Hardware/Software Co-Assurance using the Rust
Programming Language and ACL2

David Hardin

Collins Aerospace
Cedar Rapids, IA USA

david.hardin@collins.com

The Rust programming language has garnered significant interest and use as a modern, type-safe,
memory-safe, and potentially formally analyzable programming language. Our interest in Rust stems
from its potential as a hardware/software co-assurance language, with application to critical systems
such as autonomous vehicles. We report on the first known use of Rust as a High-Level Synthe-
sis (HLS) language. Most incumbent HLS languages are a subset of C. A Rust-based HLS brings
a single modern, type-safe, and memory-safe expression language for both hardware and software
realizations with high assurance. As a study of the suitability of Rust as an HLS, we have crafted a
Rust subset, inspired by Russinoff’s Restricted Algorithmic C (RAC), which we have imaginatively
named Restricted Algorithmic Rust, or RAR. In our first implementation of a RAR toolchain, we
simply transpile the RAR source into RAC. By so doing, we leverage a number of existing hard-
ware/software co-assurance tools with a minimum investment of time and effort. In this paper, we
describe the RAR Rust subset, detail our prototype RAR toolchain, and describe the implementation
and verification of several representative algorithms and data structures written in RAR, with proofs
of correctness conducted using the ACL2 theorem prover.

1 Introduction

The Rust programming language has garnered significant interest and use as a modern, type-safe, memory-
safe, and potentially formally analyzable programming language. Google [29] and Amazon [20] are
major Rust adopters, and Linus Torvalds has commented positively on the near-term ability of the Rust
toolchain to be used in Linux kernel development [1]. The latter capability comes none too soon, as
use of C/C++ continues to spawn a seemingly never-ending parade of security vulnerabilities, which
continue to manifest at a high rate [[19] despite the emergence and use of sophisticated C/C++ analysis
tools. Moreover, the extremely aggressive optimizations in modern C/C++ compilers have lead some re-
searchers to declare that C is no longer suitable for system-level programming [32f], arguably C’s major
rasion d’etre.

Our interest in Rust stems from its potential as a hardware/software co-assurance language. This
interest is motivated in part by emerging application areas, such as autonomous and semi-autonomous
platforms for land, sea, air, and space, that require sophisticated algorithms and data structures, are sub-
ject to stringent accreditation/certification, and encourage hardware/software co-design approaches. (For
an unmanned aerial vehicle use case illustrating a formal methods-based systems engineering environ-
ment, please consult [18]].) In this paper, we explore the use of Rust as a High-Level Synthesis (HLS)
language [23]. Most incumbent HLS languages are a subset of C, e.g. Mentor Graphics’ Algorithmic
C [16]], or Vivado HLS by Xilinx [31]. A Rust-based HLS would bring a single modern, type-safe, and
memory-safe expression language for both hardware and software realizations, with very high assurance.

As formal methods researchers, another keen interest is in being able to reason about application-
level logic written in the imperative style favored by industry. Much progress has been made to this

© D.S. Hardin
This work is licensed under the
Creative Commons Attribution License.

Rob Sumners, Cuong Chau (Eds.): 17th ACL2 Workshop (ACL2 2022)
EPTCS 359, 2022, pp. 202 , doi:10.4204/EPTCS.359.16

http://dx.doi.org/10.4204/EPTCS.359.16
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

D.S. Hardin 203

end in recent years, to the point that developers can verify the correctness of common algorithm and
data structure code that utilizes common idioms such as records, loops, modular integers, and the like,
and verified compilers can guarantee that such code is compiled correctly to binary [[11]]. Particular
progress has been made in the area of hardware/software co-design algorithms, where array-backed data
structures are common [|6,/7]]. (NB: This style of programming also addresses one of the shortcomings of
Rust, namely its lack of support for cyclic data structures.)

As a study of the suitability of Rust as an HLS, we have crafted a Rust subset, inspired by Russinoff’s
Restricted Algorithmic C (RAC) [27]], which we have imaginatively named Restricted Algorithmic Rust,
or RAR. In fact, in our first implementation of a RAR toolchain, we merely “transpile” (perform a source-
to-source translation of) the RAR source into RAC. By so doing, we leverage a number of existing
hardware/software co-assurance tools with a minimum investment of time and effort. By transpiling
RAR to RAC, we gain access to existing HLS compilers (with the help of some simple C preprocessor
directives, we are able to generate code for either the Algorithmic C or Vivado HLS toolchains). But most
importantly for our research, we leverage the RAC-to-ACL2 translator that Russinoff and colleagues at
Arm have successfully utilized in industrial-strength floating point hardware verification.

We have implemented several representative algorithms and data structures in RAR, including:

* asuite of array-backed algebraic data types, previously implemented in RAC (as reported in [6]]);

* asignificant subset of the Monocypher [30] modern cryptography suite, including XChacha20 and
Poly1305 (RFC 8439) encryption/decryption, Blake2b hashing, and X25519 public key cryptog-
raphy; and

* a DFA-based JSON lexer, coupled with an LL(1) JSON parser. The JSON parser has also been
implemented using Greibach Normal Form (previously implemented in RAC, as described in [9]).

The RAR examples created to date are similar to their RAC counterparts in terms of expressive-
ness, and we deem the RAR versions somewhat superior in terms of readability (granted, this is a very
subjective evaluation).

In this paper, we will describe the development and formal verification of an array-based set data
structure in RAR. Along the way, we will introduce the RAR subset of Rust, the RAR toolchain, the
array-based set example, and detail the ACL2-based verification techniques, as well as the ACL2 books
that we brought to bear on this example. It is hoped that this explication will convince the reader of the
practicality of RAR as a high-assurance hardware/software co-design language, as well as the feasibility
of the performing full functional correctness proofs of RAR code. We will then conclude with related
and future work.

2 An Aspirational Integrated Toolchain

In order to place our research goals in context, let us consider an aspirational integrated hardware/software
co-assurance toolchain, as shown in Fig.[I]

In this approach, developers can input various familiar high-level specifications, and produce verified
implementations for those specifications, in software, hardware, or a combination of the two. Let us now
consider each element of Fig.[1|in turn, proceeding left-to-right and top-to-bottom.

2.1 Inputs

Many different common input specification types are anticipated, from AADL models to algorithms in
type-safe programming languages to ABNF protocol specifications to lexer/parser specifications; only a

204 Hardware/Software Co-Assurance using Rust

Runtime
Libraries
Application > I_Iilagnhg_llj_aeézl ~ Object
Logic Compiler Code
= l Hardware/
Data Format ~ Verified Transpiler —| Software RTL
Specification > Synthesis Co-Design Tool

Protocol
Specification

Figure 1: Aspirational integrated hardware/software co-design, co-assurance toolchain.

few representative input types are shown in Fig.|l} The input specification formats for Verified Synthesis
will be discussed further in Section [2.2] As for Application Logic, our approach anticipates inputs in
modern, type-safe language(s) supported by verified compilation, as described in Section [2.4

These input forms may be subject to certain subsetting rules, as not all input specification utter-
ances are appropriate for formal synthesis/analysis. Additionally, input specifications may be augmented
with pragmas (often introduced as structured comments) to help guide the execution of the formal tools
described in the sections that follow.

2.2 Verified Synthesis

Verified Synthesis constitutes a number of different verified program synthesis tools for declarative spec-
ification input forms commonly utilized by engineers and computer scientists, including state machine
specifications, protocol specifications (e.g., ABNF), regular expressions, grammars, and the like. Our
goal is for the Verified Synthesis tools to generate source code in the language(s) of the High-Level
Language Compiler(s) of Section[2.4

2.3 Runtime Libraries

Runtime Libraries constitute a set of runtime services that a verified application may require. These
include the usual runtime services, as well as a number of common algebraic data types. Our goal is for
the runtime libraries to be formally verified, inspired by the verified runtime libraries for CakeML [[11]].

Note that high-assurance design rules in particular domains may require specializations of com-
mon runtime library services. For example, cyber-physical system designers generally limit the space
and time allocations for any given function, and require that algorithms deliver results within a finite
time, or suffer a watchdog timeout. Furthermore, domain-specific high-assurance design rules, such
as mandated by RTCA DO-178C Level A [26] for flight-critical systems, frown on dynamic memory
allocation, preferring simple array-based data structure implementations. This discipline also benefits
hardware/software co-design, as array-based implementations are much easier to realize in hardware
than dynamic data structures, with their requirements for malloc and free operations — not to mention
the attendant programming errors that can result from dynamic memory management, eg, use-after-free.

D.S. Hardin 205

Thus, an algebraic data type may include a high-level, functional implementation for which correctness
proofs are easier to obtain, as well as a fixed-memory version, accompanied by a proof stating that the
latter specializes the former. These specialization proofs could possibly be performed with the aid of
machine-learning-based automated proof refinement capabilities in the future.

2.4 High-Level Language Compiler

We strongly advocate type-safe and memory safe modern languages, preferably with verified compilers.
A few successful verified compilers have been created in recent years, notably CompCert C [[12]] and
CakeML [11]]. However, C is hardly an appealing language for future high-assurance system develop-
ment; a verified compiler does little to address the many shortcomings of C from an assurance perspec-
tive, including unrestricted pointer arithmetic, a seemingly never-ending parade of buffer overflow and
other memory integrity/memory management vulnerabilities, unrestricted function pointers, efc. On the
other hand, Standard ML has a rather small developer community, and its functional orientation makes it
not particularly well-suited for embedded systems programming. The F* dialect of ML, however, is the
basis for some very interesting work on high-assurance network protocols at Microsoft Research [24]
that shares many of our protocol verification objectives.

We aspire to provide verified compilation support for high-assurance subsets of popular, modern
functional/imperative hybrid languages, e.g., Scala, Rust, or Swift. These languages exhibit type safety,
restrict pointer operations, and are capable of producing efficient, product-quality code. An exemplary
approach would include the creation of a verified compiler toolkit, which would be used to develop a
set of verified compilers for semantically similar, but perhaps syntactically quite different, languages.
Additionally, it is hoped that the verified synthesis tools of Section[2.2]can be employed to build verified
compilers using this toolkit approach.

2.5 Transpiler

A Transpiler in the context of Fig. |1|is a verified source-to-source translator that takes the development
source language(s) to a language that can be processed by the Hardware/Software Co-Design Tool. A
Transpiler in our context translates a higher-level language, e.g., Rust or Scala, to a lower-level one, e.g.,
Algorithmic C; an unverified transpiler of this sort has been created by Robby of Kansas State University,
and is part of the DARPA CASE tools [25]. It is hoped that the verified compiler toolkit described in
Section[2.4] can be used to build any needed transpilers with high assurance.

2.6 Hardware/Software Co-Design Tool

A Hardware/Software Co-Design tool, as the name implies, allows a developer to allocate her designs
to hardware, software, or a combination of the two, producing software code and RTL as output. So-
phisticated co-design environments also allow the user to perform “what if” analyses, with the aid of
simulation capability, adjusting the allocations to hardware vs. software in order to optimize for desired
properties. Example tools of this sort include Simulink [15]], as well as the development environments
for “system” languages such as SystemC, Algorithmic C, etc. The Hardware/Software Co-Design Tool
is not likely to be a verified program itself (at least not initially), but should at least provide the capability
to export a design model that can be analyzed using formal verification tools.

We have been evaluating a particular hardware/software design approach employed by floating-point
hardware verification researchers, detailed further in Section 3l

206 Hardware/Software Co-Assurance using Rust

Formal Verification “Comfort Zone” Real-World Development

Functional programming Imperative programming

Total, terminating functions Partial, potentially non-terminating functions

Non-tail-recursive functions Loops

Okasaki-style pure functional algebraic data types Structs, Arrays
Infinite-precision Integers, Reals Modular Integers, IEEE 754 floating point
Linear Arithmetic Linear and Non-linear Arithmetic

Arithmetic or Bit Vectors Arithmetic and Bit Vectors

Table 1: Formal verification vs. real-world development attributes.

2.7 Object Code

“Object Code” is a broad term for the output of compilation/assembly, from machine-independent virtual
machines (e.g., JVM [[13]], LLVM [14]) to the machine code for a given CPU (e.g., ARM, x86, RISC-V,
PowerPC). An object code file is typically encoded in a binary format. We are specifically interested
in compilation toolchains, such as CakeML, that provide verified compilation down to the object code
level; as well as verified “lifters” that can take object code, and abstract it to functions in a given logic,
e.g., Myreen’s Decompilation into Logic work [22].

2.8 RTL (Register Transfer Logic)

Register Transfer Logic (RTL) describes a hardware design at a functional level, but at a sufficient level
of fidelity that allows for automated synthesis of a gate-level netlist, as well as automated analysis and
simulation. This netlist can then be placed and routed to produce FPGA or ASIC implementations. RTL
is expressed using Hardware Description Languages (HDLs), such as VHDL, Verilog, SystemVerilog,
or Bluespec.

3 RAC: Hardware/Software Co-Assurance at Scale

In order to begin to realize our aspirational vision for hardware/software co-assurance at scale, we have
conducted several experiments employing a state-of-the-art toolchain, due to Russinoff and O’Leary, and
originally designed for use in floating-point hardware verification [27]], to determine its suitability for the
creation of safety-critical/security-critical applications in various domains. Note that this toolchain has
already demonstrated the capability to scale to industrial designs in the floating-point hardware design
and verification domain, as it has been used in design verifications for CPU products at both Intel and
Arm.

Algorithmic C [16] is a High-Level Synthesis (HLS) language, and is supported by hardware/software
co-design environments from Mentor Graphics, e.g., Catapult [[17]]. Algorithmic C defines C++ header
files that enable compilation to both hardware and software platforms, including support for the peculiar
bit widths employed, for example, in floating-point hardware design.

The Russinoff-O’Leary Restricted Algorithmic C (RAC) toolchain, depicted in Fig. [2] translates a
subset of Algorithmic C source to the Common Lisp subset supported by the ACL2 theorem prover, as
augmented by Russinoff’s Register Transfer Logic (RTL) books.

D.S. Hardin 207

Algorithmic C ’—‘
Headers Lemmas

Y

Algorithmic C ACL2 ACL2
— Theorem
Source Translator

/ \ Prover

C++ Hardware R

Compiler Synthesis

Figure 2: Restricted Algorithmic C (RAC) toolchain.

The ACL2 Translator component of Fig. 2 provides a case study in the bridging of Formal Model-
ing and Real-World Development concerns, as summarized in Table [II The ACL2 translator converts
imperative RAC code to functional ACL2 code. Loops are translated into tail-recursive functions, with
automatic generation of measure functions to guarantee admission into the logic of ACL2 (RAC subset-
ting rules ensure that loop measures can be automatically determined). Structs and arrays are converted
into functional ACL2 records. The combination of modular arithmetic and bit-vector operations of typi-
cal RAC source code is faithfully translated to functions supported by Russinoff’s RTL books. ACL2 is
able to reason about non-linear arithmetic functions, so the usual concern about formal reasoning about
non-linear arithmetic functions does not apply. Finally, the RTL books are quite capable of reasoning
about a combination of arithmetic and bit-vector operations, which is a very difficult feat for most auto-
mated solvers.

Recently, we have investigated the synthesis of Field-Programmable GateArray (FPGA) hardware
directly from high-level architecture models, in collaboration with colleagues at Kansas State University.
The goal of this work is to enable the generation of high-assurance hardware and/or software from high-
level architectural specifications expressed in the Architecture Analysis and Design Language (AADL)
[4], with proofs of correctness in ACL2.

4 Rust and RAR

The Rust Programming Language [10] is a modern, high-level programming language designed to com-
bine the code generation efficiency of C/C++ with drastically improved type safety and memory man-
agement features. A distinguishing feature of Rust is a non-scalar object may only have one owner. For
example, one cannot assign a reference to an object in a local variable, and then pass that reference to a
function. This restriction is similar to those imposed on ACL2 single-threaded objects (stobjs) [3]], with
the additional complexities of enforcing such “single-owner” restrictions in the context of a general-
purpose, imperative programming language. The Rust runtime performs array bounds checking, as well
as arithmetic overflow checking (the latter can be disabled by a build environment setting).

In most other ways, Rust is a fairly conventional modern programming language, with interfaces
(called traits), lambdas (termed closures), and pattern matching, as well as a macro capability. Also in
keeping with other modern programming language ecosystems, Rust features a language-specific build
and package management sytem, named cargo.

208 Hardware/Software Co-Assurance using Rust

Algorithmic C
Headers @'

Y

Y

Rust Plexi Algorithmic C|___ | ACL2 Theorem
Source Transpiler Source | | Translator Prover

C—i——@— Hardwalje e

Compiler Synthesis

Figure 3: Restricted Algorithmic Rust (RAR) toolchain.

4.1 Restricted Algorithmic Rust

As we wish to utilize the RAC toolchain as a backend in our initial work, the Restricted Algorithmic
Rust is semantically equivalent to RAC. Thus, we adopt the same semantic restrictions as described in
Russinoff’s book. Additionally, in order to enable translation to RAC, as well as to ease the transition
from C/C++, RAR supports a commonly used macro that provides a C-like for loop in Rust. Note that,
despite the restrictions, RAR code is proper Rust; it compiles to binary using the standard Rust compiler.

RAR is transpiled to RAC via a source-to-source translator, as depicted in Fig. [3] Our transpiler
is based on the plex parser and lexer generator [28|] source code. We thus call our transpiler Plexi, a
nickname given to a famous (and now highly sought-after) line of Marshall guitar amplifiers of the mid-
1960s. Plexi performs lexical and syntactic transformations that convert RAR code to RAC code. This
RAC code can then be compiled using a C/C++ compiler, fed to an HLS-based FPGA compiler, as well
as translated to ACL2 via the RAC ACL2 translator, as illustrated in Fig.

S Example: Array-Based Set

In this section, we describe an array-based set implementation using RAR. This implementation is based
on a challenge problem formulated in SPARK, which was in turn a sanitization of source code produced
from a Simulink model created during a Collins high-assurance development [8§]].

5.1 Arrayset Definitions
First, we present the basic RAR declaration for the Arrayset.

const ARR_SZ: uint = 256;

#[derive (Copy, Clone)]
struct Arrayset {
anext: [usize; ARR_SZ],
avals: [i64; ARR_SZ],
free_head: usize,
used_head: usize,

}

D.S. Hardin 209

used_head free_head

1 2

\ _/

5(0]13([4]5

ARV IV

anext

avals
22133 | X | X | X

Figure 4: An Arrayset data structure with contents {33, 22}, size = 5.

In this declaration, the array avals holds the set elements, the anext array contains indices indi-
cating the next element in either the free or used list, free_head is the index of the first element of the
free list, and used_head is the index of the first element of the used list. Note that indices in Rust are
normally declared to be of the usize type.

The ingenious bit about this particular array-backed set implementation is the use of a single anext
array to hold both the free list and the used list. Each element of the anext array is in one of the two
lists, but not both. The free list and used list are both terminated by elements in the next array with the
value ARR_SZ. Any value outside the range of valid element indices would do for the terminators. One
of the jobs of the mutators aset_init (), aset_add (), and aset_del () is to maintain the integrity of
the free list and used list contained within the single anext array, and it is a primary obligation of the
ACL2 proofs to show that this is the case.

Fig. W] shows the state of an Arrayset of size 5 after some number of aset_add and aset_del
operations have been performed. The used_head is 1, which is an index into the anext array (note that
all arrays are zero-based). The free_head is 2. If we read the anext array at index used_head, we get
the next element in the used list, namely 0. If we then read the anext array at index 0, we get 5, which
is the terminator; thus, we have arrived at the end of the used list. The corresponding elements in the
avals array are 33 and 22; thus, the Arrayset content is {33, 22}. (Note that all other components of
avals have values, but since they are free elements, those values do not matter.)

On the other hand, if we traverse the anext array starting at the free_head index, we get 3. Follow-
ing the free list, we read the third element of the anext list, which is 4. Reading index 4 of the anext
list, we get 5, which is the terminator. Thus, we have reached the end of the free list.

If we then execute aset_del (22, aset), we obtain the Arrayset shown in Figure [5S| As one can
readily observe, the used list is shortened by one, and the free list is lengthened by one, all using elements
from the single anext array.

The aset_add () function is coded in RAR as shown in Fig.[6] The operation of aset_add () is as
follows. If the free head has the value of the terminator, then there is no room, and no change is made
to the Arrayset. Also, if the element val to be added is already in the set, then the original Arrayset is
returned. Otherwise, we adjust the free head to the next element in the free list, insert the new val at
the element index indicated by the old free head, copy the old free head value to the used head position

210 Hardware/Software Co-Assurance using Rust

used_head free_head

1 0

anext

avals

Figure 5: The Arrayset after deleting element 22.

fn aset_add(val: i64, aset: mut Arrayset) -> Arrayset {
let curr_index: usize = aset.free_head;

if (curr_index >= ARR_SZ) {
return aset; // Full
} else {
if ((aset.used_head < ARR_SZ) && aset_is_element(val, aset)) {
return aset;
} else {

aset.free_head = aset.anext[aset.free_head];
aset.avals[curr_index] = val;
aset.anext[curr_index] = aset.used_head;
aset.used_head = curr_index;

return aset;

Figure 6: aset_add() function in RAR.

D.S. Hardin 211

in the next array, and finally set the used head to the old free head. Aside from the obvious syntactic
differences, this function is a fairly straightforward translation of the SPARK version of [2].

aset_del() proceeds similarly, although it is admittedly a bit more complicated (see Fig. [7).
aset_del (), inturn, depends on the aset_element_prev_from() function (not shown), which searches
for an element with a given value val by traversing the anext array, and examining values using
corresponding indices into the avals array. This function actually returns an index previ such that
aset.avals[aset.anext[previ]] == val, as that index is needed for Arrayset bookkeeping.

5.2 Translation to ACL2

We use Plexi to transpile the RAR source to RAC (not shown), then use the RAC translator to convert
the resulting RAC source to ACL2. The translation of aset_add () appears in Fig.

The first thing to note about Fig. [8|is that struct and array ‘get’ and ‘set’ operations become untyped
record operators, AG and AS, respectively — these are slight RAC-specific customizations of the usual
ACL2 untyped record operators. Further, IF1 is a RAC-specific macro, and LOG>=, LOGAND1, and LOG<
are all RTL functions. Thus, much of the proof effort involved with RAR code is reasoning about untyped
records and RTL — although not a lot of RTL-specific knowledge is needed, at least in our experience.
An additional observation to make here is that, even though we are two translation steps away from
the original RAR source, the translated function is nonetheless quite readable, which is a rare thing for
machine-generated code.

5.3 Arrayset Theorems

Once we have translated the Arrayset functions into ACL2, we can begin to prove theorems about the
data structure implementation. We start by introducing an important relation between the free head and
the used head that we expect all operations to maintain:

(defun free-head-used-head-relation (aset)
(not (= (ag ’free_head aset) (ag ’used_head aset))))

We then define a “good state” predicate. This function states that for a good state, the aset input
satisfies the arraysetp wellformedness predicate; the free_head is not equal to the used_head, there
are no duplicates of val in the avals array, and that the length of the free list plus the length of the used
list is equal to the total length.

(defun good-statep (val aset)
(and (arraysetp aset)
(free-head-used-head-relation aset)
(no-dups val aset)
(= (+ (aset_len aset) (aset_len_free aset)) (arr_sz))))

Given this definition of a good Arrayset state, we can prove functional correctness theorems for the
Arrayset operations, of the sort stated below:

(defthm aset_add-works—--thm
(implies
(and (good-statep val aset)
(integerp val)
(< (aset_len aset) (arr_sz)))
(= (aset_is_element val (aset_add val aset)) 1)))

212 Hardware/Software Co-Assurance using Rust

fn aset_del(val: i64, aset: mut Arrayset) -> Arrayset {
let mut curr_index: usize = aset.used_head;
let mut prev_index: usize;

if (aset.used_head >= ARR_SZ) {

return aset; // Empty
} else {
if (aset.avals[curr_index] == wval) {

aset.used_head = aset.anext[curr_index];
aset.anext[curr_index] = aset.free_head;
aset.free_head = curr_index;

return aset;
} else {
prev_index = aset_element_prev_from(aset.used_head, val, aset);

if (prev_index >= ARR_SZ) {
return aset;
} else {

curr_index = aset.anext[prev_index];

if (curr_index >= ARR_SZ) {
return aset;

} else {
aset.anext [prev_index] = aset.anext[curr_index];
aset.anext[curr_index] = aset.free_head;
aset.free_head = curr_index;

return aset;

Figure 7: aset_del function in RAR.

D.S. Hardin 213

(DEFUND ASET_ADD (VAL ASET)
(LET ((CURR_INDEX (AG ’FREE_HEAD ASET)))
(IF1 (LOG>= CURR_INDEX (ARR_SZ))
ASET
(IF1 (LOGAND1 (LOG< (AG ’USED_HEAD ASET) (ARR_SZ))
(ASET_IS_ELEMENT VAL ASET))
ASET
(LET* ((ASET (AS ’FREE_HEAD
(AG (AG ’FREE_HEAD ASET)
(AG ’ANEXT ASET))
ASET))
(ASET (AS ’AVALS
(AS CURR_INDEX VAL (AG ’AVALS ASET))
ASET))
(ASET (AS °’ANEXT
(AS CURR_INDEX (AG ’USED_HEAD ASET)
(AG ’ANEXT ASET))
ASET)))
(AS ’USED_HEAD CURR_INDEX ASET))))))

Figure 8: aset_add() function translated to ACL2 using the RAC tools.

ACL2 performs the correctness proof for aset_add automatically. The correctness proof for the
aset_del operation is considerably more complex, as aset_del makes numerous modifications to the
Arrayset data structure. Thus, user assistance is currently required in order to perform the correctness
proof.

6 Comparison to other Automated Verification Tools

The Arrayset example has so far been subjected to automated formal verification by two other ap-
proaches: model-checking [8] and symbolic execution [2]]. In the former case, the Arrayset example,
as well as its correctness properties, were formulated as Simulink/Stateflow [[15] models (indeed, this
was the original form), and processed by the Collins Gryphon toolset [21]]. In the particular instantiation
of the Gryphon toolset in use at the time, the backend model checker was able to automatically establish
correctness properties for the Arrayset example, but only up to an array size of 3; beyond that, state space
explosion occurred [8]].

Later, John Hatcliff’s team at Kansas State University utilized the Arrayset SPARK code, automat-
ically produced from the earlier Simulink model by another part of the Gryphon toolchain [g]], as a
challenge problem for their newly-developed Bakar Kiasan symbolic execution-based formal analysis
tool. Bakar Kiasan processes an extended SPARK contract annotation language that includes, among
other enhancements, user-defined correctness predicates expressed using SPARK syntax. Bakar Kiasan
was able to prove functional correctness for the Arrayset example up to an array size of 8 before combi-
natorics began to overwhelm its symbolic execution engine [J2].

Our current work also can be compared and contrasted to a previous formalization of the array-

214 Hardware/Software Co-Assurance using Rust

backed set we developed using ACL2’s single-threaded object capability [5]]. Whereas the use of a stobj
made for a much more performant ACL2 implementation, which was useful for validation testing, the
stobj-baased formalization had to be constructed by hand. Thus, no direct connection to an imperative
implementation, of the sort commonly written by a non-specialist developer, could be made, in contrast
to the current approach. Further, reasoning about untyped records is considerably easier than reasoning
about stobj’s, at least in our experience. We additionally note that in both ACL2 formalizations, all
Arrayset operations were written in tail-recursive style, so this was not a factor in the ease of proof.

7 Conclusion

We have developed a prototype toolchain to allow the Rust programming language to be used as a hard-
ware/software co-design and co-assurance language for critical systems, standing on the shoulders of
Russinoff’s team at Arm, and all the great work they have done on Restricted Algorithmic C. We have
demonstrated the ability to establish the correctness of several practical data structures commonly found
in high-assurance systems (e.g., array-backed singly-linked lists, doubly-linked lists, stacks, and de-
queues) through automated formal verification, enabled by automated source-to-source translation from
Rust to RAC to ACL2, and we detailed the specification and verification of one such data structure,
an array-backed set. We have also successfully applied our toolchain to cryptography and data format
filtering examples typical of the sorts of algorithms that one encounters in critical systems development.

In the particular case of an array-backed set, we were able to compare the scalability of several
verification techniques, including model-checking, symbolic execution, and the ACL2 theorem prover.
The model checking and symbolic execution approaches were able to prove correctness for small array
sizes (up to 3, and up to 8, respectively), but state space explosion did not allow them to go beyond that.
While the ACL2 proof efforts required a fair amount of human labor in order to achieve the Arrayset
formalization and proofs, now that this effort has been made, additional proof efforts involving similar
data structures should proceed more quickly.

In future work, we will continue to develop our toolchain, increasing the number of Rust features
that we can support in the RAR subset, as well as continuing to improve the ACL2 verification libraries
in order to increase the ability to discharge RAR correctness proofs automatically. We will also continue
to work with our colleagues at Kansas State University on the direct synthesis and verification of FPGA
hardware from RAR source code.

8 Acknowledgments

This work was funded by DARPA contract HR0O0111890001. The views, opinions and/or findings ex-
pressed are those of the authors and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

Many thanks to Mike Whalen of Amazon for formulating the original version of the Arrayset example
while a Collins employee; to John Hatcliff of Kansas State University for taking on the Arrayset example
as a challenge problem for his symbolic execution framework; to Matt Kaufmann at the University of
Texas at Austin for his help on the earlier stobj-based version of the Arrayset code; to David Russinoff
of Arm for answering questions about the RAC toolchain; and to Robby and Matthew Weis of Kansas
State University for their ongoing work to further our hardware/software co-assurance efforts. Thanks
also go to the anonymous reviewers for their insightful comments.

D.S. Hardin 215

References
[1] Ron Amadeo (2021): Google is now writing low-level Android code
in Rust. Available at https://arstechnica.com/gadgets/2021/04/

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

google-is-now-writing-low-level-android-code-in-rust/\
Jason Belt, John Hatcliff, Robby, Patrice Chalin, David S. Hardin & Xianghua Deng (2011): Bakar Kiasan:

Flexible Contract Checking for Critical Systems using Symbolic Execution. In: Proceedings of the Third
NASA Formal Methods Symposium (NFM 2011), pp. 58-72, doi:10.1007/978-3-642-20398-5_6.

Robert S. Boyer & J Strother Moore (2002): Single-Threaded Objects in ACL2. In: Practical Aspects of
Declarative Languages, 4th International Symposium, PADL 2002, Portland, OR, USA, January 19-20, 2002,
Proceedings, LNCS 2257, Springer, pp. 9-27, doij10.1007/3-540-45587-6_3.

Peter H. Feiler & David P. Gluch (2012): Model-Based Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language, 1st edition. Addison-Wesley Professional.

David S. Hardin (2013): The Specification, Verification, and Implementation of a High-Assurance Data
Structure: An ACL2 Approach. In: Proceedings of the 46th Hawaii International Conference on System
Sciences, pp. 5059-5067, doi;10.1109/HICSS.2013.54 1

David S. Hardin (2020): Put Me on the RAC. In: Proceedings of the Sixteenth International Workshop on the
ACL2 Theorem Prover and its Applications (ACL2-20), pp. 142-145.

David S. Hardin (2020): Verified Hardware/Software Co-Assurance: Enhancing Safety and
Security for Critical Systems. In: Proceedings of the 2020 IEEE Systems Conference,
doi;10.1109/SysCon47679.2020.9381831.

David S. Hardin, T. Douglas Hiratzka, D. Randolph Johnson, Lucas G. Wagner & Michael W. Whalen (2009):
Development of Security Software: A High Assurance Methodology. In K. Breitman & A. Cavalcanti, editors:
Proceedings of the 11th International Conference on Formal Engineering Methods (ICFEM’09), Springer, pp.
266-285, doi:10.1007/978-3-642-10373-5_14.

David S. Hardin & Konrad L. Slind (2021): Formal Synthesis of Filter Components for Use in Security-
Enhancing Architectural Transformations. In: Proceedings of the Seventh Workshop on Language-
Theoretic Security, 42nd IEEE Symposium and Workshops on Security and Privacy (LangSec 2021),
doi:10.1109/SPW53761.2021.00024.

Steve Klabnik & Carol Nichols (2018): The Rust Programming Language. No Starch Press.

Ramana Kumar, Magnus O. Myreen, Michael Norrish & Scott Owens (2014): CakeML: a verified implemen-
tation of ML. In Suresh Jagannathan & Peter Sewell, editors: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, ACM, pp. 179-192, doij10.1145/2535838.2535841.

Xavier Leroy (2009): Formal verification of a realistic compiler. Communications of the ACM 52(7), pp.
107-115, doii10.1145/1538788.1538814.

Tim Lindholm, Frank Yellin, Gilad Bracha & Alex Buckley (2013): The Java Virtual Machine Specification.
Addison-Wesley.

LLVM Project (2020): The LLVM Compiler Infrastructure. Available athttp://1lvm.org/.

The MathWorks, Inc. (2020): Simulink. Available at https://www.mathworks.com/products/
simulink.html.

Mentor Graphics Corporation (2016): Algorithmic C (AC) Datatypes. Available at https://www.mentor.
com/hls-1p/downloads/ac-datatypes!

Mentor Graphics Corporation (2020): Catapult High-Level Synthesis. Available at https://www.mentor.
com/hls-1p/catapult-high-level-synthesis/.

Eric Mercer, Konrad Slind, Isaac Amundson, Darren Cofer, Junaid Babar & David Hardin
(2021): Synthesizing Verified Components for Cyber Assured Systems Engineering. In: 24th

https://arstechnica.com/gadgets/2021/04/google-is-now-writing-low-level-android-code-in-rust/
https://arstechnica.com/gadgets/2021/04/google-is-now-writing-low-level-android-code-in-rust/
http://dx.doi.org/10.1007/978-3-642-20398-5_6
http://dx.doi.org/10.1007/3-540-45587-6_3
http://dx.doi.org/10.1109/HICSS.2013.541
http://dx.doi.org/10.1109/SysCon47679.2020.9381831
http://dx.doi.org/10.1007/978-3-642-10373-5_14
http://dx.doi.org/10.1109/SPW53761.2021.00024
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1145/1538788.1538814
http://llvm.org/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mentor.com/hls-lp/downloads/ac-datatypes
https://www.mentor.com/hls-lp/downloads/ac-datatypes
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

216

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Hardware/Software Co-Assurance using Rust

International Conference on Model-Driven Engineering Languages and Systems (MODELS 2021),
doi:10.1109/MODELS50736.2021.00029.

Matt Miller (2019): A proactive approach to more secure code. Available at https://msrc-blog.
microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/.

Shane Miller & Carl Lerche (2022): Sustainability with Rust. Available at https://aws.amazon.com/
blogs/opensource/sustainability-with-rust/.

Steven Miller, Michael Whalen & Darren Cofer (2010): Software model checking takes off. Communications
of the ACM 53, pp. 58-64, doi:10.1145/1646353.1646372.

Magnus Myreen (2009): Formal verification of machine-code programs. Ph.D. thesis, University of Cam-
bridge.

Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen,
Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason Anderson & Koen Bertels (2016): A Survey and Eval-
uation of FPGA High-Level Synthesis Tools. 1IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35(10), pp. 1591-1604, doii10.1109/TCAD.2015.2513673.

Tahina Ramananandro, Antoine Delignat-Lavaud, Cedric Fournet, Nikhil Swamy, Tej Chajed, Nadim
Kobeissi & Jonathan Protzenko (2019): EverParse: Verified Secure Zero-Copy Parsers for Authenticated
Message Formats. In: USENIX Security ‘19.

Robby & John Hatcliff (2021): Slang: The Sireum Programming Language. In: 10th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA), LNCS 13036, pp.
253-273, doi:10.1007/978-3-030-89159-6_17.

RTCA Committee SC-205 (2015): DO-178C Software Considerations in Airborne Systems and Equipment
Certification. Available athttps://my.rtca.org/nc__store?search=D0-178C.

David M. Russinoff (2022): Formal Verification of Floating-Point Hardware Design: A Mathematical Ap-
proach, second edition. Springer, doii10.1007/978-3-030-87181-9.

Geoffry Song (2020): plex: a parser and lexer generator as a Rust procedural macro. Available at https:
//github.com/goffrie/plex.

Jeff Vander Stoep & Stephen Hines (2021): Rust in the Android platform. Available athttps://security.
googleblog.com/2021/04/rust-in-android-platform.htmll

Loup Vaillant (2022): Monocypher: Boring Crypto that Simply Works. Available at https://monocypher.
org.

Xilinx, Inc. (2018): Vivado Design Suite User Guide: High-Level Synthesis. Avail-
able at https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/
ug902-vivado-high-level-synthesis.pdf|

Victor Yodaiken (2021): How ISO C became unusable for operating systems development. In:

Proceedings of the 11th Workshop on Programming Languages and Operating Systems, pp. 84-90,
doi:10.1145/3477113.3487274.

http://dx.doi.org/10.1109/MODELS50736.2021.00029
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
http://dx.doi.org/10.1145/1646353.1646372
http://dx.doi.org/10.1109/TCAD.2015.2513673
http://dx.doi.org/10.1007/978-3-030-89159-6_17
https://my.rtca.org/nc__store?search=DO-178C
http://dx.doi.org/10.1007/978-3-030-87181-9
https://github.com/goffrie/plex
https://github.com/goffrie/plex
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://monocypher.org
https://monocypher.org
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
http://dx.doi.org/10.1145/3477113.3487274

	1 Introduction
	2 An Aspirational Integrated Toolchain
	2.1 Inputs
	2.2 Verified Synthesis
	2.3 Runtime Libraries
	2.4 High-Level Language Compiler
	2.5 Transpiler
	2.6 Hardware/Software Co-Design Tool
	2.7 Object Code
	2.8 RTL (Register Transfer Logic)

	3 RAC: Hardware/Software Co-Assurance at Scale
	4 Rust and RAR
	4.1 Restricted Algorithmic Rust

	5 Example: Array-Based Set
	5.1 Arrayset Definitions
	5.2 Translation to ACL2
	5.3 Arrayset Theorems

	6 Comparison to other Automated Verification Tools
	7 Conclusion
	8 Acknowledgments

