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Abstract 

Zero trust (ZT) is an emerging initiative that focuses on securely 

providing access to resources based on defined policies. The core 

tenet of ZT is “never trust, always verify”, meaning that even within 

trusted zones of operation, resource access must be explicitly granted. 

ZT has proven effective in improving the security posture in domains 

such as information technology infrastructure; however, 

additional research and development is needed to define and apply 

zero trust principles to cyber-physical system domains. To work 

toward this objective, we have identified an initial set of ZT 

architectural patterns targeted specifically at cyber-physical systems.  

We created ZT architecture patterns in the Architecture Analysis and 

Design Language (AADL), a modeling language that enables 

engineers to describe the key elements of embedded system 

architectures using a well-defined semantics.  The patterns are 

implemented as a library of ZT components that can be made 

available to system engineers.  Utilizing AADL capabilities, 

engineers can model a system in AADL and apply one or more of 

these ZT patterns to improve the system security posture based on 

specific system requirements. To demonstrate our approach, we apply 

the ZT patterns to an unmanned aerial vehicle surveillance 

application.  The resulting design provides inherent protection from a 

variety of attacks affecting system confidentiality, integrity, and 

availability.  

Introduction 

Cyber-physical systems (CPS) are complex systems comprised of 

various hardware and software components. These components 

communicate to provide the overall behavior that satisfies system 

requirements. However, the scale and complexity of these systems 

can give rise to various cyber vulnerabilities. Adversaries can exploit 

such vulnerabilities and cause catastrophic consequences resulting in 

system damage, loss of infrastructure, failure of critical missions, 

financial impact, etc. For instance, in 2015, security researchers 

demonstrated gaining control of a Jeep remotely and shutting it down 

while being driven on the highway. Another recent incident suggests 

a group of attackers were able to steal several vehicles by gaining 

access to the keyless entry and start system [1]. Aircraft, being a class 

of CPS, are not immune to such cyber vulnerabilities; a recent report 

suggests that the aviation industry is facing a growing wave of cyber-

attacks [2].  Hence, it becomes paramount to develop tools and 

technologies that improve CPS security.   

Zero Trust (ZT) is an emerging initiative that focuses on securely 

providing access to resources based on defined policies. The core 

tenet of ZT is “never trust, always verify”, meaning that even within 

trusted zones of operation, resource access must be explicitly granted. 

ZT has proven effective in improving the security posture in domains 

such as information technology (IT) infrastructure, however, 

additional research and development is needed to define and apply 

zero trust principles to cyber-physical system domains such as 

aerospace.  

A reference architecture for zero trust is provided in [3]. The work 

presented in [4] also provides a detailed description of zero trust 

architecture. It describes the core ZT tenets, variations in ZT 

architectures, and their applicability from the perspective of IT 

infrastructure. Authors in [5] discusses the importance of cyber 

security in various domains and the need for better technologies to 

address it. As per their research, zero trust is a key emerging 

technology that changes the cybersecurity approach; however, more 

work is needed to apply ZT to specific domains. Work presented in 

[6] provides a new zero trust model for embedded systems. In this 

work, the author discusses the importance of a separation 

environment using ZT principles to provide improved security. 

Additional research presented in [7] provides a security and safety 

risk analysis method based on zero trust. This work discusses the 

importance of safety and security design weakness identification at 

an early stage. This research provides a framework called the 

Multidisciplinary Early Design Risk Assessment Framework 

(MEDRAF) for performing early risk assessment including both 

safety and security aspects. 

Based on our research, no tools or methods currently provide a means 

to model system architectures using ZT patterns. Specifically, we 

lack consensus on a definition of ZT that is applicable to CPS. In 

addition, once defined, how does the resulting approach become 

useful for the CPS domain? To work toward these objectives, the 

paper provides the following contributions: 

1. We have identified an initial set of ZT mechanisms targeted 

specifically for cyber-physical systems.   

2. We created corresponding ZT architecture patterns in the 

Architecture Analysis and Design Language (AADL), a 
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modeling language that enables engineers to describe the key 

elements of embedded system architectures using a well-defined 

semantics [8].  

3. The patterns can be implemented as a library of ZT components 

that can be made available to system engineers. Utilizing AADL 

capabilities, engineers can model systems in AADL and apply 

one or more of these ZT patterns during the system design phase 

to improve the overall system security posture based on specific 

system requirements.  

4. To demonstrate our approach, we apply the ZT patterns to an 

unmanned aerial vehicle (UAV) surveillance application and 

discuss how the inclusion of our ZT mechanisms can prevent 

cyber-attacks from affecting the security of the overall system. 

 

We have utilized AADL as the design language to achieve our 

objective of implementing identified ZT patterns. AADL is an 

architecture language that enables modeling of real-time distributed 

embedded systems while capturing important design concepts [9]. 

Therefore, it is well suited to model avionics system models, for 

example. AADL provides the ability to capture both hardware and 

software architecture details hierarchically. Hardware components 

include memory, buses, processors, and devices whereas software 

components include processes, threads, subprograms, and data. In 

addition, the language provides the ability to define data flows, 

connections, interfaces, and properties. AADL provides a high degree 

of flexibility that enables incremental model-based development such 

that the architectures and the components can be refined over time. 

The Open Source AADL Tool Environment (OSATE) [10] is the 

reference framework for AADL, which we use to build our UAV 

surveillance system and represent our library of ZT patterns. 

 

Although our ZT pattern library can be used as a collection of 

reference models for the manual composition of cyber-resilient 

architectures, we envision the library being integrated with a 

cybersecurity-focused development toolchain such as BriefCASE 

[11]. BriefCASE includes tools for analyzing an architecture model 

for cyber vulnerabilities, mitigating the vulnerabilities by applying 

automated model transformations, synthesizing provably correct 

code, and automatically generating a cybersecurity assurance case 

using elements found within the model as supporting evidence.  With 

BriefCASE, if a new requirement specifies the need for an additional 

ZT protection, the tool can automatically modify the architecture 

model with the corresponding ZT pattern.  BriefCASE will then 

produce design assurance that each ZT mechanism in the model has 

been inserted correctly (e.g., the ZT component cannot be bypassed) 

using the Resolute assurance tool [13].  This novel approach to 

designing inherently cyber-resilient CPS was developed on the 

DARPA CASE program with the goal of equipping systems 

engineers with new tools and methods to reason about cybersecurity 

concerns in high-assurance systems. 

 

The paper is organized as follows. First, we provide a brief 

background on ZT. Next, we discuss the identified ZT mechanisms in 

detail, and propose a corresponding AADL pattern for each. We next 

provide details of our approach using an experimental UAV model. 

Finally, we provide a conclusion and discuss future work. 

Zero Trust Background 

Zero Trust is a “cybersecurity strategy developing an architecture that 

requires authentication or verification before granting access to 

sensitive data or protected resources at a financial cost by reducing 

data loss and preventing data breaches” [3]. Zero trust relies on 

several core tenets such as: assume a hostile environment (all devices 

and networks are considered untrusted); presume breach (presence of 

an adversary is considered within the operational environment and 

proactive scrutiny is performed for access and authorization); never 

trust, always verify (access is only provided to a resource after 

explicitly authenticating the device); scrutinize explicitly (change 

access policies of resources dynamically based on confidence levels 

and actions); and apply unified analytics (use analytics to improve 

and support access policies). These are discussed in [3], an emerging 

initiative that is being explored by a collaborative effort between 

DOD CIO, National Security Agency (NSA), DISA, and US Cyber 

Command (USCYBERCOM).  

     

 

Figure 1.  Zero trust architecture concept. 

Figure 1 represents the basic structure of a zero-trust architecture. 

Here, an untrusted entity requires access to a resource. The policy 

decision and enforcement point (PD/PEP) receives the access request 

and provides a decision whether to allow or deny access to the 

requested resource. This decision is based on authentication and 

authorization policies. In addition, the PD/PEP also receives 

information from the environment and other systems that can be 

utilized in augmenting the decision process. For instance, in order to 

identify if the requester is a legitimate entity, the PD/PEP can collect 

device information and match it with the existing device identities in 

its database. 

Identified ZT Mechanisms  

Zero trust mechanisms provide a means of improving the security of 

the overall system. When included in an architecture model they can 

result in a more cyber-resilient system. In addition, their usage in the 

model depends on several factors such as level of security needed to 

be achieved, the number of critical resources to be protected, 

available budget to deploy in order to protect resources from security 

threats, infrastructure maintenance cost, etc.  In this section, we 

describe the ZT mechanisms that support our approach, as well as 

document their representation in AADL. 

Secure Data Load 

Secure data load ensures that data load authenticity and integrity is 

maintained. This consists of two components, encryption and 

decryption. Both components maintain data authenticity and integrity 

during individual phases of the data load process. We describe each 

of these components in detail as follows: 

Encryption 

The purpose of an encryption mechanism is to ensure data 

authenticity and integrity by encrypting data at the point of 

origination. Figure 2 shows the encryption mechanism, which 

consists of an Encryption_Manager and an 

Encryption_Policy component. Rules for encryption are 

defined as a security policy in the Encryption_Policy 

component. Based on these rules, when data is received at its input 
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port, the Encryption_Policy triggers the 

Encryption_Manager to perform encryption. The 

Encryption_Manager utilizes the Cryptographic_Keys 

and Cryptographic_Algorithm to encrypt the data and sends 

it back to the Encryption_Policy component, which then 

passes the encrypted data as output.  

 

Figure 2. Encryption mechanism architecture. 

Figure 3 shows the AADL textual representation of the encryption 

mechanism. In AADL, there is no agreed-upon way to model the 

communication protocol details. AADL provides a bus element for 

modeling physical buses. These buses are utilized to represent the 

connections and information flow between different components in 

the system model. However, implementation details (e.g., whether 

the bus provides secure data transfer) cannot natively be specified on 

buses without applying a custom property association. Moreover, 

elements that could represent details (such as layers of the 

communication stack) are not defined in a standard way. From the 

communication protocols standpoint, we know that the application 

layer of the TCP/IP protocol is responsible for performing the 

encryption/decryption mechanisms on the messages that are being 

transferred. We have modeled such mechanism using virtual buses in 

AADL (lines 36-39). First, we bound these buses to individual 

physical buses (lines 57-59) to represent the application layer in the 

communication protocol that is responsible for data security. Next, 

the connections that are supposed to carry encrypted messages within 

the system are bounded to these virtual buses, meaning only the 

connections which are bound to the virtual buses can carry encrypted 

information in order to support the functionality of application layer 

protocols such as SSL/TLS (lines 60-62). The connections which are 

directly bound to physical buses, or any other buses cannot be 

considered secure. Although, it is possible to model a complete 

network stack in AADL we have decided to keep our implementation 

simple and used AADL property associations to capture the 

necessary aspects of encryption. 

 

Figure 3. AADL representation of the encryption mechanism. 

Decryption 

Figure 4 represents the decryption mechanism architecture. The 

purpose of decryption is to securely decrypt data at its destination 

into its original form. The architecture of the decryption mechanism 

is similar to encryption, however, instead of 
Encryption_Policy and Encryption_Manager 

components, it utilizes a Decryption_Policy and a 

Decryption_Manager to perform the necessary operations. 

Once, encrypted data appears at the input port of the decryption 

mechanism, it decrypts the encrypted data using the 
Cryptographic_Keys and Cryptographic_Algorithm 

contained in the Decryption_Manager component. The 

decrypted data is then passed as an output via the 

Decryption_Policy component of the decryption mechanism. 

 

Figure 4. Decryption mechanism architecture. 

The AADL textual representation of the decryption mechanism is 

similar to the encryption mechanism and therefore is not shown here. 

Attestation 

An attestation component ensures software authenticity and integrity. 

Figure 5 shows the attestation mechanism. It utilizes two sub-

components, Secure_Boot and Measured_Boot, to perform 

attestation. The rule for a successful attestation is defined by the 

Attestation_Policy.  root_of_trust is used as an input 

for both secure and measured boot. These processes generate 

individual data structures such as validation and quote. The 

validation message contains information regarding software 

integrity. This could represent binary information that corresponds to 

software authenticity and integrity. quote is a data structure that 

contains detailed information about this software. For instance, it 

could contain information such as software version. Both are further 

utilized by the Attestation_Policy to make an attestation 

decision. 

 

Figure 5. Attestation architecture pattern. 

Figure 6 shows the textual AADL representation of the attestation 

mechanism. In AADL each mechanism has two parts, namely a 

component type and its implementation. The component type 

specifies the component interface, properties, flows, inheritance, etc. 

The implementation describes specific subcomponents and how they 

are connected. A component can be implemented in different ways; 
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thus, an AADL model could contain multiple component 

implementations for the same component type, each implementation 

having different subcomponents, connections, properties, etc. First, 

we define the component type (lines 33-39) of the attestation 

mechanism. The mechanism consists of various features (lines 35-36) 

which represent the input/output ports of the component. Next, we 

define the implementation of the attestation mechanism. This 

describes the details of its sub-components and their connections 

(lines 42-51). Each of the sub-components are defined as another 

AADL element referred to as a thread. In order to identify the 

attestation component in the model we have set a property as defined 

in line 38. This property will be useful for specific analyses 

performed on system models containing attestation components. 

Figure 7 shows the AADL representation of the attestation sub-

components. Sub-components such as Secure_Boot, 

Measured_Boot, and Attestation_Policy are defined as 

threads in our implementation with their own component types and 

implementations. All these components consist of features that align 

with the design discussed above. Note that these components could 

also be implemented using different AADL components (such as 

system or abstract components) depending upon user needs and 

requirements and are not limited to the specific AADL types shown 

in our implementation. 

 

Figure 6. AADL textual representation for attestation. 

 

Figure 7. AADL textual representation of the attestation sub-components. 

Policy Enforcement Point (PEP) 

Figure 8 represents the architecture diagram for the policy 

enforcement point mechanism. The main role of the PEP is to provide 

secure access to resources by validating trust. It consists of two main 

components, the Policy_Decision_Point (PDP) and the 

PEP_Manager. Whenever an access request appears at the PEP 

input, it is forwarded to the PDP via the PEP_Manager. The 

Policy_Administrator provides the interface between the 

PDP and PEP_Manager. This request is then evaluated by the 

Policy_Engine to validate trust using the rules defined by the 

Policy_Enforcement_Point_Policy. If necessary, the 

Policy_Engine further utilizes external information (labeled as 

additional_info in the figure) to validate trust. This can 

represent information such as analytics, decisions from other 

software tools, specific device-related information, etc. If the trust is 

validated, the PEP provides access to the requested resource; 

otherwise, the request is denied. 

 

Figure 8. Architecture for the policy enforcement point mechanism. 

Figure 9 shows the textual AADL representation of the PEP 

mechanism. First, we define the component type for the PEP. This 

consists of several features (lines 75-78) that represent various 

input/output ports. For the specification of the PEP in AADL, each 

PEP mechanism will consist of a pep_info port, which will contain 

the necessary information needed to validate trust. This information 

could come from another ZT mechanism, such as attestation or from 

any other valid source. Additional ports function as normal 

input/output ports connected internally by a switch mechanism such 

that information flowing into the component is only permitted to pass 

after trust is established. Because any additional ports only act as 

information flow ports, they are omitted from this PEP representation 

for the sake of clarity, however they do appear in the UAV example 

in Figure 26. Next, we define the PEP implementation that represents 

the sub-components (lines 85-86). Each of these sub-components are 

further defined in AADL.  

In order to identify the PEP component in the model we have set a 

property as defined in line 80. This property will be useful during 

specific analyses that are performed on system models containing 

PEP components. 
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Figure 9. AADL textual representation of the PEP mechanism. 

Figure 10 shows the Policy_Decision_Point and 

PEP_Manager sub-components of the PEP mechanism in AADL. 

Each of these components is defined using the component type (lines 

36-42, and lines 57-63) and its implementation (lines 44-55, and lines 

65-71). The overall design consists of the same elements that are 

described in Figure 8.  

 

Figure 10. AADL textual representation of the PEP sub-components. 

Figure 11 further represents the sub-components of the 

Policy_Decision_Point (lines 46-47) and PEP_Manager 

(line 67) components shown in Figure 10. Each of the sub-

components represent their own component types and 

implementations that align with the architecture model of the PEP 

shown in Figure 8. 

Run Time Integrity Monitor 

Figure 12 represents a run-time integrity monitor mechanism. The 

role of this mechanism is to ensure that any abnormal system 

behavior is identified and flagged. The monitor observes a signal, 

which could be raw data from a sensor, or the contents of a data 

stream from another component. The monitor may contain a 
Signal_Processing_Algorithm to further process the 

observation signal. The Monitor_Policy then compares the 

observation with a reference value (ref) and will generate an alert if 

the observation 

 

Figure 11.  AADL textual representation of the PEP sub-components. 

deviates by more than an acceptable threshold value. Otherwise, no 

alert is generated, indicating that the system is performing normally. 

Note that in this representation the reference is defined within the 

monitor, but it could just as well be another input to the component. 

 

Figure 12. Architecture for run-time monitors. 

Figure 13 shows the textual AADL representation of the run-time 

monitor mechanism. First, we define the component type of the run-

time monitor element. It consists of various features (lines 30-31) 

representing the various input/output ports of the mechanism. The 

alert port (line 31) is defined to carry the system functionality 

information, i.e., normal or abnormal as a binary value. This 

information is computed based on the input present at the monitor’s 

observation input port and compared against a pre-defined threshold 

value. Next, we define the implementation of the run-time monitor 

mechanism (lines 36-46). The sub-components of the run-time 

monitor are shown in lines 37-40, while their connections are 

represented using lines 42-45. The sub-components for the run-time 

monitor are defined in detail as threads (lines 4-26). In order to 

identify the run-time monitor component in the model we have set a 

property as defined on line 33. This property will be useful during 

specific analysis that can be performed on the system model 

containing the run-time monitor component. 
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Figure 13. AADL textual representation of the run-time monitor. 

Trusted Data Load 

Trusted data load ensures that data load integrity and authenticity is 

maintained. This consists of two components, a Trusted Data Load 

Verification process and a Trusted Data Load Signing process. Both 

components maintain data authenticity and integrity during their 

individual phase of the process. We describe each of these 

components in detail below. 

Trusted Data Load Verification 

Figure 14 shows the Data_Load_Verification process of the 

trusted data load mechanism. Input to the 

Verification_Process is signed software or data that needs to 

be transported to the target system. This information is passed to the 

Data_Load_Verif_Manager, which utilizes the 

Signing_Certificate and the Private_Public_Keys 

along with the Verification_Process algorithm to determine 

if the information is genuine and originated from a valid entity (i.e., 

an organization that owns the software). In order to achieve this, it 

uses the security policies set in the 
Data_Load_Verification_Policy, which ensure the 

delivery or installation of verified software or data to the target 

system. 

The textual AADL representation of the trusted data load verification 

mechanism is shown in Figure 15.  First, we define the component 

type of the trusted data load verification mechanism (lines 61-67). 

This consists of features representing the input/output ports of the 

mechanism. The input port receives a signed data load, and the output 

port delivers the data load once verification is successful. Next, we 

 

Figure 14. Trusted data load verification mechanism. 

define the implementation of the trusted data load verification 

mechanism (lines 69-78). It represents the sub-components of the 

trusted data load verification mechanism (lines 70-72) and their 

connections (lines 73-77). In order to identify the trusted data load 

verification component in the model we have set a property as 

defined in line 66. This property will be useful during specific 

analyses that can be performed on the system model containing 

trusted data load verification components. 

Figure 15 shows a representation of the 

Data_Load_Verification_Manager component type and its 

implementation. Other sub-components including sub-components of 

the Data_Load_Verification_Manager and their 

implementation is represented in Figure 16.  

 

Figure 15. AADL textual representation of the trusted data load verification 

mechanism. 

Trusted Data Load Signing 

Figure 17 represents the architecture diagram for a 

Data_Load_Signing component. It is used to sign the software 

or data that needs to be delivered. This process maintains the data 

authenticity and integrity during its creation. It is similar to the 

Data_Load_Verification component. However, the only 

difference is that it uses a Signing_Process algorithm instead of 

a Verification_Process algorithm for data load. Once 

unsigned_data is available at the Signing_Process 

component of the Data_Load_Sign_Manager, it utilizes the 

same Private_Public_Keys and Signing_Certificate 
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to produce a signed_data ensuring it is signed by the trusted 

entity prior to its delivery. 

 

 

Figure 16.  AADL textual representation of trusted data load verification sub-

components. 

 

Figure 17. Trusted data load signing mechanism. 

The textual AADL representation of the trusted data load signing 

component is same as the representation shown in Figure 15 and 

Figure 16. However, the only difference will be the representation of 

specific components that constitute the trusted data load signing 

component.  

Separation Kernel 

Figure 18 represents the design for a separation kernel mechanism. It 

ensures time and space partitioning while maintaining the integrity of 

applications. The separation kernel is a unique mechanism as it 

adheres to several ZTA tenets inherently [12]. Each process 

(Process_i) is bound to a processor (Proc) which hosts an 

operating system that provides separation guarantees.  Processes 

contain a single thread, representing partitioning in both time and 

space.  Further, each process is bound to a specific address space in 

the memory (Mem). Components communicate with each other over a 

hardware bus (Bus_HW).  Additional bus bindings have been hidden 

for clarity.  When an application is executed, it runs within its own 

process in an isolated address space. Simultaneous applications 

execute within their individual processes and memory space without 

interfering with other applications. This ensures time and space 

partitioning while maintaining application integrity.  

 

Figure 18. Architecture for the separation kernel mechanism. 

 

Figure 19. AADL textual representation of the separation kernel mechanism 

Figure 19 shows the textual representation of the separation kernel 

pattern in AADL.  The system implementation is represented in lines 

121-129, along with its sub-components (lines 122-128), their 

connections (lines 129-131), and associated properties (lines 131-

138). The sub-components are defined with their component types 

and their respective implementations in Figure 19 and Figure 20. 

Figure 19 represents the memory type and its implementation (lines 
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106-116) whereas Figure 20 shows the bus, process, and processor 

component types and implementations (lines 60-92). Note that only 

one component type and implementation of each component is shown 

in Figure 20 for the sake of brevity. The processor and memory 

bindings are represented in Figure 19 (lines 134-138). Line 134 

defines the processor binding to each of the process. Further, lines 

135-137 shows the binding between each process with individual 

memory space within the memory (Mem). Line 138 shows the binding 

between the processor (Proc) and the memory (Mem). In addition, to 

identify the separation kernel component in the model, we have set a 

property as defined in line 133. This property will be useful during 

specific analysis that can be performed on the system model 

containing separation kernel component. 

 

Figure 20. AADL textual representation of separation kernel mechanism sub-

components. 

Filter 

Figure 21 shows the architecture diagram for the filter mechanism. 

The purpose of a filter component is to allow only ZTA-compliant 

inputs to propagate. The definition of compliance can be defined as a 
security policy inside the Filter_Policy component. Whenever 

an input arrives at its ports, compliance is checked using the defined 

rules.  The Filter_Algorithm, along with the 

Filter_Policy, perform this compliance check. Input data is 

then allowed to be placed on its output port if a successful 

compliance is achieved; otherwise, the input is dropped. Filter 

policies can easily be customized depending upon the type of input. 

 

 

Figure 21. Architecture for the filter mechanism. 

Figure 22 shows the textual AADL representation of the filter 

mechanism that follows the design discussed above. First, we define 

the component type of the filter mechanism in AADL (lines 25-31). 

This consists of various input/output ports (lines 27-28). Next, we 

define the implementation of the filter mechanism (lines 33-42). This 
consists of Filter_Algorithm and Filter_Policy sub-

components (line 34-36) and the connections associated with them 

(lines 37-41). The Filter_Algorithm and Filter_Policy 

threads are defined using their own component type and 

implementation (lines 5-23). In order to identify the filter component 

in the model, we have set a property as defined in line 30. This 

property will be useful during specific analysis that can be performed 

on the system model containing filter component. 

 

Figure 22. AADL textual representation of the filter. 
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Experimental Model and ZT Application 

In this section, we will first describe our use case experimental 

model. Next, we will demostrate the application of the ZT 

mechanisms defined in the previous section to the use case model. In 

addition, we will discuss the advantages of the applied ZT 

mechanisms in terms of improving the system security posture.  

Initial UAV Architecture with no ZT Mechanisms 

We have considered a UAV system for our case study. The function 

of this UAV is to carry out automated surveillance missions within 

some pre-determined geographical area.    Figure 23 shows the UAV 

architecture in AADL. The model consists of a mission computer, 

flight controller, camera, and physical buses for data/message 

exchange. Further, the mission computer consists of the hardware 

devices associated with the UAV, i.e., radio, WiFi, camera hardware, 

etc. It also consists of the software module responsible for the 

behavior and functionality of the UAV system. The flight controller 

consists of the GPS device for navigation purposes and to capture the 

UAV’s position. In addition, the model also consists of AADL 

elements for the system processor and memory. This initial model 

does not contain any ZT mechanism discussed above, and hence the 

system remains vulnerable to a variety of cyber threats. For instance, 

the UAV may need to communicate with a ground station to receive 

updates on its mission plans. However, since there is no mechanism 

to validate the integrity of the software running on the ground station, 

a cyber vulnerability exists that an attacker can exploit. An adversary 

can easily ingest malicious software into the ground station code base 

and start communicating with the UAV.  Once communication is 

established, the adversary could then pose a severe threat to the 

health of the UAV and the succes of the overall mission, (for 

example, by supplying false mission plans that lead the UAV to crash 

or get captured). Other cyber vulnerabilities can result in similar 

critical mission failures. 

Initial UAV Software Architecture with no ZT 

Mechanisms 

Figure 24 represents the UAV software architecture. The software 

resides on the mission computer of the UAV. It consists of various 

device drivers such as radio, WiFi, UART, etc. Further, it also 

consists of the sub-components that are responsible for capturing the 

application logic such as the waypoint manager, flight planner, 

camera manager, and no fly zone database. Since this design of the 

UAV software architecture does not contain any ZT mechanisms, it 

remains vulnerable to various cyber threats. For instance, when the 

UAV receives a mission command over the radio from the ground 

station, the message is directed to the flight planner component 

(FLPN) by the radio driver. The flight planner will use this 

information to generate a new flight plan, and send the updates to 

other modules such as camera manager (CM) and waypoint manager 

(WPM), which will perform their own computations to assist the UAV 

in executing the mission. However, several security threats can result 

from this design. For example, in the absence of an attestation 

mechanism, the UAV could be communicating with a legitimate 

ground station running corrupt software, and thus potentially receive 

false mission commands. The possibility also exists that the mission 

command received by the UAV is malformed even though the UAV 

is communicating with a legitimate ground station running authentic 

software. Both of these scenarios can easily result in mission failure 

and ultimately lead to catastrophic consequences. 

  

  Figure 23. Initial UAV model in AADL with no ZT mechanisms. 



Page 10 of 12 

 

Hardened UAV Architecture with ZT Mechanisms 

To improve the security posture of the UAV model we have applied 

the ZT mechanisms discussed above. Figure 25 shows the hardened 

UAV model with the applied ZT mechanisms. The UAV consists of 

the same ZT components as discussed above. We modeled the 

encryption mechanism at this layer of the model because all messages 

are directed to and from this level to their respective destinations. By 

employing the encrytion mechanism, we can argue that the messages 

flowing on the associated connections will remain secure and 

encrypted, thereby avoiding the possibility of eavesdropping by 

adversarial entities. Other ZT mechanisms are applied at the software 

component level of the UAV model, described next. 

Hardened UAV Software Architecture with ZT 

Mechanisms 

Figure 26 represnts the UAV software architecture with the 

application of ZT mechanisms. In addition to the applied ZT 

mechanisms, it contains all the components from the initial model. As 

can be seen in the zoomed inset of the figure, the updated software 

consists of ZT mechanisms such as attestation, policy enforcement 

point, filter, and trusted data load. Now, we consider the same 

scenario as discussed in the initial software component with no ZT 

mechanisms. If there is a radio signal received by the UAV and it is 

present at the radio device driver (Radio), it will not allow this 

signal to pass through until it checks the integrity of the source, i.e., 

ground station software. To achieve this, the capabilities of the 

attestation mechanism are utilized. First, the attestation mechanism 

initiates an attestation request, and receives a response that consists 

of the necessary information to perform attestation. Using this 

information, attestation performs the software integrity evaluation of 

the ground station and produces the necessary information at its 
Policy_Info port. Next, this information is utilized by the PEP to 

determine whether to allow communication between the Radio 

driver and other components in the system. The critical outputs of the 

Radio driver are only allowed to become available at the respective 

components in the system only if the PEP establishes the necessary 

trust. This process validates the integrity of the ground station 

software and eliminates the cyber threats resulting from lack of 

attestation. In addition, we have inserted a filter mechanism between 

the PEP and the Flight Planner component. Once the PEP 

passes the mission command to the filter mechanism, it checks to 

determine whether the command is malformed. This prevents the 

UAV from performing any illegal mission operations based on 

malformed commands, which could result in damage to the UAV and 

failure of the mission. 

As another example, let us consider the scenario for a software 

update over the radio for the UAV, assuming that the software 

integrity of the source is already established by the attestation 

mechanism and the PEP has established the trust between the Radio 

driver and the Trusted_Data_Load components. Upon receiving 

the updates from the PEP, the Trusted_Data_Load will validate 

the authenticity and integrity of the software based on the mechanism 

described in above. It will only allow the updates to reach the 

Software_Updater module if it determines that the software 

originated from a valid entity and the integrity of the software is 
maintained. The Software_Updater will then perform the 

updates. If such a mecahnism is not present, any arbitrary software 

update can be performed, which could result in severe consequences. 

Utilizing the defined ZT mecahnisms will therefore result in an 

improved system security posture while minimizing various cyber 

vulnerabilities. 

Conclusions and Future Work 

Security for CPS is becoming an important challenge. Zero trust is an 

emerging technology that has proven very effective in addressing 

security in the IT infrastructure domain. We have identified ZT 

architecture patterns targeted specifically to CPS. We defined these 

patterns in AADL and made them available to engineers as a library 

of ZT components. With appropriate tool automation, these 

components can be inserted into an existing AADL model in order to 

provide the security enhancements associated with the ZT 

components.  We have demonstrated our approach using a UAV 

surveillance system and discussed the use of our ZT patterns to 

improve overall system security. 

In future work, we will further develop our approach to build a tool 

that provides the ability to leverage ZT architecture patterns and build 

ZT compliant CPS systems while providing design-time assurance 

that the system design is indeed ZT compliant. Engineers can easily 

use the design assurance capability to build ZT compliant systems 

while supporting their overall system design requirements. In 

addition, this process will identify vulnerabilities early in design and 

will enable engineers to take appropriate action to mitigate them. 

Figure 24. Initial UAV software architecture in AADL with no ZT mechanisms. 
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Figure 25. Hardened UAV model in AADL with added ZT mechanisms. 

Figure 26. Hardened software architecture of the UAV model in AADL with ZT mechanisms. 
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