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Abstract. Contract-based assume-guarantee reasoning can be used to
improve the scalability of model checking by decomposing complex veri-
fication problems. In previous work, we demonstrated this approach for
systems modeled using the Architecture Analysis and Design Language
(AADL) assuming a synchronous model of computation. This allows non-
deterministic ordering of parallel components and generally results in an
over-approximation of real behavior. This paper describes an approach
to incorporating an execution schedule in the assume-guarantee reason-
ing. We define our semantic interpretation of contracts when components
are executed according to this schedule, more accurately reflecting the
behavior of the system implementation. We introduce virtual scheduling
events which tie AADL timing and execution semantics to contracts. A
case study based on a simple unmanned air vehicle surveillance system
is provided to illustrate our approach.

Keywords: assume-guarantee · compositional verification · model check-
ing · model based system engineering · AADL · scheduling semantics

1 Introduction

Formal verification of cyber-physical systems can be a daunting task due to the
state explosion problem [5]. We tackle this challenge from two angles. First, we
use a compositional verification technique [23] [6] to decompose the reasoning
on the global state space into a number of localized problems for each compo-
nent separately. The system proof is constructed from the individual component
proofs. Second, we assume that the components execute in a static sequential
order. We do not consider all possible execution orders; in other words, non-
determinism due to scheduling decisions is excluded. In fact, in many safety-
critical applications the actual implementation executes according to a pre-
defined schedule [2] to achieve real-time performance requirements.

Previous work has not incorporated component execution times or ordering
imposed by a component execution schedule. As a result, an analysis performed
at the model level may produce results that deviate from the actual behavior of
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the system implemented from the model. Our objective is to refine our composi-
tional verification approach to capture this aspect of the design and ensure that
analysis results faithfully represent the system implementation.

The Architecture Analysis and Design Language (AADL) was developed to
capture the important design concepts in distributed real-time embedded sys-
tems [10]. AADL captures both the hardware and software architecture in a
hierarchical format, offering a high degree of flexibility and supporting incre-
mental development in which an architecture is refined to add increasing levels
of detail.

In AADL, an architecture model includes component interfaces, connections,
and execution characteristics, but not component implementations. It describes
the interactions between components and their arrangement in the system, but
the lowest level components themselves are “black boxes.” Their implementa-
tions must be described separately using model-based behavioral specification
languages or traditional programming languages, which may be included by ref-
erence in the architecture model.

In previous work, we developed the Assume Guarantee Reasoning Environ-
ment (AGREE) [8], a language and tool for compositional verification of AADL
models. The behavior of a model is described by contracts [4] specified for each
component. A contract contains a set of assumptions about the component’s in-
puts and a set of guarantees about the outputs. The guarantees of a component
must be true provided that the component’s assumptions are true. The goal of
an AGREE analysis is to prove that each component’s contract is entailed by
the contracts of its subcomponents. Guarantees on a leaf-level component must
be verified to hold by its implementation.

AGREE was originally developed to reason about systems that execute syn-
chronously. These systems have straightforward translations to Lustre [13], a syn-
chronous dataflow language interpreted by the model checkers used by AGREE.
However, many systems that are modeled in AADL do not behave synchronously.
Ideally one can implement a communication protocol between components, such
as Physically Asynchronous Logically Synchronous (PALS) [20], that allows the
abstraction of synchronous communication to be sound. However, for many sys-
tems this is not the case.

In this paper, we extend the AGREE framework to enable the verification
of scheduled AADL models. We introduce virtual scheduling events, which tie
AADL timing and scheduling semantics to AGREE contracts. This enhancement
enables AGREE to take the software execution schedule into account in the
analysis. Furthermore, it enables formal verification of a new class of embedded
system architectures.

This paper is organized as follows. First we illustrate the motivation of our
work using simple examples in Section 2. We then provide an informal description
of our interpretation of the scheduling semantics in Section 3, followed by formal
definitions of the model in Section 4. We present the modeling of the semantics
in the AGREE AADL annex and Lustre backend in Section 6 and Section 7,
respectively. We demonstrate usage of the model in a case study in Section 8.
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Fig. 1. A Simple Feedback System

Related work is presented in Section 9. We discuss our conclusion and future
work in Section 10.

2 Motivating Examples

First, we will illustrate the key semantic difference between the synchronous
model used in the original AGREE framework and the proposed model. Consider
an AADL model that consists of two threads A and B, as shown in Figure
1. All ports are data ports. The behavior of each thread is indicated by its
AGREE contract. The output of thread A is double its input and the output
of thread B increments its input by one. By the synchronous semantics, the
value of signal x and y at computation step n is defined by the solution to
the two equations yn = 2xn and xn = yn + 1, for all n ∈ N . This results in
x = (−1,−1, . . . ), y = (−2,−2, . . . ) for all time. However, if the two threads
execute in a sequential order (ABAB...), letting x0, y0 denote the initial value
of x and y, respectively, an intuitive interpretation of the execution semantics
is y1 = 2x0, x1 = y1 + 1, y2 = 2x1.... If x0 = 0 and y0 = 0, this results in
x = (0, 1, 3, 7, . . . ) and y = (0, 0, 2, 6, . . . ). The example shows that the behavior
of a synchronous model is defined by the solution(s) to systems of mathematical
equations (or inequalities) at each instant, while the behavior of the scheduled
components is defined through iterations over time.

We are aware that the Lustre compiler rejects all syntactic loops. A one-step
delay (the pre operator) could be added between A and B, resulting in an implied
schedule and legal Lustre code. Since an AGREE analysis does not compile the
generated Lustre code but instead interprets it via one of the underlying model
checkers, we do not face the same limitation and can compute a solution for
synchronous execution whenever one exists.

Now consider an AADL model that consists of four threads A,B,C,D, as
shown in Figure 2. Again, all ports are data ports. ThreadA outputs the sequence
of all natural numbers. Threads B and C simply copy their inputs to their
outputs. Thread D subtracts the second (bottom) input value from the first
(top) input value. Given a schedule (ACABD)∗, suppose we want to prove that
the primary output d is a sequence of ones (ignoring the initial prefix). This can
be achieved with the proposed model, since thread B only copies even numbers,
and thread C only copies odd numbers. However, it cannot be proved directly
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Fig. 2. A Simple Downsampling System

Fig. 3. A Simple Integrator AADL Model in AGREE

with the synchronous model, where d is a sequence of zeroes. Note that in the
example, threads B and C essentially downsample the data stream from thread
A. To model this kind of behavior, we require a mechanism significantly more
complex than delays.

Note that if the schedule is (ABCD)∗, the output d is a sequence of zeroes
(ignoring the initial prefix), matching the behavior of the synchronous model.
This indicates that the execution order could have an impact on the system
behavior. As we will show later, our model is not a variant of Kahn Process
Network [15], like Lee’s Synchronous Dataflow [18], where any execution order
results in the same system behavior. Therefore, it makes sense to tie a system-
level property to a specific schedule of the components.

3 Overview of the Model

We now discuss in detail our semantic interpretation of AGREE contracts on
scheduled components. Consider the AADL model of an integrator, shown in
Figure 3. We assume that an execution time slot is assigned to the thread. The
first question that we face is when the contracts shall hold. In a synchronous
model, contracts hold at every instant. However, with scheduled execution, it is
reasonable to assume that the contract may not hold when the component is not
activated. But once it is activated, shall a contract hold throughout the entire
execution or just at certain instants? Second, how shall Input (referred to in the
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contract) be interpreted? One interpretation is that it refers to the input value at
the time when the contract is evaluated, which may vary during the execution.
Another interpretation is that it refers to the input value when the component
starts its execution. In other words, there is a notion of sample and hold. This
interpretation is consistent with the frozen inputs described in the AADL V2
standard. Third, how shall the prev operator be interpreted? In a synchronous
model, it refers to the previous instant. However, with scheduled execution, it
seems reasonable to interpret prev as the previous activation (i.e. the value when
the component was last activated). If the contracts hold throughout the activa-
tion, a more sensible interpretation is that at the first instant during activation,
it refers to the previous activation. Then at each following instant, it refers to
the last updated value in the current activation. This interpretation is adopted
in the activation condition in SCADE [9] and the clock mechanism in SIGNAL
[3].

We believe that AGREE contracts are intended to model requirements [26],
not implementations. Guarantees model the component requirements, and as-
sumptions model the environmental constraints that are used to verify the
component requirements. Following the AADL input-compute-output model, as-
sumptions are said to hold at the start of the execution (i.e. dispatch) when the
inputs are read. The guarantees shall be satisfied at the end of the execution (i.e.
complete) when the outputs are written. This interpretation has a few implica-
tions. First, since we adopt the AADL frozen inputs concept, any reference to
Input refers to the input value that was read in at dispatch. Second, a compo-
nent’s assigned time slot does not necessarily exactly match its execution time
window. If the time slot is greater than its execution time, we interpret the start
and end of the time slot as dispatch and complete, respectively. Otherwise, we
claim that a preemption has occurred. Third, each contract is examined exactly
once in each activation. Thus, we interpret the prev operator as the previous
activation. Fourth, the guarantees are not models of the transient behavior dur-
ing an execution. Instead, we interpret them as constraints on the steady-state
outputs at the end of activation.

We assume that the requirements do not contain real-time constraints. Mod-
eling such constraints in AGREE is discussed in [1]. However, this does not mean
that AGREE contracts cannot model timer based requirements. In practice, a
timer is usually implemented as a counter, whose limit (constant) is calculated
based on the frequency of its execution. The counter is activated periodically
and increments by only one during each activation, independent of the execu-
tion time. This is consistent with our interpretation.

Thus, for each component we introduce two distinctive events, dispatch and
complete, to model the start and end of its activation, respectively. Similarly, for
a system (consisting of components), the two events model the start and end
of a scheduling cycle. The two events shall appear in pairs and alternate, with
dispatch appearing before complete. We introduce the notion of well-ordered in
Section 4 to capture this pattern.
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In SCADE and SIGNAL, when a component is not activated, its outputs re-
tain their previous values. We extend this output freeze time window to complete
events, including activation. We understand that in practice the actual output
values may change during activation. We choose this because we interpret the
guarantees as steady-state requirements of outputs at complete. Output values
between dispatch and complete are undefined. Thus, we model them using the
last output values, so that the outputs are well-defined at every instant.

We inherit the same notion of composition used in the current AGREE frame-
work. A connection between two components means their contracts refer to the
same signal. This, combined with a schedule and the output freeze rule, essen-
tially simulates communication based on shared variables. When the producer is
not activated, its outputs hold the last values. When the consumer is activated, it
reads the last values from the producer. The communication may also be viewed
as a FIFO queue, where the queue size is one. This means the proposed model
only supports limited AADL event data port communication.

We only consider single-machine schedules. The scheduler ensures that at
most one component is activated at a time. For a preemptive schedule, we require
that a component can only be preempted by another component if they do not
have connections. Thus, there is no ambiguity on the order of read and write or
the variable value referenced in the contracts.

We assume that the system-level inputs do not change values throughout
a scheduling cycle. In practice, this means that there may exist a queue that
holds the system-level input messages, which are periodically sampled by the
components, or the inputs may come from another system, which is inactive
while the system under consideration is active.

The input freeze rule may imply that the assumptions could be examined at
complete, instead of dispatch. Thus, we may not really need the dispatch event.
We keep it mainly for two reasons. First, the assumptions in general could de-
pend on previous outputs. In our model, the outputs are updated at complete. So
the output values at dispatch may be different from the values at the correspond-
ing complete. Therefore, it is important to distinguish between the two events to
avoid ambiguity of the output values. Second, keeping the pair (dispatch, com-
plete) may help users to better understand the AGREE counterexample trace,
particularly with a preemptive schedule.

The original schedule is often specified in the form of a sequence of time
slots assigned to the components. The schedule could come from an AADL real-
time scheduling tool such as Cheddar [25], or from a scheduler provided by an
RTOS/Microkernel vendor, such as seL4 [17]. To properly model the schedule
in AGREE, the component execution time has to be considered. Consider the
example shown in Figure 4 with two scheduled components A and B. We refer
to the original schedule and its model in AGREE as the real-time schedule and
AGREE schedule, respectively. Given the same real-time schedule, due to the
different execution time CA of A, two different AGREE schedules are created.
In Figure 4(a), since CA is equal to the time slots assigned to A, the end of the
each time slot is modeled as complete. In Figure 4(b), since the first time slot
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Fig. 4. Models of Real-Time Schedule in AGREE

assigned to A is less than its execution time, the end of the first time slot is
interpreted as preemption, instead of complete.

4 Formal Definitions

In this section we formally define the proposed model.

Signal. A signal x is a function x : N → V , where N is the set of natural
numbers including zero, and V is a value set. A signal is Boolean if the value set
is the Boolean domain. We use x(n) to denote the value of signal x at instant n.

Port. Let Q be a set of ports. For each port q ∈ Q, a set Vq denotes the values
that may be assigned to port q. A signal xq at port q is a function xq : N → Vq.
A trace σQ of Q is an assignment of a signal xq to each port q in Q. We use ΣQ
to denote the set of all traces of Q. Given a set Q′ ⊆ Q, the projection of a trace
σQ onto Q′ is the assignment of signal xq to each port q in Q′, as defined in σQ.
We denote the projection as σQ|Q′ .

Dispatch and Complete. Two Boolean signals dispatch and complete are well-
ordered if

1. ∀n ∈ N, dispatch(n) 6= 1 ∨ complete(n) 6= 1,
2. ∀n ∈ N, dispatch(n) = 1 =⇒ ∃m ∈ N,m > n, complete(m) = 1,
3. ∀m ∈ N, complete(m) = 1 =⇒ ∃n ∈ N,n < m, dispatch(n) = 1,
4. ∀n,m ∈ N,n < m, dispatch(n) = 1 ∧ dispatch(m) = 1 =⇒ ∃k ∈ N,n <
k < m, complete(k) = 1.

5. ∀n,m ∈ N,n < m, complete(n) = 1 ∧ complete(m) = 1 =⇒ ∃k ∈ N,n <
k < m, dispatch(k) = 1.

The first condition requires that dispatch and complete are mutually exclu-
sive. The second and third conditions state that dispatch and complete appear
in pairs, and in each pair dispatch appears before complete. The fourth and fifth
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conditions ensure that dispatch and complete appear alternately. From here on
we only consider a well-ordered pair (dispatch, complete).

An interval δ of a pair (dispatch, complete) is a set of integers [n,m] ∩
N,n,m ∈ N,n < m, satisfying:

1. dispatch(n) = 1,
2. complete(m) = 1,
3. ∀k ∈ (n,m) ∩N, dispatch(k) = 0 ∧ complete(k) = 0.

We denote the set of all such intervals as ∆.

Component. A (scheduled) component c is a tuple (Ic, Oc, Ac, Pc, dispatchc, completec),
where:

– Ic is a finite set of ports, called inputs,
– Oc is a finite set of ports disjoint from Ic, called outputs,
– Ac and Pc are two past-time LTL formulas on a trace σc ∈ ΣIc∪Oc , called

assumptions and guarantees, respectively,
– (dispatchc, completec) is a pair of well-ordered Boolean signals.

The behaviors of a component c are a set Σc ⊆ ΣIc∪Oc , such that ∀σc ∈
ΣIc∪Oc , σc ∈ Σc if and only if the following propositions hold:

The assumptions hold at dispatch. That is,

dispatchc(n) =⇒ (σc, n) |= Ac,∀n ∈ N. (1)

Inputs freeze between dispatch and complete. That is,

x(i) = x(j),∀i, j ∈ δ ∩N, ∀δ ∈ ∆, ∀x ∈ σc|Ic . (2)

The guarantees hold at complete. That is,

completec(n) =⇒ (σc, n) |= Pc,∀n ∈ N. (3)

Outputs freeze between completes. That is,

¬completec(n) =⇒ y(n) = y(n− 1),∀n ∈ N,n > 0,∀y ∈ σc|Oc . (4)

Equation 1, 2, 3, and 4 represent the specification of a scheduled component.

Connection. Two components c, c′, c 6= c′ are said to be connected if

Oc ∩ Ic′ 6= ∅ ∨Oc′ ∩ Ic 6= ∅. (5)

Note that by definition the intersection of a component’s inputs and outputs is
empty. Thus, we forbid a component from connecting to itself.

Schedule. Let C be a finite set of components, a schedule φ of C with length
T ∈ N is a partial function [1, T ]∩N → C×{Dispatch,Complete}, where Dispatch
and Complete are two strings, satisfying:
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1. ∀i ∈ dom φ, c ∈ C, φ(i) = (c,Dispatch) =⇒ ∃j ∈ dom φ, j > i, φ(j) =
(c,Complete),

2. ∀j ∈ dom φ, c ∈ C, φ(j) = (c,Complete) =⇒ ∃i ∈ dom φ, i < j, φ(i) =
(c,Dispatch),

3. ∀i, j ∈ dom φ, i < j, c ∈ C, φ(i) = (c,Dispatch) ∧ φ(j) = (c,Dispatch) =⇒
∃k ∈ dom φ, i < k < j, φ(k) = (c,Complete),

4. ∀i, j ∈ dom φ, i < j, c ∈ C, φ(i) = (c,Complete) ∧ φ(j) = (c,Complete) =⇒
∃k ∈ dom φ, i < k < j, φ(k) = (c,Dispatch),

5. ∀i, j ∈ dom φ, i < j, c, c′ ∈ C, c 6= c′, φ(i) = (c,Dispatch)∧φ(j) = (c′,Dispatch)∧
∀k ∈ dom φ, i < k < j, φ(k) 6= (c,Complete) =⇒ c, c′ are not connected,

6. ∀i, j, k ∈ dom φ, i < j < k, c, c′ ∈ C, c 6= c′, φ(i) = (c,Dispatch) ∧ φ(j) =
(c′,Dispatch) ∧ φ(k) = (c,Complete) =⇒ ∃n ∈ dom φ, j < n < k, φ(n) =
(c′,Complete).

The first four conditions ensure the pair (Dispatch, Complete) associated with
a component is well-ordered in a schedule. The fifth condition allows a component
to be preempted by another component if the two have no connection. The sixth
condition ensures that the scheduling events of two components are interleaved
in a proper order. A schedule is minimal if φ is a total function. This means
that at each instant there is either a dispatch or a complete. A schedule is fair
if φ is surjective. This means that every component is scheduled to execute at
least once. If a schedule is minimal and non-preemptive, we could simplify the
notation and denote the schedule as a function that maps [1, |C|] ∩N to C, as
shown in the previous examples.

Given a schedule φ of components C, the dispatch and complete signals of
each component c ∈ C are defined as follows: ∀i ∈ N ,

dispatchφc (i) =

{
1, if φ(i mod T ) = (c,Dispatch)

0, otherwise
, (6)

completeφc (i) =

{
1, if φ(i mod T ) = (c,Complete)

0, otherwise
. (7)

System. A set C of components are said to be compatible if no two components
share the same output. That is,

∀ci, cj ∈ C, ci 6= cj , Oci ∩Ocj = ∅. (8)

A system S is a tuple (C, φ, Is, Os, As, Ps, dispatchs, completes), where:

– C is a set of compatible, scheduled components,
– φ is a schedule of C,
– Is = ∪∀c∈CIc − ∪∀c∈COc,
– Os = ∪∀c∈COc,
– As and Ps are two past-time LTL formulas on a trace σs ∈ ΣIs∪Os

, called
system-level assumptions and guarantees, respectively,
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– dispatchs(i) =

{
1, if i mod T = 1

0, otherwise
,∀i ∈ N ,

– completes(i) =

{
1, if i mod T = 0

0, otherwise
,∀i ∈ N, i > 0.

We have Is ∪ Os = ∪∀c∈C(Ic ∪ Oc). The behaviors of a system S are a set
Σs ⊆ ΣIs∪Os

, such that ∀σs ∈ ΣIs∪Os
,

σs ∈ Σs ⇐⇒ ∀c ∈ C,∃σc ∈ Σc, σs|Ic∪Oc
= σc. (9)

Informally, a trace of a system’s ports is a behavior of the system if and only if
its projection onto any component’s ports is a behavior of the component. This
implies that a system behavior maps the connected ports to the same signal. We
use δs to denote an interval of the pair (dispatchs, completes). And we use ∆s to
denote the set of all such intervals. Given a system S and a trace σs ∈ ΣIs∪Os

,
we define the following propositions:

The system-level assumptions hold at dispatch. That is,

dispatchs(n) =⇒ (σs, n) |= As,∀n ∈ N. (10)

Inputs freeze between dispatch and complete. That is,

x(i) = x(j),∀i, j ∈ δs ∩N, ∀δs ∈ ∆s,∀x ∈ σs|Is . (11)

The system-level guarantees hold at complete. That is,

completes(n) =⇒ (σs, n) |= Ps,∀n ∈ N. (12)

Equations 10–12 represent the system specification of a set of scheduled com-
ponents. Our verification goal is to prove that the system behaviors satisfy the
system specification. Note that we do not define the system output freeze rule.
This is because (in our context) the system under consideration is always active.
The rule would make sense in the assume-guarantee reasoning at a higher level in
the hierarchy, where the system is viewed as a periodically activated component.

5 Assume-Guarantee Reasoning

Scheduled components lend themselves to hierarchical assume-guarantee reason-
ing in a manner similar to that in [26]. The verification conditions to prove a
system of unscheduled components correct are formalized in past-time linear
temporal logic (PLTL) [16]. The two PLTL operators necessary for the verifica-
tion conditions are G (globally) and H (historically). These are defined over a
trace of the system, π, and a moment of evaluation in the trace, i, as follows:

(π, i) |= G(f) ⇐⇒ ∀j ≥ i, (π, j) |= f

(π, i) |= H(f) ⇐⇒ ∀0 ≤ j ≤ i, (π, j) |= f
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Globally is invariant from the current moment into the future and historically is
invariant from the beginning to the current moment.

We define Ic to be the set of components providing input to some component
c in the system, and we define O to be the set of components that provide the
output for the system. An unscheduled system, S = (I,O,A, P ), is correct if
and only if for all π and for all i ≥ 0 the following holds:

∀c ∈ C G(H(A ∧
∧
c′∈Ic Pc′) =⇒ Ac)∧

G(H(A ∧
∧
c′∈O Pc′) =⇒ P )

The first condition checks the input assumptions on each component under the
system assumptions and upstream component guarantees. The second checks the
output guarantees of the system under the system assumptions and component
guarantees providing the output. If both conditions hold, then the system is said
to be correct, meaning that G(H(A) =⇒ P ) holds.

The verification conditions are extended to scheduled components by adding
a notion of dispatch and complete to the verification conditions. We define a
predicate same(X) that is true in the first moment, and after that, true at any
moment if and only if the signals in the set X are unchanged from the previous
moment. We also define the predicate δφc to be true if the current moment is in
a dispatch interval for the component c according the schedule.

The assumptions in a scheduled component must hold at dispatch, and the
guarantees of the same component must hold at complete. A component also as-
sumes that its inputs are invariant through the dispatch interval and it guaran-
tees that the outputs are invariant between complete cycles. These requirements
are captured in the following predicates where x is a component:

Dφx(Ax) =
[(

dispatchφx ∧Ax
)
∨
(
δφx ∧ same(Ix)

)]
Cφx(Px) =

[(
completeφx ∧ Px

)
∨
(
¬completeφx ∧ same(Ox)

)]

Dφx(Ax) relies on the scheduling interval, δφx , for the input assumption to hold.
The guarantee on the output hold is more direct relying only on the current
value of completeφx.

A scheduled system, S = (C, φ, I,O,A, P ), is correct if and only if for all π
and for all i ≥ 0 the following holds:

∀c ∈ C G
[
H
(
DφS (A) ∧

∧
c′∈Ic C

φ
c′ (Pc′)

)
=⇒ Dφc (Ac)

]∧
G
[
H
(
DφS (A) ∧

∧
c′∈O Cφc′ (Pc′)

)
=⇒

(
completeφs ∧ Ps

)]
Here the system itself has a dispatch cycle in the schedule as discussed in the prior
section. The first set of verification conditions, one condition in the set for each
component, checks compatibility between connected components. Component
outputs that are consumed by downstream components as inputs must have
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Fig. 5. Modeling of Scheduling Semantics in AGREE

guarantees strong enough to satisfy input assumptions at dispatch. These must
also respect the input freeze required by the consuming component.

The second condition is for the system outputs. Components producing sys-
tem outputs must have guarantees strong enough to imply that the system guar-
antees hold at complete. Unlike components though, there is no output hold
requirement for the system because outputs appear depending on when com-
ponents producing those outputs complete. As before, if all of the verification
conditions hold, then a scheduled system is said to be correct. Correct means

that for the schedule φ′, G
[
H
(
Dφ′S (A)

)
=⇒ Cφ′S (P )

]
holds. Here the internal

components of the system are completely abstracted away, and the system itself
is just some scheduled component in φ′ belonging to a larger system.

6 AGREE Model

The scheduling semantics can often be directly modeled in the AADL AGREE
annex. At the component level, this requires introducing two Boolean variables
dispatch and complete, augmenting the original assumptions and guarantees with
dispatch and complete, respectively, and adding additional guarantees to enforce
the output freeze rule. We often omit the assumptions of frozen inputs, as they
are trivially satisfied by the schedule definition, the output freeze rule, and the
system-level assumptions.

Figure 5 shows a simplified AADL model originally developed on the DARPA
CASE program [19]. The first two guarantees are added to freeze the outputs
between completions. Also the original contract (the assumption and the third
guarantee) are augmented with dispatch and complete. In practice, we find that
direct modeling is helpful to clarify the semantics with users. However, in general
it could be a complex task, particularly if the contracts depend on past history.
In the next section, we will discuss how the Lustre backend model is used to
handle the general case.
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Fig. 6. Modeling Schedule with Circular Counter in AGREE

At the system level, we use a circular counter to model a cyclic schedule
in AGREE. The counter updates at every instant. Once it reaches the limit, it
resets to one at the next instant. We set the limit to the period of the schedule.

Based on the current count, the counter triggers a corresponding scheduling
event. Figure 6 shows an AGREE model of the schedule (ABACD).

7 LUSTRE Backend Model

AGREE translates an AADL model and its annotated contracts into a dialect
[12] of the Lustre language, and then queries a user-selected model checker to
perform the verification. The dialect includes an expression called condact, which
is similar to the activation condition in SCADE. It clocks a node call expression
as follows: condact(cond, node(node inputs, node outputs), init outputs). If the
Boolean signal cond is true, the clocked node node is activated and updates its
local and output signals. Otherwise, the node keeps the previous value of the
local and output signals. Before the first activation, the node outputs values are
set to init outputs. We are aware that the standard Lustre language introduced
similar temporal operators like when and current. We use condact simply because
it is supported by our default model checker JKind [12].

AGREE translates an AADL thread to a Lustre node in a constraint style,
in which the thread input and output ports are both mapped to the node input
signals. Thus, the condact expression does not automatically freeze the thread
outputs. We add assertions to enforce the output freeze rule, and we use the
thread complete signal to clock the node. The complete signal is triggered by the
circular counter shown in Figure 6. Figure 7 shows an example of using condact
to model a scheduled AADL thread.
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Fig. 7. Modeling Scheduling Semantics with condact in Lustre

Fig. 8. UAV Software Architecture Model in AADL

8 Case Study

The approach presented in this paper was applied to the BriefCASE toolchain [7],
which was developed on the DARPA CASE program to assist engineers in the
design of inherently cyber-resilient embedded systems. As part of the demon-
stration effort, a UAV surveillance system architecture was modeled in AADL.
Figure 8 shows the architecture of the UAV mission computer software, which
receives commands from a ground station to conduct surveillance along a geo-
graphical feature, such as a river. The software generates a flight plan adhering
to a set of keep-in and keep-out zones, which is then sent to the UAV flight
controller.

The baseline design included the UxAS [24] flight planning component, way-
point plan manager, UART driver, radio driver, and fly-zone database. These
components were associated with varying levels of trustworthiness. In particu-
lar, UxAS was treated as blackbox software and deemed potentially security-
compromised since it was an open-source component developed by a third party.
BriefCASE includes tools that analyze architecture models and generate require-
ments corresponding to vulnerabilities in the design. The BriefCASE cyber-
resiliency tool was then used to address the requirements by transforming the
model, thereby mitigating the corresponding vulnerabilities. The transforma-
tions inserted eight high-assurance components into the model including an
attestation manager, attestation gate, two monitors, and four filters. AGREE
behavioral specifications for these components were provided, describing their
intended functionality.

The hardened model (baseline plus high-assurance components) contained 13
threads, all of which were mapped to a single mission computer processor running
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Fig. 9. Model of Assumptions and Well-formedness Properties in AGREE

the seL4 microkernel (chosen for its formally verified separation guarantees). An
seL4 domain schedule was added to the model with all threads designated to run
once per scheduling cycle with a period of 500 ms. The processor time allocated
to each thread ranged from 2 ms (filters and monitors) to 100 ms (UxAS).
The verification goal was to prove that the key system security properties were
satisfied by the hardened model with the components executing according to the
seL4 domain schedule.

We note that although event and event data ports were used in the UAV
AADL model, they were intended to model the event-triggered execution of
periodic threads. In addition, since each thread executed once every scheduling
cycle, the number of queued events or data was always equal to or less than one,
making this model suitable for the application of our modeling framework.

The following system-level security properties were to be verified in the pres-
ence of the seL4 domain schedule: (a) the output UART and RF messages are
well-formed, (b) the system only responds to trusted sources, and (c) the way-
points generated are geo-fenced. The encoding of the well-formedness property
and its assumptions is shown in Figure 9.

Our framework was able to prove these properties in less than 2 minutes on
a PC with 2.6 GHz CPU and 32 GB RAM. The verification results are shown
in Figure 10.

The case study is reflective of a development workflow in which we first verify
that the component contracts hold under a synchronous dataflow model. As the
design is refined and an execution schedule for each component is specified, we
want to show that the system properties continue to hold. Our new framework
enables such verification, providing assurance of intended behavior at runtime.

9 Related Work

The AADL standard by itself does not have a well-defined execution semantics.
In order to formally verify an AADL model, it is often translated to a formal
model, like timed automata [11], Lustre [14], and Real-Time Maude [22]. Then
a formal method is applied to analyze the translated model.
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Fig. 10. Use Case Verification Results in AGREE

In aadl2sync [14], the AADL behavior models are translated to synchronous
programs mainly for simulation. aadl2sync uses activation condition to model
sporadic execution of software components. By contrast, our proposed framework
focuses on simulating detailed timed behavior in the presence of clock drift.
Moreover, we focus on the formal verification of system properties based on
component requirements, which in general do not completely define component
behavior.

Metzler et al. [21] use an iterative and incremental approach to prove safety
properties of concurrent programs. Their technique starts with a proof under
a specific schedule, and then in each following iteration gradually relaxes the
scheduling constraints. The iteration stops when all possible executions are ex-
plored or a counterexample is generated. Unlike our component model, their
programs are “white boxes”, allowing their schedule to interleave instructions
between programs. In comparison, our basic scheduling unit is a software thread.
In each iteration, the model checking problem is still challenging. In this context,
our compositional verification approach makes sense.

10 Conclusion and Future Work

Based on the AGREE framework, we presented an approach to assume-guarantee
reasoning with scheduled components. The proposed model of computation dif-
fers from the synchronous model used in the current framework. We introduced
virtual scheduling events to tie the AADL execution semantics to AGREE con-
tracts. Our approach was applied to the compositional verification of a UAV
model developed on the DARPA CASE program.

In the proposed model, the queue associated with an AADL event or event
data port is limited to size of one. This limitation is due to our domain of
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interest. One interesting future task is to extend the modeling framework to
allow a larger queue size. Given a balanced schedule, the maximum size of each
queue is a constant that can be calculated from the schedule.
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