
Automated SysML v2 System Model to
Memory-Safe Language Code Generation for

Avionics Applications
David Hardin, Isaac Amundson, Junaid Babar, Darren Cofer, Saqib Hasan, and Karl Hoech

Applied Research and Technology
Collins Aerospace

USA
first.last@collins.com

Jason Belt, John Hatcliff, and Robby
Department of Computer Science

Kansas State University
USA

last@ksu.edu

Stefan Hallerstede
Department of Electrical and Computer Engineering

Aarhus University
Denmark

sha@ece.au.dk

Abstract—One of the greatest challenges of Model-Based
Systems Engineering (MBSE) for Digital Avionics applications
is ensuring that the system model and design/implementation
remain “in-sync” during product development. We are creating
a revolutionary MBSE environment that allows non-specialist
developers to specify models in the SysML v2 systems modeling
language, automatically generate skeletal implementations of
those models in a memory-safe language (MSL), specifically Rust,
as well as state and prove formal properties about the system
model that can be refined and reproved against the generated
design. These systems can be selected to be hosted on either
Linux or the verified seL4 microkernel, or simulated using a
Java Virtual Machine (JVM) based environment. In this paper,
we will present our SysML v2-based toolchain, demonstrate its
code generation capability on a simple digital avionics system
example, and demonstrate its automatic property specification
and proof capability, all in the context of an industrial Continuous
Integration/Continuous Deployment (CI/CD) framework.

Index Terms—Model-Based Systems Engineering, Formal Ver-
ification, Memory-Safe Languages, Rust Programming Language

I. INTRODUCTION

A significant challenge in Model-Based Systems Engineer-
ing (MBSE) for Digital Avionics applications is providing
allocation to/traceability from the corresponding software and
hardware design, particularly ensuring that the system model
and design/implementation remain ”in-sync” during product
development, as well as guaranteeing that assurance properties
established at the system model level hold at the design/im-
plementation level. This challenge is heightened due to the

fact that modern avionics systems are sophisticated real-time
cyber-physical systems that are often exposed to a wide variety
of cyber threats. Furthermore, aerospace systems are subject to
intense regulatory scrutiny due to the certification requirements
of this domain.

Without the capability to provide allocation/traceability
between systems models and implementations, safety and
security flaws are often only discovered during testing late in
the development process. Worse yet, they may be discovered
only after the product has been fielded, necessitating extremely
expensive and time-consuming remediation. Recognizing this
challenge, our team is developing a revolutionary MBSE
tool environment under the DARPA Pipelined Reasoning of
Verifiers Enabling Robust Systems (PROVERS) program1.
The stated goal of PROVERS is “to make formal methods
accessible to non-experts (e.g., traditional software developers
and systems engineers) while minimizing the impact on their
existing processes and performance.” [1]

Our PROVERS toolchain, named INSPECTA (Industrial-
Scale Proof Engineering for Critical Trustworthy Applications)
integrates design, code generation, and formal verification
activities, enabling systems engineers to design-in resiliency
for today’s complex avionics systems using the SysML v2
systems modeling language. Our tools automatically generate
skeletal implementations for SysML v2 models in a memory-

1Distribution Statement “A” (Approved for Public Release, Distribution
Unlimited).

safe language (MSL), specifically Rust, allowing developers
to state and prove formal properties about the system model
that can be automatically refined and reproved against the
generated design in Rust. This capability to automatically
generate verification-enhanced memory-safe language code
from architecture models featuring assume/guarantee contracts
is novel, providing high assurance while saving engineering
time and effort.

A fundamental aspect of our approach is the use of system
architecture models to provide a framework for analyzing
system behavior and organizing the assurance evidence pro-
duced. Architecture modeling allows engineers to describe
the important elements of distributed, real-time, embedded
systems (processors, memory, buses, processes, threads, and
data interconnections) with sufficiently rigorous semantics that
can support formal reasoning. SysML is one such general-
purpose modeling language developed to facilitate MBSE.
SysML can be used to represent system requirements, struc-
ture, and behavior, as well as specify properties that can
be used to analyze and verify the system. SysML v2, the
most recent version of the standard, includes a number of
improvements which we are leveraging to add compositional
assume/guarantee contracts to SysML v2 to enable developers
to state and prove system-level properties, much as we have
previously accomplished [2] for the Architecture Analysis and
Design Language (AADL) [3].

We have developed a unique multi-platform, multi-language
skeletal code generation framework from system models,
called HAMR. HAMR can be used to automatically generate
code for deployment for the Java Virtual Machine (primar-
ily for host-based simulation/testing), Linux, or the verified
seL4 microkernel. seL4 is formally verified from its high-
level security properties down to its binary implementation
[4]. Notably, seL4 features mathematically proven separa-
tion between threads, thus providing a very high assurance
foundation upon which to produce application-level property
proofs. We are currently targeting code generation for MSLs,
including precondition/postcondition annotations necessary for
formal verification. These annotations are refined from the
system-level contracts defined in the SysML v2 model. MSLs
avoid many common vulnerabilities that are the bane of
C/C++ development, and are increasingly required for high-
assurance development, in the wake of recommendations by
cybersecurity agencies of the U.S. Government. The ability to
automatically generate MSL code from a system model helps
to produce complete systems, even when MSL developers are
scarce.

Recent HAMR development has targeted the Rust program-
ming language. Rust is a modern, high-level programming
language designed to combine the code generation efficiency
of C/C++ with drastically improved type safety and memory
management features. Additionally, HAMR supports a precon-
dition/postcondition specification and verification tool for Rust
called Verus, under development by a team of researchers led
by Carnegie Mellon University.

In this paper, we will present our SysML v2-based

toolchain, demonstrate its Rust code generation capability on
a simple digital avionics system example, and demonstrate its
property specification and proof capability, all in the context
of a Continuous Integration/Continuous Deployment (CI/CD)
framework of the type used by avionics developers.

II. THE SYSML V2 SYSTEMS MODELING LANGUAGE

SysML v2 is the second major version of the Systems Mod-
eling Language, a standard language for modeling systems
and their behavior [5] promulgated by the Object Management
Group. It builds upon SysML v1, offering enhanced features
such as a textual representation, standard API, and improved
expressiveness for modeling complex systems, as well as a
formal semantics. SysML v1 has been adopted by industry,
but mostly has been used for requirements elicitation and
documentation support. However, the increased expressiveness
of SysML v2, coupled with the ability to interchange models
with third party tools via its textual representation, enables
a much deeper integration of architectural modeling with
detailed development, as will be discussed in more detail in
Section IV.

Note that we process a subset of SysMLv2 where the
modeling elements have a semantic correspondence to AADL
modeling elements [6] for which we have developed a formal
semantics [7]. This enables our previous AADL-based tooling
to be readily transitioned into SysMLv2, promising a broader
reach and more extensive tooling. This also tracks a larger
effort within the Object Management Group to provide stan-
dardized AADL-like semantics for SysML v2 systems.

III. ASSUME/GUARANTEE CONTRACT VERIFICATION FOR
SYSTEM MODELS

Our research team has pioneered the use of compositional
assume/guarantee reasoning for MBSE [2], [8]. We have
developed the Assume Guarantee Reasoning Environment
(AGREE), a compositional, assume-guarantee-style model
checker for system architecture models [9]. AGREE proves
properties about one layer of the architecture using properties
allocated to subcomponents. The composition is performed in
terms of assumptions and guarantees that are provided for
each component. Assumptions describe the expectations the
component has on the environment, while guarantees describe
bounds on the behavior of the component.

AGREE uses k-induction as the underlying algorithm for
model checking. System models and AGREE contracts are first
translated into the Lustre language [10], including verification
conditions for consistency and correctness of the contracts.
The model checker then attempts to find any model execution
traces that would violate these conditions using one of several
Satisfiability Modulo Theories (SMT) solvers. If the model
checker covers all reachable states in the model without finding
a violation then the properties are proved.

More recently, a team led by Kansas State University re-
searchers have developed another contract language for system
architecture models, called GUMBO [11]. GUMBO differs
from AGREE in that it is not based on Lustre dataflow

primitives, and better supports code level checking. We are
currently working with KSU on a harmonization of AGREE
and GUMBO for use with SysML v2 models as part of the
DARPA PROVERS program.

A SysML v2 model for a temperature regulator compo-
nent with GUMBO assume/guarantee contracts is depicted
in Fig. 1. This kind of component can be found in, for
example, pitot tube heaters, vane heaters for Angle-of-Attack
(AoA) sensors, or battery management systems. In this case,
the GUMBO contracts are introduced into the model via the
SysML v2 language construct.

Once the system architecture has been modeled and the
component behavior is specified using assume-guarantee con-
tracts, we can then use a fully-automatic model checker to
verify the consistency of these contracts.

1) Component interfaces – The output guarantees of each
component must be strong enough to satisfy the input
assumptions of downstream components.

2) Correctness of implementations – The input assumptions
of a system along with the output guarantees of its sub-
components must be strong enough to satisfy its output
guarantees.

This hierarchical strategy for reasoning about contracts, or
compositional analysis, reduces the computational complexity
of system verification by breaking down the larger problem
into more manageable fragments. Verification of a system does
not directly depend on the implementations of its components
(or their sub-components), but only on their contracts.

IV. HAMR: SKELETAL CODE GENERATION FROM
SYSTEM MODELS

The High Assurance Modeling and Rapid engineering for
embedded systems tool (HAMR) [12] is a multi-platform,
multi-language code generation framework for system ar-
chitecture models. HAMR is often used to generate code
for deployment for the seL4 microkernel, but system and
component prototyping is also supported utilizing HAMR’s
code generation capability for the Java Virtual Machine (JVM)
and Linux, as depicted in Fig. 2.

Using seL4 as a foundation, HAMR enables model-based
development and systems engineering frameworks to be used
for seL4-based applications. One of the primary objectives is
to support system builds that leverage seL4 separation and
information flow guarantees to achieve the system-model-
specified component isolation and inter-component communi-
cation needed for cyber-resiliency. HAMR ensures that seL4
is configured to permit the exact inter-component information
flows analyzed and visualized at the model level.

For each system model thread component, HAMR generates
a thread code skeleton and application programming interfaces
(APIs) for communicating over the ports declared on the com-
ponent. For components that are implemented manually, the
developer fills out the thread skeleton with detailed application
code. HAMR supports coding component application logic in
either C, Slang [13] (a high-assurance memory-safe subset of
Scala), and now Rust.

HAMR generates component infrastructure and integration
code implementing the semantics of thread scheduling, thread
dispatching, and port-based communication defined by AADL
or SysML v2. For port communication, shared memory com-
munication (data ports), buffered messaging (event data ports),
and buffered notification (event ports) are supported. HAMR
code generation is staged using a translation architecture that
facilitates adding new backends for different target platforms.
Almost all the infrastructure code is implemented in Slang,
which can then be used for JVM deployments or translated to
C for Linux or seL4 deployments.

HAMR is istelf implemented in Slang, and produces a
Slang-based implementation of the run-time framework, which
can be viewed as a high-level reference implementation of
architecture model semantics in a high-level memory-safe lan-
guage. Automatic translation (“transpilation”) of this reference
implementation in Slang to Rust or C on different platforms
helps establish semantic consistency across those platforms.
This reference implementation can also be easily compiled
to Java Virtual Machine bytecodes, thus directly supporting a
JVM-based simulation environment.

The seL4 deployment utilizes the Microkit [14]
microkernel-based embedded systems code-generation
framework to configure the microkernel. A Microkit system
is built from a set of individual programs that are isolated
from each other, as well as the underlying kernel, in
protection domains. Protection domains can interact by
calling protected procedures or sending notifications. The
HAMR-generated Microkit configuration directly encodes the
system model’s component and communication topology and
includes a standardized run-time infrastructure supporting
thread scheduling, inter-thread communications, etc. We
incorporate the previously-developed (and proved) seL4
domain scheduler into the Microkit codebase in order to
enforce time partitioning and provide static cyclic scheduling.
We will be able to use the more advanced Mixed-Criticality
Scheduler (MCS) for seL4 [15] when its proofs of correctness
down to the binary level are complete (this work is currently
in progress as part of the DARPA PROVERS program).

HAMR also supports Linux-based virtual machine com-
ponents in the seL4 deployment and the ability to run the
entire system on the QEMU emulator. HAMR automatically
configures virtual machine based components, and this feature
is used to sandbox the untrusted legacy code for the Mission
Planner in the example UAV system. The QEMU emulator
support facilitates rapid prototyping for test, debug, and anal-
ysis, and it enables automated regression testing.

As part of its code generation process, HAMR produces
flow graphs reflecting the inter-component information flow at
both the architecture level and the Microkit level for the seL4
deployment. Visual representations are provided for manual
inspection, and SMT-based representations are generated for
formal reasoning.

The relationships amongst the various layers of the system
design, the tools that allow one to proceed from the more
abstract layers to the more concrete layers, as well as the proof

package Regulate {

part def Manage_Heat_Source_i :> Thread {
attribute :>> Dispatch_Protocol = Supported_Dispatch_Protocols::Periodic;
attribute :>> Period = 1000 [millisecond];
attribute Domain: CASE_Scheduling::Domain = 9;
attribute Microkit_Language: HAMR::Microkit_Language = HAMR::Microkit_Languages::Rust;

// ======== INPUTS =======
// current temperature (from temp sensor)
in port current_tempWstatus : DataPort { in :> type : Data_Model::TempWstatus_i; }
// lowest and upper bound of desired temperature range
in port lower_desired_temp : DataPort { in :> type : Data_Model::Temp_i; }
in port upper_desired_temp : DataPort { in :> type : Data_Model::Temp_i; }
// subsystem mode
in port regulator_mode : DataPort { in :> type : Data_Model::Regulator_Mode; }

// ======== OUTPUTS =======
// command to turn heater on/off (actuation command)
out port heat_control : DataPort { out :> type : Data_Model::On_Off; }

language "GUMBO" /*{
state

lastCmd: Data_Model::On_Off;

initialize
guarantee

initlastCmd: lastCmd == Data_Model::On_Off.Off;
guarantee REQ_MHS_1 "If the Regulator Mode is INIT, the Heat Control shall be set to Off."
heat_control == Data_Model::On_Off.Off;

compute
// assumption on set points enforced within the Operator Interface
assume lower_is_lower_temp: lower_desired_temp.degrees <= upper_desired_temp.degrees;

// the lastCmd state variable is always equal to the value of the heat_control output port
guarantee lastCmd "Set lastCmd to value of output Cmd port":

lastCmd == heat_control;

compute_cases
case REQ_MHS_1 "If the Regulator Mode is INIT, the Heat Control shall be set to Off.":

assume regulator_mode == Data_Model::Regulator_Mode.Init_Regulator_Mode;
guarantee heat_control == Data_Model::On_Off.Off;

case REQ_MHS_2 "If the Regulator Mode is NORMAL and the Current Temperature is less than
the Lower Desired Temperature, the Heat Control shall be set to On.":

assume (regulator_mode == Data_Model::Regulator_Mode.Normal_Regulator_Mode) &
(current_tempWstatus.degrees < lower_desired_temp.degrees);

guarantee heat_control == Data_Model::On_Off.Onn;
[...] } */

[...] }
}

Fig. 1. SysML v2 model with GUMBO contracts.

artifacts that can be generated at each layer are depicted in
Fig. 3. One type of proof that we do not address at length
in this paper, but which provides extremely high assurance, is
verified synthesis directly from specifications in a formal logic
to embedded source code. We have employed this technique
on the current effort, for example, in order to synthesize high-
assurance remote attestation protocols [16]. Additionally, the
source code-to-binary correspondence proofs depicted in Fig. 3
are generally only performed for the seL4 operating system
proofs [4].

V. RUST, A MEMORY-SAFE PROGRAMMING LANGUAGE
FOR CRITICAL SYSTEMS

Memory-safe programming languages have garnered sig-
nificant interest in recent years, with memory-safe language
initiatives issuing from NSA [17], as well as the White House
Office of the National Cyber Director [18], and memory-
safe language requirements starting to appear in U.S. Gov-
ernment contracting. One of the advantages of memory-safe
languages is the capability to reason about application code
written in the imperative style favored by industry, but without

10

Modeling, analysis, and
verification in AADL or
SySML v2 modeling
languages

Leverage analyses from MBSE community

Component development
and verification in
multiple languages

Code Generation, targeting:
• Slang (high integrity Scala subset)
• C (utilizing memory-safe code generation)
• Rust (support on DARPA PROVERS)

© 2025 Collins Aerospace. | This document does not include any export controlled technical data. Tux logo: lewing@isc.tamu.edu

Deployments aligned with
MBSE model semantics
on multiple platforms

JV
M

 D
ep

lo
ym

en
t

Li
nu

x
D

ep
lo

ym
en

t

se
L4

 D
ep

lo
ym

en
t

verified microkernel

Fig. 2. HAMR overview.

the verification snarls of the unrestricted pointers of C/C++.
Much progress has been made to this end in recent years,
and developers can now verify the correctness of common
algorithm and data structure code that utilizes common idioms
such as records, loops, modular integers, and the like, and
verified compilers can guarantee that such code is compiled
correctly to binary [19]. Many open-source verification tools
have emerged to reason about code written in memory-safe
languages (see Section V-A for details).

The Rust programming language has attracted particular
attention, due to its unique memory ownership model and ef-
ficient compiler, capable of producing code that is competitive
in efficiency with C/C++ compilers. Google [20] and Amazon
[21] are major Rust adopters, and Rust is now being used
in Linux kernel development [22]. After spending decades
dealing with a never-ending parade of security vulnerabilities
due to C/C++, which continue to manifest at a high rate
[23] despite their use of sophisticated C/C++ analysis tools,
Microsoft announced at its BlueHat 2023 developer conference
that it was beginning to rewrite core Windows libraries in
Rust [24]. A distinguishing feature of Rust is that objects may
only have one owner. This means, for example, that it is not
possible to return a pointer to a local variable from a function
to its enclosing scope. The Rust compiler produces code that
is competitive in speed to C/C++ compilers, including code to
perform array bounds checking, as well as arithmetic overflow
checking.

For formal methods researchers, Rust presents the oppor-
tunity to reason about application-level logic written in the
imperative style favored by industry, but without the snarls of
the unrestricted pointers of C/C++. Much progress has been
made to this end in recent years, and developers now have
access to tools that are capable of automatically verifying
the correctness of Rust algorithm and data structure code
that utilizes common Rust idioms such as records, match
statements, while loops, modular integers. Particular progress
has been made in the area of hardware/software co-design

algorithms, where array-backed data structures are common
[25], [26].

A. Rust Verification with Verus

A team led by Carnegie Mellon University is developing
Verus, an SMT-based tool for formally verifying Rust pro-
grams [27]. With Verus, programmers express proofs and
specifications using extended Rust syntax (introduced using
Rust’s macro facility), allowing proofs to take advantage of
Rust’s high-assurance ownership restrictions. This extended
verificaion syntax is “erased” for code compilation, allowing
Verus-enhanced code to be compiled using the standard Rust
compiler. We are working with the Verus developers on the
DARPA PROVERS program to create a verification environ-
ment for Rust that developers who are not formal methods
specialists can use effectively.

Like many verification-enhanced programming environ-
ments, Verus provides means to express formal preconditions
for a given function, which provide the needed input con-
straints to achieve a successful verification for that function
(expressed as requires blocks), as well as postconditions
that provide the output conditions (expressed as ensures
blocks) that can be proved to arise from the preconditions.
Verus also provides means to express loop invariants (via
invariant blocks within the loop bodies).

Verus-annotated Rust code has been automatically generated
by HAMR from the temperature regulator SysML v2 model
of Fig. 1 is given in Fig. 4. Verus automatically verifies
this generated code, providing developers with assurance that
their system-level contracts continue to hold at the code level.
Note that AGREE/GUMBO assume statements map to Verus
requires, and that AGREE/GUMBO guarantee maps to
Verus ensures.

VI. CONTINUOUS INTEGRATION/CONTINUOUS
DEPLOYMENT SUPPORT FOR AVIONICS

One of the main usability goals of PROVERS is to integrate
formal methods tools “into a development pipeline enabling

Binary

System Architecture Model

AGREE/GUMBO Contract

Infrastructure Code

Component

Component Stub

Verus Contract

Rust Component
Code

Component Stub

Verus Contract

Rust Component
Code

AGREE/GUMBO Contract

Component

AP
I

seL4

(Verified) Compiler

Correspondence
Proofs

Component
Correctness

Proofs

Secure Kernel
Proofs

Compositional
Correctness

Proofs

Verified Code Gen
Proofs

Verified SynthesisHAMR

Fig. 3. High-Assurance System Development Layers, Tools, and Proof Artifacts.

a continuous flow of capabilities over time while maintaining
high levels of assurance.” [1] Thus, we are working to integrate
our formal-methods-based toolchain into a Continuous Integra-
tion/Continuous Deployment (CI/CD) pipeline currently in use
at Collins Aerospace. In keeping with the “DevSecOps” trend
for high-assurance development, we introduce “ProofOps” into
the pipeline. Our goal is to invoke certain formal methods
tools on every commit, thus requiring that these tools be per-
formant, and provide meaningful feedback to the development
engineers. Thus, we are developing a ProofOps “dashboard”
that provides “at a glance” status for the proof-based tool
operations. A prototype dashboard is depicted in Fig. 5.

VII. RELATED WORK

Compositional reasoning for system architecture models
was brought to prominence on the DARPA High-Assurance
Cyber Military Systems (HACMS) program [8]. HACMS
researchers utilized AADL modeling, AGREE contracts, and
the formally-verified seL4 kernel to produce “clean sheet”
designs and implementations, including the Boeing Little
Bird autonomous helicopter platform, that successfully resisted
cyber attack by a dedicated “red team”, as well by hackers
at the DEF CON conference. The DARPA Cyber Assured

System Engineering (CASE) extended the tools and techniques
pioneered on HACMS to support systems that include sig-
nificant “legacy” code that cannot easily be redesigned. The
CASE team pioneered the development of security-enhancing
architectural transformations to improve the security posture
of existing systems by the addition of provably-correct filters,
monitors, and remote attestation components [2].

A number of verification-enhanced memory-safe language
environments are currently in use for critical system devel-
opment. SPARK 2014 [28] is a contract-based specification
and verification framework for a safety-critical subset of Ada.
SPARK verification tools translate SPARK programs into
the Why3 verification framework [29] to prove that SPARK
programs conform to program contracts. Formal verification
systems for Rust include Creusot [30], based on WhyML;
Prusti [31], based on the Viper verification toolchain; and
RustHorn [32], based on constrained Horn clauses. Amazon
Web Services is developing a model-checker for Rust, Kani
[33].

VIII. CONCLUSION

We have presented a high-assurance system development
toolchain for SysML v2 targeting a memory-safe program-

fn timeTriggered<API: Manage_Heat_Source_i_Full_Api>(&mut self,
api: &mut Manage_Heat_Source_i_Application_Api<API>)

requires
old(api).lower_desired_temp.degrees <= old(api).upper_desired_temp.degrees

ensures
// guarantee lastCmd
// Set lastCmd to value of output Cmd port
(self.lastCmd == api.heat_control)

&& // case REQ_MHS_1
// If the Regulator Mode is INIT, the Heat Control shall be set to Off.
((api.regulator_mode == data::Regulator_Mode::Init_Regulator_Mode) ==>
(api.heat_control == data::OnOff::Off))

&& // case REQ_MHS_2
// If the Regulator Mode is NORMAL and the Current Temperature is less than
// the Lower Desired Temperature, the Heat Control shall be set to On.
((api.regulator_mode == data::Regulator_Mode::Normal_Regulator_Mode &&

api.current_tempWstatus.degrees < api.lower_desired_temp.degrees) ==>
(api.heat_control == data::OnOff::Onn))

&& [...]
{
// -------------- Get values of input ports ------------------
let lower: data::Temp_i = api.get_lower_desired_temp(); // gives lower <= api.upper_desired_temp.degrees
let upper: data::Temp_i = api.get_upper_desired_temp(); // gives api.lower_desired_temp.degrees <= upper

let regulator_mode: data::Regulator_Mode = api.get_regulator_mode();
let currentTemp: data::TempWstatus_i = api.get_current_tempWstatus();

//================ compute / control logic ===========================

// current command defaults to value of last command (REQ-MHS-4)
let mut currentCmd: data::OnOff = self.lastCmd;

match regulator_mode {
// ----- INIT Mode --------
data::Regulator_Mode::Init_Regulator_Mode => {

// REQ-MHS-1
currentCmd = data::OnOff::Off;

},
// ------ NORMAL Mode -------
data::Regulator_Mode::Normal_Regulator_Mode => {

if (currentTemp.degrees < lower.degrees) {
assert(api.current_tempWstatus.degrees < api.lower_desired_temp.degrees);
// REQ-MHS-2
currentCmd = data::OnOff::Onn;

} [...]
} [...]

}
}

Fig. 4. Rust code with Verus verification annotations automatically generated from the SysML v2 model of Fig. 1.

ming language, and demonstrated its property specification
and proof capability, all in the context of a Continuous
Integration/Continuous Deployment (CI/CD) framework of the
type used by avionics developers. Our framework provides
allocation to/traceability from the corresponding software and
hardware design, particularly ensuring that the system model
and design/implementation remain ”in-sync” during product
development. Additionally, our toolchain provides guarantees
that assurance properties established at the system architecture
model level hold at the design/implementation level. Our
method applies formal verification at each level in the design
to assure the design at that level before proceeding to the next
level. The capability of our tools to automatically generate
verification-enhanced memory-safe language code from archi-
tecture models featuring assume/guarantee contracts is unique

in our experience.
In future work, we will continue the work to integrate our

contract language and assurance case annotations with SysML
v2. We will complete the harmonization of the AGREE and
GUMBO contract languages, as well as make the translation
from System Architecture model contracts to Verus Rust con-
tracts more automatic. We will complete the standardization
work to ensure that AADL semantics can be applied to SysML
v2 models. We will expand our environment to embrace behav-
ioral aspects of SysML v2 not found in AADL, such as state
machines. Additionally, we will be transitioning the automated
property-based testing infrastructure previously developed for
AADL/HAMR/Slang [34] in order to automatically synthesize
property-based tests for SysML v2 and Rust.

On the CI/CD integration front, we will demonstrate the

Fig. 5. Continuous Integration/Continuous Deployment Dashboard for ProofOps.

integration of our formal verification tools with a production
Collins Aerospace CI/CD environment, including a “ProofOps
Dashboard” that provides a real-time summary of the state
of the various proof activities. Finally, we will demonstrate
the use of our high-assurance system architecture modeling,
detailed design, and implementation toolchain on Collins
Aerospace safety- and securty-critical avionics applications
currently in development. This includes the use of SysML
v2 modeling, assume/guarantee contracts, and HAMR skele-
tal code generation to Rust/Verus, all hosted on the seL4
microkernel, and running on production Collins Aerospace
hardware. Importantly, the majority of the development will
be performed by product development engineers, with minimal
assistance by our formal methods researchers.

IX. ACKNOWLEDGMENTS

This work was funded by DARPA contract FA8750-24-9-
1000. The views, opinions and/or findings expressed are those
of the authors and should not be interpreted as representing
the official views or policies of the Department of Defense or
the U.S. Government. We wish to particularly acknowledge
Brad Martin for his vision and hard work to establish the
PROVERS program during his time at DARPA, as well as
his leadership role in advancing the state of the art in formal
methods throughout his years of U.S. Government service.
Thanks also go to the anonymous reviewers for their helpful
comments.

REFERENCES

[1] PROVERS: Pipelined Reasoning of Verifiers Enabling Robust
Systems, Defense Advanced Research Projects Agency, March
2023. [Online]. Available: https://www.darpa.mil/research/programs/
pipelined-reasoning-of-verifiers-enabling-robust-systems

[2] D. Cofer, I. Amundson, J. Babar, D. Hardin, K. Slind, P. Alexander,
J. Hatcliff, Robby, G. Klein, C. Lewis, E. Mercer, and J. Shackleton,
“Cyber assured systems engineering at scale,” in IEEE Security &
Privacy, May/June 2022, pp. 52–64.

[3] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012.

[4] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: formal verification
of an operating-system kernel,” Communications of the ACM,
vol. 53, no. 6, pp. 107–115, 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1743546.1743574

[5] OMG Systems Modeling Language (SysML), Version 2.0 Beta 2,
Object Management Group, February 2024. [Online]. Available:
https://www.omg.org/spec/SysML/2.0/Beta2/Language/PDF

[6] J. Hugues, “Aadlv2 library for sysmlv2,” Software Engineering Institute,
Carnegie Mellon University, Tech. Rep. CMU/SEI-2023-TN-001, April
2023, approved for public release and unlimited distribution. [Online].
Available: https://apps.dtic.mil/sti/trecms/pdf/AD1207053.pdf

[7] S. Hallerstede and J. Hatcliff, “A mechanized semantics for component-
based systems in the hamr aadl runtime,” Science of Computer
Programming, vol. 245, p. 103312, 2025. [Online]. Available: https:
//www.sciencedirect.com/science/article/abs/pii/S0167642325000516

[8] D. D. Cofer, A. Gacek, J. Backes, M. W. Whalen, L. Pike, A. Foltzer,
M. Podhradsky, G. Klein, I. Kuz, J. Andronick, G. Heiser, and D. Stu-
art, “A formal approach to constructing secure air vehicle software,”
Computer, vol. 51, no. 11, pp. 14–23, 2018.

[9] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. LaValley, and L. Sha,
“Compositional verification of architectural models,” in NASA Formal
Methods, A. E. Goodloe and S. Person, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 126–140.

[10] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A
declarative language for programming synchronous systems,” in In 14th
Symposium on Principles of Programming Languages (POPL’87). ACM,
1987.

[11] J. Hatcliff, D. Stewart, J. Belt, Robby, and A. Schwerdfeger, “An
AADL contract language supporting integrated model- and code-level
verification,” Ada Letters, vol. 42, no. 2, p. 45–54, April 2023. [Online].
Available: https://doi.org/10.1145/3591335.3591339

[12] J. Hatcliff, J. Belt, Robby, and T. Carpenter, “HAMR: An AADL multi-
platform code generation toolset,” in 10th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA), ser. LNCS, vol. 13036, 2021, pp. 274–295.

[13] Robby and J. Hatcliff, “Slang: The Sireum programming language,” in
10th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), ser. LNCS, vol. 13036,
2021, pp. 253–273.

[14] I. Velickovic, Microkit User Manual, 2025. [Online]. Available:
https://github.com/seL4/microkit/blob/main/docs/manual.md

[15] A. Lyons, K. McLeod, H. Almatary, and G. Heiser, “Scheduling-context
capabilities: a principled, light-weight operating-system mechanism for
managing time,” in Proceedings of the Thirteenth EuroSys Conference,
ser. EuroSys ’18. New York, NY, USA: Association for Computing

https://www.darpa.mil/research/programs/pipelined-reasoning-of-verifiers-enabling-robust-systems
https://www.darpa.mil/research/programs/pipelined-reasoning-of-verifiers-enabling-robust-systems
http://doi.acm.org/10.1145/1743546.1743574
http://doi.acm.org/10.1145/1743546.1743574
https://www.omg.org/spec/SysML/2.0/Beta2/Language/PDF
https://apps.dtic.mil/sti/trecms/pdf/AD1207053.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0167642325000516
https://www.sciencedirect.com/science/article/abs/pii/S0167642325000516
https://doi.org/10.1145/3591335.3591339
https://github.com/seL4/microkit/blob/main/docs/manual.md

Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3190508.
3190539

[16] A. Petz and P. Alexander, “An infrastructure for faithful execution of
remote attestation protocols,” in Proceedings of the 13th NASA Formal
Methods Symposium (NFM 2021), May 2021.

[17] Software Memory Safety, National Security Agency, November
2022. [Online]. Available: https://media.defense.gov/2022/Nov/10/
2003112742/-1/-1/0/CSI SOFTWARE MEMORY SAFETY.PDF

[18] Back to the Building Blocks: A Path Toward Secure and Measurable
Software, White House Office of the National Cyber Director,
February 2024. [Online]. Available: https://bidenwhitehouse.archives.
gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

[19] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: a
verified implementation of ML,” in The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, S. Jagannathan and
P. Sewell, Eds. ACM, 2014, pp. 179–192.

[20] J. V. Stoep and S. Hines, “Rust in the Android platform,”
April 2021. [Online]. Available: https://security.googleblog.com/2021/
04/rust-in-android-platform.html

[21] S. Miller and C. Lerche, “Sustainability with Rust,” February
2022. [Online]. Available: https://aws.amazon.com/blogs/opensource/
sustainability-with-rust/

[22] R. Amadeo, “Google is now writing low-level Android code in Rust,”
April 2021. [Online]. Available: https://arstechnica.com/gadgets/2021/
04/google-is-now-writing-low-level-android-code-in-rust/

[23] M. Miller, “A proactive approach to more secure code,” July
2019. [Online]. Available: https://msrc-blog.microsoft.com/2019/07/16/
a-proactive-approach-to-more-secure-code/

[24] T. Claburn, “Microsoft is busy rewriting core Windows code
in memory-safe Rust,” April 2023. [Online]. Available: https:
//www.theregister.com/2023/04/27/microsoft windows rust/

[25] D. S. Hardin, “Verified hardware/software co-assurance: Enhancing
safety and security for critical systems,” in Proceedings of the 2020
IEEE Systems Conference, 2020.

[26] ——, “Hardware/software co-assurance using the Rust programming
language and ACL2,” in Proceedings of the Seventeenth International
Workshop on the ACL2 Theorem Prover and its Applications (ACL2-22),
May 2022, pp. 202–216.

[27] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou,
J. Howell, B. Parno, and C. Hawblitzel, “Verus: Verifying Rust programs
using linear ghost types,” Proc. ACM Program. Lang., vol. 7, no.
OOPSLA1, April 2023.

[28] D. Hoang, Y. Moy, A. Wallenburg, and R. Chapman, “SPARK 2014 and
GNATprove,” International Journal on Software Tools for Technology
Transfer, vol. 17, no. 6, 2015.

[29] J.-C. Filliâtre and A. Paskevich, “Why3 — where programs meet
provers,” in Proceedings of the 22nd European Symposium on Program-
ming, ser. LNCS, M. Felleisen and P. Gardner, Eds., vol. 7792. Springer,
March 2013, pp. 125–128.

[30] X. Denis, Creusot, September 2022. [Online]. Available: https:
//github.com/xldenis/creusot

[31] V. Astrauskas, A. Bı́lý, J. Fiala, Z. Grannan, C. Matheja, P. Müller,
F. Poli, and A. J. Summers, “The Prusti project: Formal verification for
Rust (invited),” in NASA Formal Methods (14th International Sympo-
sium). Springer, 2022, pp. 88–108.

[32] Y. Matsushita, T. Tsukada, and N. Kobayashi, “Rusthorn: CHC-based
verification for Rust programs,” ACM Trans. Program. Lang. Syst.,
vol. 43, no. 4, oct 2021.

[33] Announcing the Kani Rust Verifier Project, Amazon
Web Services, May 2022. [Online]. Available:
https://model-checking.github.io/kani-verifier-blog/2022/05/04/
announcing-the-kani-rust-verifier-project.html?fbclid=IwAR2M
B1IEBfkVhIXSuuAxt3McC QpUnTuzDq9jG40HOaJzxw8z1Nw9XU
i4

[34] J. Hatcliff, J. Belt, Robby, and D. Hardin, “Integrated contract-based
unit and system testing for component-based systems,” in Proceedings
of the 16th NASA Formal Methods Symposium (NFM 2024), N. Benz,
D. Gopinath, and N. Shi, Eds., June 2024.

https://doi.org/10.1145/3190508.3190539
https://doi.org/10.1145/3190508.3190539
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://arstechnica.com/gadgets/2021/04/google-is-now-writing-low-level-android-code-in-rust/
https://arstechnica.com/gadgets/2021/04/google-is-now-writing-low-level-android-code-in-rust/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://github.com/xldenis/creusot
https://github.com/xldenis/creusot
https://model-checking.github.io/kani-verifier-blog/2022/05/04/announcing-the-kani-rust-verifier-project.html?fbclid=IwAR2M_B1IEBfkVhIXSuuAxt3McC_QpUnTuzDq9jG40HOaJzxw8z1Nw9XU_i4
https://model-checking.github.io/kani-verifier-blog/2022/05/04/announcing-the-kani-rust-verifier-project.html?fbclid=IwAR2M_B1IEBfkVhIXSuuAxt3McC_QpUnTuzDq9jG40HOaJzxw8z1Nw9XU_i4
https://model-checking.github.io/kani-verifier-blog/2022/05/04/announcing-the-kani-rust-verifier-project.html?fbclid=IwAR2M_B1IEBfkVhIXSuuAxt3McC_QpUnTuzDq9jG40HOaJzxw8z1Nw9XU_i4
https://model-checking.github.io/kani-verifier-blog/2022/05/04/announcing-the-kani-rust-verifier-project.html?fbclid=IwAR2M_B1IEBfkVhIXSuuAxt3McC_QpUnTuzDq9jG40HOaJzxw8z1Nw9XU_i4

	Introduction
	The SysML v2 Systems Modeling Language
	Assume/Guarantee Contract Verification for System Models
	HAMR: Skeletal Code Generation from System Models
	Rust, A Memory-Safe Programming Language for Critical Systems
	Rust Verification with Verus

	Continuous Integration/Continuous Deployment Support for Avionics
	Related Work
	Conclusion
	Acknowledgments
	References

