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ABSTRACT
Zero Trust Architecture requirements are of increasing importance
in critical systems development. Zero trust tenets hold that no
implicit trust be granted to assets based on their physical or net-
work location. Zero Trust development focuses on authentication,
authorization, and shrinking implicit trust zones to the most gran-
ular level possible, while maintaining availability and minimizing
authentication latency. Performant, high-assurance cryptographic
primitives are thus central to successfully realizing a Zero Trust
Architecture. The Rust programming language has garnered signif-
icant interest and use as a modern, type-safe, memory-safe, and po-
tentially formally analyzable programming language. Our interest
in Rust particularly stems from its potential as a hardware/software
co-assurance language for developing Zero Trust Architectures.
We describe a novel environment enabling Rust to be used as a
High-Level Synthesis (HLS) language, suitable for secure and per-
formant Zero Trust application development. Many incumbent HLS
languages are a subset of C, and inherit many of the well-known
security shortcomings of that language. A Rust-based HLS brings
a single modern, type-safe, memory-safe, high-assurance devel-
opment language for both hardware and software. To study the
benefits of this approach, we crafted a Rust HLS subset, and devel-
oped a frontend to the hardware/software co-assurance toolchain
due to Russinoff and colleagues at Arm, used primarily for floating-
point hardware formal verification. This allows us to leverage a
number of existing hardware/software co-assurance tools with a
minimum investment of time and effort. In this paper, we describe
our Rust subset, detail our prototype toolchain, and describe the
implementation, performance analysis, formal verification and val-
idation of representative Zero Trust algorithms and data structures
written in Rust, emphasizing cryptographic primitives and common
data structures.
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1 INTRODUCTION
Zero Trust Architecture [28] requirements are increasingly becom-
ing adopted in critical systems development. Zero trust tenets state
that there is no implicit trust granted to assets based on their phys-
ical or network location. All communications should be conducted
“in the most secure manner available, protect confidentiality and
integrity, and provide source authentication” [28]. Zero trust ar-
chitectures shrink implicit trust zones to the most granular level
possible, while maintaining availability and minimizing authentica-
tion delays. Performant, high-assurance cryptographic technologies
are thus central to successfully realizing a Zero Trust Architecture,
as are “leak-free” data structures, and other high-assurance compo-
nents.

We have developed several zero trust primitives as part of the
DARPA CASE program [6]. As the Zero Trust Architecture spec-
ification [28] was not created until the CASE program was well
underway, this was not an explicit goal of the program, but similar
cyber-assurance concerns informed both efforts, resulting in conver-
gent technologies. Amajor guiding principle of CASE is the need for
verified and validated automated synthesis of security-enhancing
components from high-level architectural specifications, including
input filters [12], safety monitors [22], remote attestation and mea-
surement [26], as well as trustworthy interprocess communications
[14]. Our research and development effort on CASE has emphasized
the value of modern, type-safe, memory-safe, and formally ana-
lyzable languages for use in automated synthesis [12, 14, 26], and
has identified the value of automated high-assurance synthesis to
hardware, software, or a combination of the two, from architectural
level specifications [10].

In this paper, we describe the development, formal verifica-
tion, and validation of a number of zero trust architecture primi-
tives in a High-Level Synthesis (HLS) subset of Rust, suitable for
software and/or hardware implementation. Along the way, we in-
troduce Rust, outline our HLS subset, describe a prototype hard-
ware/software co-assurance toolchain for this subset, present case
studies of zero trust primitives, and detail verification and valida-
tion efforts. It is hoped that this explication will convince the reader
of the practicality of Rust as a high-assurance hardware/software
co-design language, as well as the feasibility of performing full
functional correctness proofs of code written in this Rust subset.
We describe related work, then provide concluding remarks.
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2 THE RUST PROGRAMMING LANGUAGE
The Rust Programming Language [16] is a modern, high-level pro-
gramming language designed to combine the code generation effi-
ciency of C/C++ with drastically improved type safety and memory
management features. A distinguishing feature of Rust is a non-
scalar object may only have one owner. For example, one cannot
assign a reference to an object in a local variable, and then pass that
reference to a function. The Rust runtime performs array bounds
checking, as well as arithmetic overflow checking (the latter can
be disabled by a build environment setting). In most other ways,
Rust is a fairly conventional modern programming language, with
interfaces (called traits), lambdas (termed closures), and pattern
matching, as well as a macro capability. Also in keeping with other
modern programming language ecosystems, Rust features a build
and package management system, named cargo.

Rust has garnered significant interest and use as a modern, type-
safe, memory-safe language, with compiled code performance ap-
proaching that of C/C++. Google [31] and Amazon [24] make sig-
nificant use of Rust, and Linus Torvalds has commented positively
on the near-term ability of the Rust toolchain to be used in Linux
kernel development [1]. The latter capability comes none too soon,
as use of C/C++ continues to spawn a seemingly never-ending
parade of security vulnerabilities, which continue to manifest at
a high rate [23] despite the emergence and use of sophisticated
C/C++ analysis tools.

Our interest in Rust additionally stems from its (until now, un-
realized) potential as a hardware/software co-assurance language
that can be used to create high-assurance systems, including those
that must meet zero trust architecture requirements. We are par-
ticularly motivated by new autonomous and semi-autonomous
platforms that require sophisticated algorithms and data structures,
are subject to stringent accreditation/certification, and encourage
hardware/software co-design approaches. (For an unmanned aerial
vehicle use case illustrating a formal methods-based systems engi-
neering environment, please consult [22].) In this paper, we explore
the use of Rust as a High-Level Synthesis (HLS) language [25]. Most
incumbent HLS languages are a subset of C, e.g. Mentor Graphics’
Algorithmic C [20], or Vivado HLS by Xilinx [33]. A Rust-based
HLS would bring a single modern, type-safe, and memory-safe
expression language for both hardware and software realizations,
with very high assurance.

Another keen research topic is reasoning about application logic
written in the imperative style favored by industry. Much progress
has beenmade in this area in recent years, andwe can now verify the
correctness of algorithm and data structure code that utilizes idioms
such as records, loops, modular integers, and the like; and verified
compilers can guarantee that such code is compiled correctly to
binary [17, 18]. Progress has also been made in the verification of
hardware/software co-design algorithms, where array-backed data
structures are common [9, 10]. (NB: This style of programming ad-
dresses one of the shortcomings of Rust, namely its lack of support
for cyclic data structures.)

3 HARDWARE/SOFTWARE CO-ASSURANCE
AT SCALE

In order to begin to realize our aspirational vision for hardware/software
co-assurance at scale, we have conducted several experiments em-
ploying a state-of-the-art toolchain, due to Russinoff and O’Leary,
and originally designed for use in floating-point hardware verifi-
cation [29], to determine its suitability for the creation of safety-
critical/security-critical applications in various domains.

Algorithmic C [20] is a High-Level Synthesis (HLS) language,
and is supported by hardware/software co-design environments
from Mentor Graphics, e.g., Catapult [21]. Algorithmic C defines
C++ header files that enable compilation to both hardware and soft-
ware platforms, including support for the peculiar bit widths em-
ployed, for example, in floating-point hardware design. Restricted
Algorithmic C (RAC) imposes several restrictions beyond those of
Algorithmic C. The most significant of these is that pointers are
not allowed, all loops must terminate, and all functions must be
side-effect-free.

An ACL2 translator converts imperative RAC code to functional
ACL2 code. Loops are translated into tail-recursive functions, with
automatic generation of measure functions to guarantee admis-
sion into the logic of ACL2 (RAC subsetting rules ensure that loop
measures can be automatically determined). Structs and arrays are
converted into functional ACL2 records. The combination of modu-
lar arithmetic and bit-vector operations of typical RAC source code
is faithfully translated to functions supported by Russinoff’s RTL
theorem library. ACL2 is able to reason about non-linear arithmetic
functions, so this usual concern is not an issue. Finally, the RTL the-
orem library in ACL2 is capable of reasoning about a combination
of arithmetic and bit-vector operations, which is a very difficult
feat for most automated solvers.

Recently, we have investigated the synthesis of Field-Programmable
Gate Array (FPGA) hardware directly from high-level architecture
models, in collaboration with colleagues at Kansas State University.
The goal of this work is to enable the generation of high-assurance
hardware and/or software from high-level architectural specifica-
tions expressed in the Architecture Analysis and Design Language
(AADL) [8], with proofs of correctness in ACL2.

4 RESTRICTED ALGORITHMIC RUST
As a study of the suitability of Rust as an HLS, we have crafted a
Rust subset, inspired by RAC, which we have imaginatively named
Restricted Algorithmic Rust, or RAR [11]. In fact, in our first im-
plementation of a RAR toolchain, we merely “transpile” (perform
a source-to-source translation of) the RAR source into RAC. By
so doing, we leverage a number of existing hardware/software co-
assurance tools with a minimum investment of time and effort. By
transpiling RAR to RAC, we gain access to existing HLS compilers
(we can generate code for either the Algorithmic C or Vivado HLS
toolchains via some simple C preprocessor directives). We are also
able to leverage the RAC-to-ACL2 translator that Russinoff and
colleagues at Arm have successfully utilized in industrial-strength
floating point hardware verification.

As we wish to utilize the RAC toolchain as a backend in our
initial work, we adopt the same semantic restrictions for RAR as
described in Russinoff’s book. Additionally, in order to ease the
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Figure 1: Restricted Algorithmic Rust (RAR) prototype
toolchain.

transition to/from C, we support a commonly used macro that
provides a C-like for loop in Rust. Note that, despite the restrictions,
RAR code is proper Rust; it compiles to binary using the standard
Rust compiler.

RAR is transpiled to RAC via a source-to-source translator, as
depicted in Fig. 1. Our transpiler is based on the plex parser and
lexer generator [30] source code. We thus call our transpiler Plexi,
a nickname given to a famous (and now highly sought-after) line of
Marshall guitar amplifiers of the mid-1960s. Plexi performs lexical
and syntactic transformations that convert RAR code to RAC code.
This RAC code can then be compiled using a C/C++ compiler, fed
to an HLS-based FPGA compiler, as well as translated to ACL2 via
the RAC ACL2 translator, as illustrated in Fig. 1.

We have implemented several representative algorithms and
data structures in RAR, including:
• a suite of array-backed algebraic data types, previously im-
plemented in RAC [9, 11];
• a significant subset of the Monocypher [32] modern cryptog-
raphy suite, including XChacha20 and Poly1305 (RFC 8439)
encryption/decryption, Blake2b hashing, and X25519 public
key cryptography; and
• a DFA-based JSON lexer, coupled with an LL(1) JSON parser.
The JSON parser has also been implemented using Greibach
Normal Form (previously implemented in RAC, as described
in [12]).

The RAR examples created to date are similar to their RAC
counterparts in terms of expressiveness, and we deem the RAR
versions somewhat superior in terms of readability (granted, this is a
very subjective evaluation). Additionally, RAR support of basic Rust
syntax gives embedded developers an “on-ramp” to a more modern
development language, as opposed to being forced to stay with C
in order to achieve high performance and low latency. Further, the
benefits of using the Rust compiler in RAR code development should
not be discounted: its enforcement of type safety andmemory safety,
coupled with its efficient code generation capability, encourages
performant, high-quality code development.

5 EXAMPLES
5.1 Circular Queue
High-assurance data structures are necessary building blocks for
any zero-trust architecture realization. In this section, we present

an example of a verified circular queue implemented using RAR.
Circular queues can be found in both hardware and software re-
alizations, making it an ideal example. First, we declare the basic
queue structure, as shown below. The maximum queue size can be
changed by modifying the CQ_SZ constant; ACL2 can reason about
arrays of any size.

#[derive(Copy, Clone)]

struct CQ {
front: usize,
rear: usize,
arr: [i64; CQ_SZ],

}

A typical circular queue operator is the head-of-queue accessor:

fn CQ_hd(CObj: CQ) -> (u8, i64) {
if (CQ_isEmpty(CObj)) {

return (CQ_EMPTY, 0);
} else {

return (CQ_OK, CObj.arr[CObj.front]);
}

}

The enqueue function is as follows:

fn CQ_enqueue(value: i64, mut CObj: CQ) -> (u8, CQ) {
if (CQ_isFull(CObj)) {

return (CQ_FULL, CObj);
} else {
if (CObj.front == CQ_SZ) { // Insert First Element

CObj.front = 0;
CObj.rear = 0;

} else if (CObj.rear == CQ_MAX_NODE) {
CObj.rear = 0;

} else {
CObj.rear += 1;

}
CObj.arr[CObj.rear] = value;
return (CQ_OK, CObj);

}
}

The circular queue source comprises some 300 lines of RAR code.
We use Plexi to transpile the RAR source to RAC (not shown), then
use the RAC tools to convert the RAC source to ACL2. An example
of the translation to ACL2 is shown below for the CQ_hd function:
(DEFUN CQ_HD (COBJ)

(IF1 (CQ_ISEMPTY COBJ)
(MV (BITS 254 7 0) (BITS 0 63 0))
(MV (BITS 0 7 0)

(AG (AG 'FRONT COBJ) (AG 'ARR COBJ)))))

In this automatically translated function, AG is an ACL2 record
“get” operation, MV provides multi-value return, and BITS provides
a bit-width specification for a given value.

Similarly, the enqueue function is automatically translated to
ACL2 as follows, where AS is an ACL2 record “set” operation:
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(DEFUN CQ_ENQUEUE (VALUE COBJ)
(IF1 (CQ_ISFULL COBJ)

(MV (BITS 255 7 0) COBJ)
(LET ((COBJ (IF1 (LOG= (AG 'FRONT COBJ) 8191)

(LET ((COBJ (AS 'FRONT 0 COBJ)))
(AS 'REAR 0 COBJ))

(IF1 (LOG= (AG 'REAR COBJ) 8190)
(AS 'REAR 0 COBJ)
(AS 'REAR

(+ (AG 'REAR COBJ) 1)
COBJ)))))

(MV (BITS 0 7 0)
(AS 'ARR

(AS (AG 'REAR COBJ)
VALUE (AG 'ARR COBJ))

COBJ)))))

At this point, we can prove theorems about the data structure
implementation. We first define a well-formedness predicate cqp
for the queue in ACL2. We can then prove functional correctness
theorems for the circular queue operations, of the sort stated below:

(defthm dequeue-of-enqueue-from-empty
(implies
(and
(cqp CObj)
(= 1 (CQ_isempty CObj)))

(= (nth 1 (CQ_dequeue (nth 1 (CQ_enqueue v CObj))))
v)))

ACL2 proves the 35 correctness lemmas and theorems that we have
formulated for the circular queue example automatically.

5.2 Crypto Primitives
As noted previously, cryptographic methods are commonly used to
enforce zero trust architecture tenets. We have thus ported a ma-
jority of the Monocypher cryptography suite [32] (approximately
2300 lines of source code) to RAR. Monocypher is a simple, yet
performant and well-maintained set of modern crypto primitives
implemented in C. This porting effort was accomplished in two
phases: first, the Monocypher C sources were modified to conform
to the RAC subset; then that code was ported to Rust/RAR. The
initial goal of these first modifications was to ensure that the Mono-
cypher sources were amenable to the use of fixed-size arrays; and if
so, to see if there was any appreciable negative performance impact.
As it happened, for the selection of crypto primitives that we chose
(a cross-section of Monocypher capabilities, from hashing to En-
cryption/Decryption to Elliptic Curve-based public key functions),
the fixed-size array modifications were not that difficult, and as one
can observe from columns two and three of Table 1, perfomance
was nearly identical after these changes were made. (All results
were obtained on one core of a 2020 MacBook Pro with a 2 GHz
Intel i5 CPU, 32 GB of RAM, and running MacOS Monterey version
12.0.1.) Importantly, the last column of Table 1 reveals the transla-
tion to Rust does not negatively impact execution speed, compared
to the baseline.

Function Baseline
FixedArr/
PassByRef

FixedArr/
PassByVal

Rust

Chacha20 423 437 360 389
Poly1305 1157 992 1054 1213

AuthEncrypt 309 328 264 322
Blake2b 636 631 487 735
X25519 9259 10638 7874 9433

Table 1: Monocypher performance comparisons. Higher
numbers are better. X25519 results are exchanges/sec; all
other results are MB/sec.

One additional performance measure we can readily make is to
compare the results of the Monocypher speed tests under pass-by-
reference vs. pass-by-value (made possible due to some C prepro-
cessor cleverness). As one can see by comparing columns three and
four of Table 1, pass by value reduces C execution speed by 20-30%
for most tests.

We were able to translate the Monocypher primitives from RAR
to RAC (and thence to both hardware and software synthesis), as
well as to ACL2, using the toolchain of Figure 1. Test vectors from
the Monocypher regression suite were then used to validate the
translation to ACL2, but no significant proof efforts have been un-
dertaken on the translated functions thus far, beyond the necessary
loop termination proofs. Future verification plans are discussed in
the sections that follow.

6 RELATEDWORK
Our work is inspired by, and builds upon, the pioneering work of
Russinoff’s team at Arm on Restricted Algorithmic C for floating-
point hardware verification at scale [29]. Floating-point hardware
verification utilizing theorem proving technology has a notable
history (e.g. [13], [15], [29]). Many of these efforts have focused
on engineering artifacts expressed using traditional Hardware De-
scription Languages, such as Verilog; Russinoff’s work using an
HLS is a notable exception.

A number of domain-specific languages targeting both hard-
ware and software realization have been created. Cryptol [4], for
example, has been employed as a “golden spec” for the evaluation
of cryptographic implementations, in which automated tools per-
form equivalence checking between the Cryptol spec for a given
algorithm, and the VHDL implementation.

EverCrypt [27] provides a comprehensive verified implementa-
tion of modern cryptographic algorithms written in F*, then tran-
spiled to lower-level languages, eventually producing C and/or
assembly. We successfully used EverCrypt for our Remote Attesta-
tion work on CASE. We initially wished to tie in to the EverCrypt
toolchain for our current work, but the lower-level forms produced
by the EverCrypt transpilers did not allow us to produce solely
fixed-size arrays that we needed for hardware generation. In future,
we hope to modify this transpiler machinery to allow us to gener-
ate RAC or RAR code, thus allowing us to leverage the significant
formal verification work produced by the EverCrypt team.

Rod Chapman recently translated the TweetNaCl compact cryp-
tographic source code suite to the SPARK Ada subset [5], motivated
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by a similar desire to ours to produce a cryptographic suite written
in a higher-assurance language subset with proof support. Chapman
did not, however, contemplate possible hardware implementation.
We considered the TweetNaCl sources as a starting point for our
work, but Monocypher exhibits superior performance, provides
regression and performance testing, and is better written.

Formal verification systems for Rust include Creusot [7], based
onWhyML; Prusti [3], based on the Viper verification toolchain; and
RustHorn [19], based on constrained Horn clauses. And recently,
AWS has announced a model-checker for Rust, Kani [2]. It will be
interesting to attempt the sorts of correctness proofs achievable on
our system using these verification tools.

7 CONCLUSION
We have developed a prototype environment to enable the Rust pro-
gramming language to be used as a hardware/software co-design
and co-assurance language for critical systems, focusing on systems
that implement Zero Trust Architecture tenets. We have demon-
strated the ability to establish the correctness of several practi-
cal data structures commonly employed in high-assurance sys-
tems through automated formal verification, enabled by automated
source-to-source translation from Rust to RAC to the ACL2 the-
orem prover. We have also successfully applied our toolchain to
cryptography and data format filtering examples typical of the al-
gorithms and data structures employed in zero trust architecture
applications.

We presented two case studies in the development, verification,
and validation of zero trust primitives. For the case of an array-based
circular queue, we presented the results of full functional verifica-
tion after automated translation from Rust to ACL2. This was sup-
plemented by test vectors executed using the ACL2 read/eval/print
loop, thus providing validation of the translation process. For the
case of cryptographic primitives, we detailed how we ported the
Monocypher suite first to Russinoff’s RAC, and then to the RAR
Rust subset. We demonstrated that translation to a fixed-array-size
formulation, needed for RAC, had no negative impacts on per-
formance. We then exercised the RAR toolchain on a significant
subset of the Monocypher suite, demonstrating the feasibility of ex-
pressing cryptographic primitives under the datatype and iterative
form restrictions necessary to achieve both hardware and software
synthesis, as well as automated translation to the ACL2 theorem
prover.

In future work, we will continue to develop the RAR toolchain,
increasing the number of Rust features supported by the RAR subset,
as well as continuing to improve the ACL2 verification libraries in
order to increase the ability to discharge RAR correctness proofs
automatically. We will also continue to work with our colleagues
at Kansas State University on direct synthesis from architectural
models. Finally, we will pursue a connection to the EverCrypt work,
as described earlier.
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