautical data that are used for navigation, flight
planning, terrain/obstacle awareness, flight deck displays,
flight simulators and for other applications. It is an adpation
[12] of DO-330 to aeronautical databases. DO-200 has been
proposed [13] [14] as a basis for ML data management tool
qualification.

III. DO-330 TOOL QUALIFICATION

DO-330 tool qualification begins with establishing the need
for qualification. Qualification is required if:

• the tool is used to eliminate, reduce, or automate a
software life cycle process, and

• the tool’s output is not subsequently verified.
DO-330 introduces the concept of Tool Qualification Level

(TQL), with each level associated with a specific set of qualifi-
cation objectives that the tool must satisfy. The determination
of the TQL depends on both the criticality of the software
the tool supports and the extent of the tool’s impact on the
software development process.

Tool Impact Criteria Based on tool impact, DO-330 clas-
sifies tools into three categories, as shown in Figure 1. The
first criteria applies to tools that could introduce errors into the
resulting software and are usually referred to as development
tools. Examples include source code generators and compilers.
The second and third criteria apply to tools that could fail
to detect errors in the software and are often referred to
as verification tools. Examples include test generation tools
and static code analysis tools. There are subtle distinctions
between Criteria 2 and Criteria 3. Criteria 2 applies when a
verification tool is used to eliminate or reduce a verification or
development process other than the one automated by the tool
itself. For example, a formal methods tool used to automate
source code verification would meet Criteria 2. Due to the
higher qualification rigor and cost associated with Criteria 2,
applicants typically avoid such claims, and most verification
tools are qualified under Criteria 3.

Tool Qualification Level Determination The software level
[7] is established through the safety assessment process and
hazard analysis by evaluating the potential impact of the failure
conditions. There are 5 levels: catastrophic (A), hazardous

Fig. 1: DO-330 Tool Qualification Criteria. ©RTCA, Inc. Used
with Permission. All rights reserved.

Fig. 2: DO-330 Tool Qualification Levels. ©RTCA, Inc. Used
with Permission. All rights reserved.

(B), major (C), minor (D), no safety effect (E). Based on the
airborne software level and the tool qualification criteria, DO-
330 defines 5 tool qualification levels (TQL), as shown in
Figure 2. They are denoted as TQL-1, TQL-2, TQL-3, TQL-
4 and TQL-5, from the most to the least rigorous. Note that
Criteria 3 tools are always qualified at TQL-5 no matter what
assurance level of the airborne software is. In practice, most
tools are qualified as TQL-5 to minimize qualification effort
and cost [15]. Our discussion is focused on qualification of
ML-based TQL-5 tools.

DO-330 defines tool qualification objectives in 11 processes:
tool operational process, tool planning processes, tool devel-
opment processes, verification of outputs of tool requirements
processes, verification of outputs of tool design processes, ver-
ification of outputs of tool coding and verification processes,
testing of outputs of integration processes, verification of out-
puts of tool testing, tool configuration management processes,
tool quality assurance processes and tool qualification liaison
processes.

For TQL-5, there are in total 14 tool qualification objectives.
They include:

• Establish tool qualification need
• Define Tool Operational Requirements (TORs)
• Demonstrate tool operation compliance with TORs
• Demonstrate TORs sufficiency and correctness
• Identify and analyze the impact of known problems on

TORs

A. Tool Operational Requirements

TORs define the tool’s functionality and interface from
a software life cycle process perspective. TORs must be

verifiable, consistent, and detailed enough to show the tool is
functionally equivalent to the process it is replacing. DO-330
suggests TQL-5 TORs to include:

• Description of the context of the tool and its integration
• Description of Tool Operational Environment
• Description of tool input and output
• Requirements for the functionality of the tool
• The relevant user information, e.g., a user manual
• Description of the operation of the tool
• Performance requirements specifying the output behavior

IV. QUALIFICATION CONSIDERATIONS FOR ML-BASED
TOOLS

Tool Qualification Needs If the output of a ML tool is
manually reviewed or verified, the tool does not require quali-
fication. For example, a large language model (LLM)-based
code generation tool used in software development would
not need to be qualified if its generated code is subject to
manual review. Similarly, an ML training tool does not require
qualification, as its output, the trained ML model, is verified
against MLDL requirements. In general, validating the outputs
of ML tools offers a cost-effective alternative to full-scale tool
qualification. Adopting this strategy can substantially reduce
the ML tool qualifcation needs in practice.

Tool Impact Criteria It has been proposed [14] to modify
the tool impact criteria in order to better accommodate ML
tools. While the underlying motivation for this change is
understandable, such modifications may introduce unnecessary
complexity to the qualification process of ML tools. ML tools
remain compatible with the three established tool categories.
Therefore, we propose maintaining the existing DO-178C/DO-
330 tool impact criteria without any modifications.

Dataset Supervised learning is a widely used ML technique
that employs labeled datasets to train neural network (NN)
models for outcome prediction and pattern recognition. Data
plays a critical role in both the development and verification
of ML models. However, there is no clear guidance on
how datasets should be treated within the ML development
lifecycle. Key questions remain, such as whether training data
should be regarded as requirements, how to ensure data quality
(e.g., absence of data poisoning), and how to guarantee that
datasets are complete and representative. Additionally, many
foundational NN models are pre-trained using diverse data
sources and human-in-the-loop training methodologies, mak-
ing it extremely difficult, if not impossible, to fully identify
all the datasets used during training.

Traceability Traceability is a fundamental concept in DO-
330. Specifically, the ”Tool Development Process Traceabil-
ity” section requires trace data demonstrating a bi-directional
association between low-level tool requirements and the tool
source code. For ML-based tools, the training dataset is often
treated as the ”low-level requirements,” while the resulting
ML model (e.g., a neural network) is considered the source
code. However, due to the inherent nature of machine learning,
it is highly challenging to establish traceability between spe-
cific components of the model—such as individual layers or

neurons—and the particular data samples that influenced their
parameters. Furthermore, a recent trend in ML development
involves a two-phase process, where models (often large
language models) are first pre-trained on large, general datasets
and later adapted using domain-specific datasets. In such cases,
detailed information about the pre-training datasets is typically
unavailable, resulting in a complete loss of traceability from
the perspective of the ML-based tool end user. In conclusion,
ML-based tools inherently lack the source code traceability
expected in traditional software development.

Determinism In an early version of DO-178, the guidance
explicitly stated that ’only deterministic tools may be qual-
ified.’ However, the term ’deterministic’ was later deemed
overly restrictive. As a result, the language was revised to
adopt a more flexible and inclusive phrasing, allowing for
a broader interpretation of tool behavior within the qualifi-
cation process. Most ML models operate deterministically,
producing consistent outputs for identical inputs. However,
certain generative AI models, such as LLMs, incorporate
elements of randomness to enable variability in responses to
the same input. This controlled randomness is designed to
emulate aspects of human creativity and spontaneity. It is
typically governed by configurable parameters, such as the
’temperature’ setting, which influence the degree of output
variation. When the temperature is set to a low value (e.g.,
zero), the model behaves deterministically, generating the most
probable response consistently. Conversely, higher temperature
values introduce greater variability, supporting more diverse
and creative outputs. For tool qualification purposes, we pro-
pose to require the ML model to be completely deterministic.

Explainability The internal operation of ML models is
difficult to understand, and their behavior is normally char-
acterized probabilistically. This makes it difficult for humans
to reliably predict or fully explain their outputs. This lack of
explainability necessitates treating ML-based tools as ”black
boxes” during qualification and verification. While generative
AI models, such as LLMs, can produce explanations as part
of their outputs, these explanations are often unreliable and
cannot be fully trusted to reflect the true reasoning behind the
model’s decisions.

Generalization Error No ML model can guarantee 100%
accuracy on previously unseen inputs. The probability of
generalization error always exists. This makes it essential
to detect and mitigate tool errors. However, DO-330 does
not provide guidance on tool error detection or mitigation.
Extending DO-330 to address this aspect would significantly
enhance its applicability to the qualification of ML-based
tools.

V. USE CASE

A ML-based tool was developed to automate the testing of
an avionics display software. Traditionally, a test engineer is
needed to monitor the display to verify that certain features
are displayed correctly (e.g., a specific button is selected). The
manual verification is tedious, time-consuming and expensive.
The tool was developed to replace the human. The core of the

Fig. 3: Overview of the ML-based Display Testing Tool

tool is an object detection and classification neural network. As
shown in Figure 3, the input to the NN is a undistored image
captured at the DVI/HDMI interface. The output of the NN is
the classification, indicating what features are present in the
image. The NN, based on a pre-trained open-source YOLO
(You Only Look Once) model [16], was fine-tuned using a
domain specific image dataset.

Tool Qualification Need This tool replaces an existing
verification process and its output will not be subject to manual
review or verification. Therefore, qualification of the tool is
required.

Tool Qualification Level Since the tool automates the testing
of a display software, it has been categorized as a verification
tool. Furthermore, it does not eliminate or reduce any other
development or verification activities beyond those specifically
automated by the tool itself. Based on this analysis, Tool
Impact Criteria 3 was determined to be applicable. Domain
experts assessed the software level of the display software as
Level D. Consequently, the tool was assigned TQL-5.

Tool Qualification Objectives It is important to recall that
TQL-5 tools have no qualification objectives related to tool
development processes. As a result, whether the tool was
created using a data-driven approach or a traditional software
development method is irrelevant for qualification purposes.
Since the objectives are focused solely on tool usage, the tool
may be treated as a ”black box” by the applicant. Recognizing
this implication, we beleive that the qualification of TQL-
5 ML-based tools is fundamentally equivalent to that of
traditional software tools.

A. Tool Operational Requirements

Defining Tool Operational Requirements (TOR) is key to
TQL-5 tool qualification. But it presents several challenges:

• Distinction between TOR and Tool Requirements (TR):
It is necessary to clearly differentiate TOR from TR and
determine which requirements should be included in the
TOR, the TR, or both.

• Interpretation of Performance Requirements: A thorough
understanding of the ”performance requirements” refer-
enced in the standard is required to ensure appropriate
specification within the TOR.

Fig. 4: Tool Operational Requirements

• Level of Detail in TOR: TOR can be defined at varying
levels of granularity. If written at too high a level,
it complicates verification activities; if too detailed, it
may include irrelevant information not essential to tool
operation.

• Identification of Concrete Requirements: Given that the
term ”requirements” explicitly appears only in some TOR
items in the standard, while the others serve as descriptive
information. It is necessary to determine, for ML-based
tools, which elements should be explicitly included in the
TOR.

• Completeness of the TOR Definition: It is difficult to
ascertain whether the TOR has been fully and sufficiently
defined.

• Extension of TOR for ML Tools: ML-based tools may
require additional TOR elements beyond those listed in
the standard.

Some sample TORs are shown in Figure 4.
The TORs are defined based on the following considera-

tions:

• Intended Scope of Use: ML models are typically trained
and validated for specific applications. Therefore, the
ML-based tool must be restricted to operation within its
defined scope of use.

• Operational Environment Requirements: Certain ML
models require advanced hardware resources (e.g., GPUs,
specialized accelerators) to achieve acceptable perfor-
mance. Such environmental requirements can be critical
to correct tool operation, and thus must be explicitly
specified in the TOR.

• Input Data Constraints: Object detection ML models
often assume specific input image formats and color
modes. These assumptions must be documented to ensure
proper tool operation .

• Impact of Confidence Level: The confidence threshold is
a critical parameter that directly affects the tool’s output.
The expected behavior of the tool may vary depending
on the configured confidence level, and this dependency
must be captured in the TOR.

• Timing Requirements: When an ML tool is integrated as a
component or step within a larger process, it is important

to specify the expected timing of its output. Given the
potential performance variability of ML models, execu-
tion time requirements must be explicitly included in the
TOR.

• Deterministic Behavior: Finally, the ML model is
required to exhibit deterministic behavior. Non-
deterministic tools are difficult to verify and complicate
the reproduction of results, making determinism essential
for qualification.

Tool Usage Context The tool shall be integrated with the
avionics display software test framework. A statement in
the test script shall pause the test execution and trigger the
execution of the tool. At the end of the execution, the tool
shall record the verification results and return control to the
test framework to allow the test to resume.

Tool Operational Environment The tool shall be installed
on a Linux or Windows operation system with Python version
3.8.0 or later and PyTorch version 1.8 or later. All required
Python packages shall be installed.

User Information A user manual shall be provided to
describe the intended usage within the test framework. It
shall describe the input and output of the tool. An installation
guide shall be provided to describe step-by-step instructions on
installing Python, PyTorch and all required Python packages.

Performance Requirements DO-330 does not provide an
explicit definition of performance requirements. According
to ARP4754A [17], performance requirements specify the
attributes of a function or system that contribute to its utility
for the aircraft and its operation. In addition to describing
the expected type of performance, performance requirements
encompass function-specific characteristics such as accuracy,
fidelity, range, resolution, speed, and response time. An ex-
ample of a performance requirement is illustrated by TOR-9
in Figure 4.

B. Operational Design Domain

According to the EASA guidance [5], an ML application
must have a clearly defined Operational Design Domain
(ODD). Specifically, Objective DM-01 states: ”The applicant
should define the set of parameters pertaining to the AI/ML
constituent ODD.” The ODD delineates the specific conditions
and environments under which the ML tool is designed to
operate reliably and as intended. In the context of ML tool
qualification, establishing the ODD is essential to impose con-
straints and requirements on the dataset used for verification
activities, ensuring that the tool is evaluated within its intended
operational scope. For the ML tool under consideration, the
ODD is defined as the set of display images that the tool is
expected to inspect.

We conducted a detailed analysis of the display image
format and structure. The display is organized into three
primary regions: the top, middle, and bottom areas. The
main interactive content is located within the middle area,
while the top and bottom areas contain static images that
remain unchanged during testing. Within the middle region,
the interface comprises four tabs, each containing multiple

boxes, and each box, in turn, hosting a set of buttons. There
are three distinct types of buttons, and both tabs and buttons
can exist in two possible states: selected (indicated by a green
outline) or unselected. Each combination of button/tab type
and state was mapped to a specific class. For the buttons,
six distinct classes were defined, corresponding to the two
states (selected or unselected) across the three button types.
Test cases were systematically generated by permutating the
various combinations of button and tab states, while adhering
to constraints derived from the graphical user interface (GUI)
and display software requirements. For example, constraints
such as ”at most one mic button is selected at any given
time” were enforced. A Simulink model was developed to
formally capture these constraints and systematically generate
all feasible system states. Subsequently, an automated image
generation tool was employed to create display images of all
valid state permutations.

C. ML-based Tool Limitation and Mitigation

ML-based tools have limitations. We highlight two issues
below.

Generalization Error It is widely recognized that an ML
model can produce incorrect outputs. A significant body of
research, particularly in the area of adversarial attacks, is
dedicated to identifying inputs that intentionally cause an ML
model to fail or misbehave. This vulnerability highlights the
broader issue known as the generalization problem, wherein
the model’s behavior cannot be reliably guaranteed outside
the set of inputs used during training, validation, or testing.
In practice, it is extremely challenging, if not impossible, to
ensure that an ML model will consistently produce correct
outputs for previously unseen inputs.

Overconfidence Many classification ML models generate a
confidence value, ranging from 0 to 1. Higher values indicate
that the model is more confident that the classification result
is ”correct.” This value can also be interpreted as the model’s
estimated probability that the classification output is accurate.
In the TORs, users are required to specify a confidence
threshold for the tool. The tool will output a ”pass” result
only when the computed confidence exceeds the user-specified
threshold. However, it is important to recognize that ML tools
can sometimes exhibit overconfidence, meaning that even if
the model reports a high confidence value, the classification
output may still be incorrect. In other words, a high confidence
score does not guarantee the accuracy of the classification
result.

To address the tool limitations, we propose the following
techniques to mitigate the error-induced risk.

Avoid Underfitting Underfitting occurs when a model is too
simple to capture the underlying patterns within the data. This
may result in elevated errors across both the training and test
datasets. We propose to review the ML model architecture
with domain experts and use a state-of-the-art (SOTA) ML
model architecture that has demonstrated good performance
in common benchmarks.

Avoid Overfitting Overfitting occurs when a model is exces-
sively trained so that it is extremely accurate on the training
dataset. This may prevent the model from capturing the actual
patterns, thus reducing its ability to generalize to new, unseen
data. We propose to use various techniques to avoid overfitting.
These techniques include:

• Provide a complete and representative dataset
• Split data into training, validation and testing sets
• Use dropout layers during training
• Stop training once the model’s performance plateaus on

the validation set

Adversarial Training Adversarial training is a technique
where the model parameters are iteratively updated to min-
imize the worst-case adversarial loss by incorporating adver-
sarial examples into the training process. Adversarial training
improves the model robustness against adversarial inputs.

Ensemble Learning Ensemble learning is a training tech-
nique in which two or more ML models are applied to a
specific classification or regression task. This approach is
based on the premise that combining multiple models can
yield superior predictive performance compared to any single
constituent learning algorithm. For tools with a high TQL, we
recommend developing two distinct ML models, each utilizing
different architectures, training algorithms, and datasets. This
strategy helps mitigate the risk of common-source errors. The
output will only be accepted if both models, when given the
same input, produce consistent results.

VI. GENERALIZATION BOUND

Generalization bounds are mathematical statements that
help assess how well a ML model can generalize. In other
words, they measure how accurately the ML model is expected
to predict the output for an input it has never encountered
before. To define this measure, let’s first introduce some
basic concepts. Let x represent an input and F (x) denote
the corresponding output, where F defines the relationship
between inputs and outputs and it is often unknown. The
primary goal of ML training is to develop a model h that
approximates this relationship F . Due to the probabilistic
nature of model training, there is always some error associated
with a model h for a given input x. This means that for
an input x, h(x) will be close to, but not exactly equal to,
F (x). This error can be expressed as a mathematical function
m, which compares the predicted value h(x) with the actual
output F (x), measuring how close they are. This is represented
as m(h(x), F (x)). To evaluate how well the model h performs,
we need to measure the error across all the inputs in the
operational domain where the model is expected to operate.
This is known as the Operational Domain Design (ODD). The
overall error of the model h across the ODD is represented as
E(m(h(x), F (x))), which refers to the expected error of the
model considering all inputs in the ODD. This expected error
is called the out-of-sample error, eout. A key characteristic of
eout is that calculating it requires knowing all the inputs and
outputs (x, F (x)) within the ODD, which can be impractical

or impossible. However, it is possible to compute an approxi-
mation using a subset of N inputs and outputs, and calculate
the expression 1

N

∑N
i=1 m(h(xi), F (xi)), which is called the

in-sample error, ein. The question now is whether, given the
value of the in-sample error, it’s possible to estimate the out-
of-sample error. This question is addressed by the concept of
the generalization gap. It states that with probability greater
than 1−δ, the out-of-sample-error is ϵ-close to the in-sample-
error, as shown in the equation below [5], [18], [19].

Theorem 1 (Generalization Bound): If there are N
identically and independently distributed random variables
m(h(xi), F (xi)), which are bounded on the closed interval
[a, b], then the following inequality holds:

Pr (|ein − eout| ≤ ϵ) ≥ 1− δ,

where δ = 2e
−2Nϵ2

(b−a)2 , eout = E(m(h(x), F (x))), ein =
1
N

∑N
i=1 m(h(xi), F (xi)).

There are several versions of this generalization bound theo-
rem, and the paper [20] provides a comprehensive list of the
existing versions, with Theorem 1 being the simplest and most
general version found in the literature. For instance, it does
not account for the complexity of the ML model architecture,
but it is still useful for the types of problems addressed in
this paper. One way to interpret this theorem is that, with a
probability greater than 1 − δ, the out-of-sample error falls
within the interval [ein − ϵ, ein + ϵ]. An important takeaway
from this expression is how the generalization gap behaves.
For example, if a high level of accuracy is desired, meaning
the interval should be narrower (i.e., making ϵ very small),
the lower bound 1 − δ decreases toward zero. This implies
that there is less confidence that the out-of-sample error will
lie within the interval. One way to boost confidence is by
increasing the number of samples, N , though this can be
costly or impractical. To achieve the right balance between
acceptable confidence, accuracy, and a reasonable sample size
N is essential when using the generalization gap for safety
analysis. In some cases, finding this balance can be tricky,
but the key insight is that it depends on the specific problem
at hand. The next subsection will illustrate how this theorem
applies to a particular problem.

VII. GENERALIZATION BOUND APPLICATION

This section demonstrates the application of the general-
ization gap theorem to analyse the safety impact of the ML
errors of the use case tool. The primary motivation is to
evaluate the safety implications of incorporating ML to show
the complaince of DO-178C objectives [7]. The safety impact
is assessed using a confusion matrix, which highlights two
types of errors—false negatives and false positives—that could
compromise the Means of Compliance (MOC) of Objective 2
in Table A-7 of DO-178C, as shown in Table I.

False negatives do not impact the MOC because if the
test passes and the YOLO-based tool erroneously classifies
it as a failure, DO-178C, Table A-7, Objective 2, states that
“the objective is to ensure that the test results are correct

Test:Pass Test:Fail
YOLO:Pass True positive False positive
YOLO:Fail False negative True negative

TABLE I: Confusion Matrix

and that discrepancies between actual and expected results are
explained.” This means that the test results must be manually
reviewed. During the review, it will be identified that the error
originated from the YOLO-based tool. While this increases the
workload of the testing process, it does not compromise the
MOC. On the other hand, false positives compromise the MOC
because if the YOLO-based tool declares that the test passes
when it actually fails, the tool does not provide evidence to
support this conclusion, and such evidence is not required by
DO-178C. This could create a misleading impression that the
GUI passed the test and met the DO-178C objective 2 from
Table A-7, when in reality, it did not. As a result, there is a
risk of falsely believing that the GUI achieved the required
Design Assurance Level (DAL) when, in fact, it did not. The
key question is: Given that False Positive error is inevitable,
what is the acceptable likelihood of this error to guarantee the
desired DAL for the GUI? To address this question, we will
break it down into two parts: First, Error Calculation, where
we define and calculate the false positive error of the YOLO-
based tool that could compromise the GUI’s desired DAL.
Second, Error and Safety Analysis, where we identify the
conditions under which the calculated YOLO-based tool false
positive error does not undermine the GUI’s desired DAL.

A. Error Calculation

The safety concern arise from the potential for False Positive
to undermine the MOC of Objective 2 from Table A-7. Math-
ematically, False Positive can be represented by an indicator
function, as shown Equation (1), which takes the value of
one if the test fails (F (x) : Fail) while the YOLO-based tool
incorrectly declares a pass (h(x) : Pass), and zero otherwise.

m(h(x), F (x)) =

{
1 if h(x): Pass and F (x): Fail
0 otherwise (1)

With this mathematical expression of m(h(x), F (x)), we can
apply Theorem 1 to this context, where the out-of-sample error
corresponds to the probability of False Positive, and the in-
sample error is the ratio of false positives to the total number
of samples. This leads to the instantiation of Theorem 1 as
follows.

Theorem 2 (Generalization Bound Instantiation): If there
are N identically and independently distributed random vari-
ables m(h(xi), F (xi)) then the following inequality holds:

Pr (|P − Pr(False positive)| ≤ ϵ) ≥ δ′,

where P = Number of false positives
N and δ′ = 2e−2Nϵ2 .

One way to interpret Theorem 2 is that, with a probability
greater than 1−δ′, the out-of-sample error, Pr(False positive),
falls within the interval [P − ϵ,P + ϵ].

B. Error and safety analysis

This subsection outlines conditions that should be met
regarding the YOLO-based tool false positive error to ensure
that the desired GUI DAL is not compromised. The YOLO-
based tool’s false positive error can negatively impact the
MOC of Objective 2 from Table A-7 in DO-178C, potentially
leading to a situation where the YOLO-based tool incorrectly
assesses that Objective 2 has been achieved. This could create
the illusion that the required likelihood of failure for the
GUI has been met, while in reality, the likelihood of a GUI
error is higher because it was concealed by the false positive.
Essentially, the error hides a GUI failure, falsely labeling it
as a pass when it actually did not meet the required criteria.
Now, the key issue is how to ensure that the likelihood of
the tool false positive does not conceal the true likelihood of
a GUI error. One way to guarantee this is by ensuring that
the YOLO-based tool’s false positive error is less than the
required likelihood of the GUI DAL. This can be achieved
using Table II and Theorem 2 as follows: Table II provides
the required likelihood for a specific DAL, while Theorem

DAL SEVERITY LIKELIHOOD
A Catastrophic Extremily improbable]0, 10−9]
B Hazardous Extremely remote [10−9, 10−7]
C Major Remote [10−7, 10−5]
D Minor Probable [10−5, 10−3]

TABLE II: Relationship between probability and severity of
failure conditions (FAA AC-25-1309) [21]

2 gives the upper bound for the unknown probability of
false positives with a probability bigger than 1 − δ, which
depends on the in-sample error P and the accuracy ϵ as follows
Pr(False positive) < P+ϵ. So, together Table II and this upper
bound lead to the values in Table III. These inequalities not

DAL In-sample False positive error
A P + ϵ < 10−9

B P + ϵ < 10−7

C P + ϵ < 10−5

D P + ϵ < 10−3

TABLE III: In-sample error inequalities

only ensure that if a failure occurs, it is due to the GUI’s
required failure likelihood and not the YOLO-based tool’s
false positive error, but also guarantee that the YOLO-based
tool’s false positive error does not compromise the desired
GUI DAL.

In summary, if the YOLO-based tool satisfies the criteria for
Criterion 3, and statistical analysis demonstrates that Table III
has been met for the required GUI DAL, then this approach
provides sufficient evidence to support the application for tool
qualification. This is because Criterion 3 treats the ML tool
as a black box, meaning evidence related to the ML tool’s
training is not required. The primary task is to show that the
system’s DAL is not compromised by the ML tool, which can
be justified using Table III.

VIII. RELATED WORK

Although there have been a lot of discussion about the
certification of ML applications, the qualification of ML-based
tools got little attention from the community until recently.

The qualification of tools used in ML application develope-
ment was discussed in [13]. The approach is mainly follows
DO-330 and tailored the tool classification and leveling to
align with DO-200. It proposed to extend the DO-178C impact
criteria for ML tools. Although we understand the motivation
of aligning ML tool qualification with DO-200, we argue that
the data used in ML developement is much more critical than
the aeronautical databases. The data directly impacts the ML
application. Thus, the tool could insert an error to the airborne
software.

The tool qualification of generative AI and synthetic data
generation was discussed in [14]. A new tool qualification
criteria was proposed for generative AI tools. The DO-200
is used as a reference to justify the proposal. We think it
is important to understand the difference between aeronau-
tical databases and airborne system databases [12]. They are
similar. But due to different safety impact, they are approved
under DO-200 and DO-178, respectively. If the generative AI
and synthetic data generation tools could insert an error to
the airborne software, it is reasonable that they should be
subject to the same stringent requirements as the traditional
development tools.

IX. CONCLUSION

Low-criticality (e.g., TQL-5) ML-based tools can be quali-
fied with the existing DO-330 framework. This is because DO-
330 TQL-5 qualification imposes no requirements on tool de-
velopment process. The qualification is focused on tool usage
and operation. Characteristics of ML (e.g., non-determinism,
generalization error) must be carefully considered and counted
for in the qualification.

REFERENCES

[1] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer,
“Policy compression for aircraft collision avoidance systems,” in 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 2016,
pp. 1–10.

[2] R. A. Amit and C. K. Mohan, “A robust airport runway detection net-
work based on R-CNN using remote sensing images,” IEEE Aerospace
and Electronic Systems Magazine, vol. 36, no. 11, pp. 4–20, 2021.

[3] E. Miccio, P. Veneruso, R. Opromolla, G. Fasano, C. Tiana, and G. Gen-
tile, “Vision-aided sensing pipeline with AI-based vertiport detection for
precision navigation in UAM approach and landing scenarios,” Available
at https://ssrn.com/abstract=5059951, 2024.

[4] T. Pham, “Verification of an artificial neural net model developed
through machine learning (draft),” November 2024.

[5] EASA, “EASA Concept Paper: Guidance for Level 1&2 machine
learning applicationsn,” https://www.easa.europa.eu/en/document-
library/general-publications/easa-artificial-intelligence-concept-paper-
issue-2, March 2024.

[6] ——, “EASA Concept Paper: First usable guidance for Level 1 machine
learning applications,” April 2021.

[7] RTCA DO-178C, “Software Considerations in Airborne Systems and
Equipment Certification,” December 2011.

[8] RTCA DO-330, “Software Tool Qualification Considerations,” Decem-
ber 2011.

[9] ISO 26262, “Road vehicles — Functional safety,” 2018.
[10] J. Serna, S. Diemert, L. Millet, R. Debouk, R. S, and J. Joyce, “Bridging

the gap between ISO 26262 and machine learning: A survey of tech-
niques for developing confidence in machine learning systems,” SAE
International Journal of Advances and Current Practices in Mobility,
vol. 2, no. 3, pp. 1538–1550, 2020.

[11] RTCA DO-200C, “Standards for Processing Aeronautical Data,” June
2024.

[12] J. Marques and A. M. da Cunha, “Use of RTCA DO-330 in aeronautical
databases,” in 2015 IEEE/AIAA 34th Digital Avionics Systems Confer-
ence (DASC), 2015, pp. 1–18.

[13] K. Dmitriev, F. Kaakai, M. Ibrahim, U. Durak, B. Potter, and
F. Holzapfel, “Tool qualification aspects in ML-based airborne systems
development,” in Software Engineering 2023 Workshops. Bonn:
Gesellschaft für Informatik e.V., 2023, pp. 208–221.

[14] H. Glenn Carter, C. Vinegar, V. Terres, and J. Rupert, “Considerations for
tool qualification in flight-critical applications using machine learning,”
in 2024 AIAA DATC/IEEE 43rd Digital Avionics Systems Conference
(DASC), 2024, pp. 1–10.

[15] M. Ibrahim and U. Durak, “State of the art in software tool qualification
with DO-330: A survey.” Software Engineering (Satellite Events), pp.
1–23, 2021.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[17] SAE ARP4754A, “Guidelines for Development of Civil Aircraft and
Systems,” December 2010.

[18] EASA, “Concepts of design assurance for neural networks (CoDANN),”
2020. [Online]. Available: https://www.easa.europa.eu/en/document-
library/general-publications/concepts-design-assurance-neural-networks-
codann

[19] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from
data. AMLBook New York, 2012, vol. 4.

[20] M. Consortium, “EASA research – machine learning application ap-
proval (MLEAP) interim technical report,” European Union Aviation
Safety Agency, Horizon Europe research and innovation programme
report, 5 2023.

[21] FAA, AC 25-1309: Aircraft Systems and Equipment Certification, Wash-
ington, D.C., 2004.

