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Abstract—Safety- and security-critical developers have long
recognized the importance of applying a high degree of scrutiny
to a system’s (or subsystem’s) I/O messages. However, lack of
care in the development of message-handling components can
lead to an increase, rather than a decrease, in the attack surface.
On the DARPA Cyber-Assured Systems Engineering (CASE)
program, we have focused our research effort on identifying
cyber vulnerabilities early in system development, in particular
at the Architecture development phase, and then automatically
synthesizing components that mitigate against the identified
vulnerabilities from high-level specifications. This approach is
highly compatible with the goals of the LangSec community.
Advances in formal methods have allowed us to produce
hardware/software implementations that are both performant
and guaranteed correct. With these tools, we can synthesize
high-assurance “building blocks” that can be composed auto-
matically with high confidence to create trustworthy systems,
using a method we call Security-Enhancing Architectural Trans-
formations. Our synthesis-focused approach provides a higher-
leverage insertion point for formal methods than is possible
with post facto analytic methods, as the formal methods tools
directly contribute to the implementation of the system, with-
out requiring developers to become formal methods experts.
Our techniques encompass Systems, Hardware, and Software
Development, as well as Hardware/Software Co-Design/Co-
Assurance. We illustrate our method and tools with an example
that implements security-improving transformations on system
architectures expressed using the Architecture Analysis and
Design Language (AADL). We show how message-handling
components can be synthesized from high-level regular or
context-free language specifications, as well as a novel specifi-
cation language for self-describing messages called Contiguity
Types, and verified to meet arithmetic constraints extracted
from the AADL model. Finally, we guarantee that the intent
of the message processing logic is accurately reflected in the
application binary code through the use of the verified CakeML
compiler, in the case of software, or the Restricted Algorithmic
C toolchain with ACL2-based formal verification, in the case
of hardware/software co-design.

I. INTRODUCTION

Experienced safety-critical and security-critical system
architects have long emphasized the importance of applying
the highest degree of scrutiny to a system’s I/O messages.1

1DISTRIBUTION STATEMENT A. Approved for public release.

From a safety perspective, message validation has long
been a “best practice.” For security-critical architecture and
design, identification of the attack surface has emerged as
an important analysis technique. One of our key research
focus areas on the DARPA Cyber-Assured Systems Engi-
neering (CASE) program2 concerns the identification of and
mitigation against message-based attacks, using the highest-
assurance techniques and tools available.

Advances in formal methods have allowed us to produce
hardware/software implementations that are both performant
and guaranteed correct. With these tools, we can synthesize
security-enhancing “building blocks” that can be composed
automatically with high confidence to create trustworthy
systems, using a method we call Security-Enhancing Archi-
tectural Transformations. Our synthesis-focused approach
is compatible with the goals of the LangSec initiative [1],
and provides a higher-leverage insertion point for formal
methods than is possible with post facto analytic methods,
as the formal methods tools directly contribute to the im-
plementation of the system, without requiring developers to
become formal methods experts. Our techniques encompass
Systems, Hardware, and Software Development, as well as
Hardware/Software Co-Design/Co-Assurance, as we detail
in the sections that follow.

We have identified several security-enhancing architec-
tural transformations, including the introduction of filters,
monitors, attestation/measurement managers, data trans-
formers, as well as the provision of a verified operating sys-
tem, such as the seL4 microkernel [2], with mathematically
proven space and time isolation properties.

The particular transformation we consider in this paper is
filter insertion, which is a pattern to prevent attacks that rely
on malformed messages to flow through a system. The filter
ensures that only messages that are well-formed are further
processed by the system, and that no well-formed messages
are dropped. The precise definition of “well-formed” will,
of course, vary from situation to situation; hence, it is a

2The views expressed are those of the authors and do not reflect the
official policy or position of the Defense Advanced Research Projects
Agency (DARPA) or the U.S. Government.



parameter that the system designer can instantiate. In this
paper, we consider filters where well-formedness can be
expressed in terms of regular or context-free languages. Our
toolchain then:

1) compiles the well-formedness specification to table-
driven deterministic finite-state automaton (DFA)
based implementations by instantiating a general com-
pilation theorem utilizing a theorem prover, such as
HOL4;

2) synthesizes code, preferably using a verified compiler
(e.g., CakeML), that implements matching of input
messages against the DFA from the preceding step
using proof-producing synthesis [3];

3) generates an I/O wrapper around the synthesized
code, allowing it to be automatically inserted on an
interprocess communication channel, utilizing, e.g.,
CAmkES [4] for seL4;

4) produces a proof, covering both liveness and safety,
that the synthesized component implements the ex-
pected behavior: namely, it lets through exactly the
messages described by the high-level well-formedness
specification; and

5) generates a filter implementation, as binary code, RTL,
or a combination of the two, preferably using a verified
compiler.

In many cases, these steps can be carried out in a
theorem prover, such as HOL4, which we can integrate into
the CAmkES build system: thus, strong evidence for the
trustworthiness of transformations is built along with the
system image wherein they are used.

Since high-level specifications such as regular expressions
tend to be somewhat opaque, it is also important to obtain
independent assurance that a given specification really does
correspond to the intended meaning of “well-formed”. To
address this, we incorporate automated test-case generation
into our environment, and encourage users to validate the
synthesized code using a combination of automated and
manually-constructed test cases.

II. ARCHITECTURAL MODEL PROCESSING

On DARPA CASE, we process architectural models for
cyber-physical systems expressed in the Architecture Anal-
ysis and Design Language (AADL) [5], a standard architec-
tural modelling language that we have successfully utilized
on several cyber-physical systems programs [6]. AADL
provides the constructs needed to model embedded systems,
such as processes, threads, processors, devices, buses, and
memory. An AADL model captures the whole system and
can thus can serve as a locus for system-level analysis,
reasoning, scheduling, generation of executables, etc. A
primary goal of our CASE effort is to develop architecture-
to-architecture transformations that provably improve the
security of a system, as detailed below.

A. AGREE contract checker and Resolute assurance case
tool

AGREE is an AADL annex and tool [7] that supports
component-based hierarchical reasoning based on assume-
guarantee behavioral specifications (contracts) placed on
elements of an AADL architecture. AGREE contracts are
expressed using past-time LTL formulas, which are checked
using the JKind k-induction model-checker [8]. For our
class of security-enhancing architectural transformations,
in which new AADL component components are inserted
into a model in order to satisfy a security requirement,
we wish to ensure that the added component does indeed
provide the specified capability. This has twin aspects: first,
the “empty” component is added to the architecture, and
well-formedness of messages is expressed as an AGREE
assertion on its output. The assertion becomes a leaf-level
statement in the assume/guarantee reasoning performed by
the AGREE tool; thus, it must be proved separately. Second,
the empty component is filled in: the DFA-based imple-
mentation corresponding to the well-formedness requirement
is generated and compiled. The well-formedness property
becomes a specification on the generated implementation,
and the specification is (automatically) propagated to the
infinitary behavior of the filter component, by means of
the proofs described in [9]. The creation of the message-
handling component creates multiple pieces of verification
evidence from AGREE, as well as theorem proving tools
such as HOL4. Managing and combining the results of
multiple reasoners justifying architectural transformations is
performed by Resolute, an assurance case tool with deep
connections to AADL models [10].

B. CASE Workflow

A common first step towards securing a cyber-physical
system is establishing spatial isolation: when an untrusted
legacy component is compromised or otherwise malfunc-
tions, we do not want it to be able to interfere with the
correct execution of other components, or to read privi-
leged data from other components through unintended side
channels. To achieve this, we want the connections between
the components that are explicitly present in representations
such as Figure 1 to be the only communication channels
present in the running system. While such isolation can be
achieved by running each component on its own physically
isolated hardware, we reduce cost, gain flexibility, and
enable miniaturization by using the same general-purpose
hardware to run several distinct components. In order to
recover spatial isolation in this setting, we run components
on a verified operating system such as seL4 [2], a verified
capability-based microkernel accompanied by formal proof
of spatial isolation properties down to the binary level.

While isolation defends against attacks through unin-
tended channels, it does nothing to guard against attacks
through the intended channels. For example, a compromised
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Figure 1. Simplified architectural model of a UAV flight controller.

ground station or radio driver could be used to feed mal-
formed messages to a legacy UAV flight planner that the
flight planner is not equipped to handle. This could then be
exploited by an attacker to induce crashes, cause privilege
escalation through buffer overflow, etc.

Our vision for CASE is that the system developer,
having had the potential for such a vulnerability brought
to her attention (the CASE program is developing cyber
requirements analysis tools for this purpose), should have at
her disposal a toolbox of security-enhancing architectural
transformations for inserting countermeasures into the ar-
chitecture. These countermeasures should be non-intrusive,
reusable and highly trustworthy. They should not change
the (potentially brittle) legacy components — instead, they
place security enhancements around them. These protective
components should be easy to configure and deploy for the
needs of different systems. Component trustworthiness is of
utmost importance: when we introduce more components
into a system, they too can become part of the attack sur-
face. Thus, each component inserted by a transformation is
accompanied by a formal proof connecting the component’s
intended behavior with the behavior of its implementation
down to the binary level.

Security-enhancing architectural transformations are con-
ducted with the aid of “wizards” that our team has added
to the open source AADL development tool OSATE [11].
Automated synthesis of an executable system from the
AADL model, targeting either a JVM instance, Linux, or
seL4, is then produced by the HAMR tool, also a product
of our research team [12].

In the sections that follow, we examine several example
system realizations constructed using our high-assurance
workflow and toolchain.

III. A MOTIVATING EXAMPLE

By way of a motivating example, consider the (simplified)
architectural model of a mission control system for an
unmanned aerial vehicle (UAV) shown in in Figure 1. This
model is based on the UxAS UAV developed at the U.S. Air
Force Research Laboratory [13], and utilizes legacy elements
from that system.

The two main components of the system are a ground
station (GS) and the UAV, which has as subcomponents
a radio (RADIO), a flight planner (FPLN), a waypoint

manager (WPM), and a flight control computer (FCC).
Mission parameters flow from GS to FPLN, by way of the
radio link. The flight planner generates the full flight plan—
a sequence of waypoints to follow—and sends it to the
waypoint manager. WPM processes a fixed-size window of
the next few waypoints to be dealt with by the flight control
computer. FCC is a separate computer which is in charge
of actually flying the vehicle, interpreting the waypoints
and incoming sensor data and sending directives to control
motors, actuators, etc. As FCC makes progress, it tells WPM
to advance the window, and also sends back various sensor
data to FPLN, WPM, and GS via the RADIO.

Recognizing the need for wellformedness checking of
messages received by the radio, we perform an architectural
transformation on the UAV model to insert a high-assurance
component, FLT, between RADIO and FPLN, resulting in
the transformed model of Figure 2.

In the sections that follow, we describe synthesis methods
for the inserted component FLT for a number of similar,
but distinct, UAV coordinate specifications, utilizing several
high-assurance, formal methods-based techniques that we
have developed during the course of the CASE program.

IV. REGULAR EXPRESSION-BASED MESSAGE
SPECIFICATIONS

In this section, we discuss an implementation of FLT,
specified using regular expressions, and synthesized using
formal methods tools. In earlier work [14] we reported on a
verified compiler from extended regular expressions to table-
driven DFAs, using Brzozowski’s “derivative” approach
[15]; this compiler is available in the HOL4 distribution 3.
We make use of this compiler to create verified regexp-based
message processors. We have built a translation of AGREE
arithmetical constraints to regexps and provide proof tools
verifying semantical properties of the generated regexps.
Final steps generate and verify CakeML code implementing
the CAmkES regular expression message-handling compo-
nent [9].

A. Semantic properties of formal languages

A message specification takes the form of logical con-
straints on a record type (supplemented with layout and
well-formedness information) modelling network messages.
The message processing implementation is then generated
by translating the logical constraints to an equivalent reg-
ular expression. This gives rise to a class of verification
problems: namely, when does a regular expression r exactly
capture well-formedness constraints on the fields of a record
structure. We will write r |= SPEC for the following
relation between regexp r and logic specification SPEC :
recd→ bool.

∀recd . SPEC(recd)⇔ encode(recd) ∈ L(r) (1)

3In examples/formal-languages/regular.
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Figure 2. Simplified architectural model of a UAV flight controller with inserted message wellformedness checker.

where encode maps elements of the given record type to
strings, and L(r) is the regular language generated by regexp
r. We call this setting SPLAT (Semantic Properties for
Language and Automata Theory), since it combines formal
language theory with specifications on the interpretation of
the flat strings comprising message formats.

Theorems having the form of (1) bridge between the
requirements needed for AGREE architectural reasoning and
the correctness of regexp compilation. However, there are
related theorems that are also required, e.g., invertibility and
injectivity of encoding:

∀x. decode(encode x) = x
∀x y. (encode x = encode y)⇒ x = y

(2)

These can be required in the proof of (1), and are further
evidence that the component will work properly.

Example 1: Consider the well-formed coordinate checker
of Section IV. The theorem proved is

R |= wf coordinate,

or
∀r. wf coordinate(r)⇔ encode(r) ∈ L(R)

where

encode(r) = enc 1 r.latitude _ enc 2 r.longitude _
enc 2 r.altitude

This theorem is proved automatically using the HOL4-
based SPLAT infrastructure. SPLAT utilizes a suite of pre-
proved rewrite rules, including invertibility of the component
encoders, as well as specialized provers for membership in
the appropriate character sets.

B. Example: UAV Coordinate Constraints

Consider an AADL model corresponding to the trans-
formed architecture depicted informally in Figure 2. One
type of data to be transferred between the Ground Station
and the UAV is a Location coordinate, represented by the
AADL record structure of Figure 3.

We wish to only accept well-formed coordinates from the
ground, as ill-formed coordinates could be used by a cyber
attacker to inject malware, cause computational errors, direct
the UAV into hostile territory, etc. We thus define a set
of coordinate constraints in the AGREE contract language;

data implementation Coordinate.Impl
subcomponents
latitude : data Base_Types::Integer;
longitude : data Base_Types::Integer;
altitude : data Base_Types::Integer;

end Coordinate.Impl;

Figure 3. AADL specification for a UAV coordinate.

one such set of constraints is presented in conventional
mathematical notation as follows:

wf coordinate(c) ⇔ −90 ≤ c.latitude ≤ 90 ∧
−180 ≤ c.longitude ≤ 180 ∧
0 ≤ c.altitude ≤ 15000

Thus the assertion to be added on the output out of
the inserted component is wf coordinate(out). Note that
such high-level specification of messages ignores important
aspects of the wire format such as field order, endianess,
and packing. Our toolchain provides support for such “meta-
data”, which we exploit in order to obtain declarative spec-
ifications of message representations.

Expressiveness: We have found that specifying mes-
sage formats with regexps is a promising approach, combin-
ing a declarative approach to behavior with a strong proof
basis in formal language theory. Many common message
formats are naturally expressed with regular expressions
extended with intervals. Messages with fixed repetitions of
data elements, e.g., arrays, can be expressed easily. Also,
messages with indeterminate repetitions of data elements
can be expressed with Kleene star. There are, of course,
limitations: regexps are not able to handle data where
wellformedness is a context-free (or beyond) language.

V. MESSAGES SPECIFIED BY CONTEXT-FREE
GRAMMARS

Let us now imagine that the position information for the
UAV is expressed using a common standard interchange
format, namely JSON. JSON (JavaScript Object Notation)
is a popular lightweight interchange format for structured
data [16]. JSON is text-based, and is relatively simple to
generate and parse. JSON data payloads are built from
two basic primitives: a collection of name-value pairs, and



an ordered list of values. In our use case, a UAV air-
ground communications system employs JSON to encode
certain messages sent between the UAV and its ground-based
control station. For example, a UAV coordinate could be
encoded in JSON as:

{"lat":42.08, "long":-91.64, "alt":5000}

To aid in thwarting cyber attacks, we need to construct a
high-assurance component that checks whether a given air-
ground message is legal JSON, and rejects any malformed
messages. In keeping with the CASE vision, we need to
design said component in the highest assurance manner
possible. In order to create such a JSON wellformedness
checker, we need to perform both lexical and syntactic level
analysis on any candidate JSON message received4.

A. Lexical Analysis

For lexical level analysis, we have constructed verified
tools that generate a verified lexer based on Deterministic
Finite-state Automata (DFAs), where the individual lexeme
specifications are given as regular expressions (as in [14] and
[9], and discussed in Section IV). These individual regexps
are combined to form a “maximal-munch” lexer, following
standard practice. A relatively novel aspect of our work is the
use of the HOL4 theorem prover and the CakeML compiler
to produce the lexer binary.

B. Syntactic Analysis

For syntactic-level analysis, we employ the Vermillion
verified LL(1) parser generator due to Lasser, et. al.
[17], coupled with a parse table traverser hand-written in
CakeML. The parse table traverser is a bit more complex
than that for the lexer, in that it requires a rule stack; for
this, we employ a verified stack component. We also record
the rules used as parsing proceeds in a list, allowing us to
reconstruct the parse tree later on.

Our LL(1) grammar rules for JSON are presented in
Figure 4. An initial capital letter indicates a nonterminal
symbol; ε designates the empty string; and the rest are
terminals. The terminal symbols fls (false), flt (float), int
(integer), nul (null), str (string), tru (true), open brace,
close brace, open bracket, close bracket, colon, and comma
constitute the JSON lexemes produced by the lexer.
The overall structure of the JSON filter, including both
lexical and syntactic analysis toolchains, is displayed in
Figure 5.

C. Results

We were able to successfully realize a JSON lexical ana-
lyzer and syntactic analyzer in RAC for a significant subset
of JSON (we chose not to deal with the complexities of, e.g.,

4Note that we assume that there is some system-defined maximum
message size, such that the message to be checked can be held all at once
in memory.

V alue → { Pairs } Pairs → Pair PairsT l
V alue → [ Elts ] PairsT l → ε
V alue → str PairsT l → , Pair PairsT l
V alue → int Pair → str : V alue
V alue → flt Elts → ε
V alue → tru Elts → V alue EltsT l
V alue → fls EltsT l → ε
V alue → nul EltsT l → , V alue EltsT l
Pairs → ε

Figure 4. LL(1) grammar for JSON.
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Figure 5. A JSON filter built using verified lexer/parser generation tools.

Unicode in this first experiment). In our implementation,
an input message (sequence of bytes) is presented to the
lexical analyzer, and the tokens generated by the lexer are
then directly fed to the syntactic analyzer. If the lexical
and syntactic analyses both succeed, an input-bytes-to-token
map, as well as a parse tree, are generated, and the message
is allowed to be further processed by the UAV software;
otherwise the input message is rejected. We also successfully
validated our CakeML- based lexer/parser for JSON by
presenting it with a test suite consisting of both valid and
invalid JSON messages.

Finally, we note that by constructing a table-based lexer
and parser, we provide easy transition of “verified data”
from theorem provers running on a host system to an
embedded target. This approach also enables hardware-based
implementation, as discussed in Section VII.

VI. MESSAGES SPECIFIED BY CONTIGUITY TYPES

We now consider a new specification technique for the
processing of self-describing messages: those where in-
formation embedded in fields of the message determines
the message structure. The characteristic property of such
messages is contiguity: all the elements of the message are
laid out side-by-side in a byte array (or string). We assume
that a message is the result of a map from structured data,
and we employ a collection of programming language types
to capture that structure, in a specification language we call
Contiguity Types.



base = bool | char | u8 | u16 | u32 | u64 | i16 | i32
| i64 | float | double

τ = base
| Recd (f1 : τ1) . . . (fn : τn)
| Array τ exp
| Alt bexp τ1 τ2

Figure 6. Contiguity types.

Difficulties in self-describing message formats include
variable-length arrays and unions. A variable-length array
is a field where the number of elements in the field depends
on the value of some already-seen field (or, more generally,
a computation involving previously-seen information in the
message). The length is therefore a value determined at
runtime. A union is deployed when some information held in
a message is used to determine the structure of later portions
of the message. For example, unions can be used to support
versioning where version i has n fields, and version i+1 has
n+1. In settings where both versions need to be supported
in a single format, it makes sense to encode the version
handling inside the message, and unions accomplish this.

Another problematic aspect is that self-describing data
formats fall outside the realm of common formal language
techniques; e.g., variable-length fields clearly aren’t able to
be described by regular or context-free languages. (These
language classes encompass repetitions of a fixed or un-
bounded size, but not repetitions of a size determined by
parts of the input string.) It seems that context-sensitive
grammars can, in principle, specify such information, but
there are few tools supporting context sensitive languages.
Another possibility would be to use parser combinators;
it seems likely that the combinators can be instrumented
to gather and propagate contextual information. However,
we are seeking a high level of formal specification and
automation, while still being rooted in formal languages,
with their emphasis on sets of strings.

A. Contiguity Types

Contiguity types [18] (Figure 6) start with common base
types (booleans, characters, signed and unsigned integers,
etc.) and are closed under the construction of records, arrays,
and unions. Notice that τ (we will use the terms contiguity
type, contig, and τ interchangeably) is defined in terms of
a type of arithmetic expressions exp and also bexp, boolean
expressions built from exp. Now consider

Array τ exp .

For this to specify a varying length array dependent on
other fields of the message, its dimension exp should be
able to refer to the values of those fields. The challenge
is just how to express the concept of “other fields”, i.e.,

we need a notation to describe the location in the message
buffer where the value of a field can be accessed. Our core
insight is that this is similar to a problem that programming
language designers had in the 1960s and 1970s, resolved by
the notions of L-value and R-value. The idea is originally
due to Christopher Strachey in CPL [19] and developed
subsequently, for example by Dennis Ritchie for the C
programming language [20].

Before getting into formal details, we discuss a few
examples. We will use familiar notation: records are lists
of name : τ elements enclosed by braces; an array field
Array c dim is written c [dim]; and Alt b τ1 τ2 is written
‘if b then τ1 else τ2’. ‘Cascaded’ Alts may be written
in Lisp ‘cond’ style, i.e., as

Alt b1 −→ τ1 . . .
bn −→ τn
otherwise −→ τn+1

1) The following is a record with no self-describing
aspects: each field is of a statically known size.
{ A : u8
B : {name : char [13]

cell : i32}
C : bool }

The A field is specified to be an unsigned int of width
8 bits, the B field is a record, the first element of which
is a character array of size 13, the second element a
32 bit integer, and the last field a boolean.

2) Variable-sized strings are a classic self-describing as-
pect. In this example the contents of the len field
determines the number of elements in the elts field.
{ len : u16
elts : char [len] }

3) The following examples shows the Alt construct being
used to support multiple versions in a single format.
Messages with the value of field versionID being
less than 7 have three fields in the message, while all
others have two.
{ versionID : u8
versions : if versionID < 7 then

{A : i32, B : u16}
else {Vec : char [8]} }

B. Expressions, L-values, and R-values

In programming languages, an L-value is an expression
that can occur on the left-hand side of an assignment state-
ment. Similarly, R-value designates expressions occurring on
the right-hand side of assignments.

Figure 7 presents the formal syntax for L-values, R-
values, and the boolean expressions we will use. An L-value
can be a variable, an array index, or a record field access. R-
values are arithmetic expressions that can contain L-values
(we will use exp interchangeably with R-value).



lval = varname | lval [exp] | lval .fieldname

exp = Loc lval | nLit nat | constname | exp + exp
| exp ∗ exp

bexp = bLit bool | ¬bexp | bexp ∨ bexp | bexp ∧ bexp
| exp = exp | exp < exp

Figure 7. L-values, expressions, and boolean expressions.

AltitudeType = AGL | MSL

Location3D = {
Latitude : double,
Longitude : double,
Altitude : float,
AltitudeType : AltitudeType,
Wellformed : Assert (

-90.0 <= Latitude <= 90.0 and
-180.0 <= Longitude <= 180.0 and
0.0 <= Altitude <= 15000.0) }

Figure 8. Contiguity type specification for a UAV location.

An L-value denotes an offset from the beginning of a data
structure, plus a width. In an R-value, an occurrence of an L-
value is mapped to the value of the patch of memory between
offset and offset + width . It may not be obvious that a
notation supporting assignment in imperative languages can
help, but there is indeed a form of assignment lurking.

C. Wellformedness Checking using Contiguity Types

An example GPS coordinate checker using contigu-
ity types is depicted in Figure 8. Note the use of the
Wellformed assertion to guarantee that all received GPS
coordinate values are within the expected ranges. This
contiguity type specification is compiled to executable code
using the facilities of the verified CakeML compiler, along
with proofs of soundness and functional correctness. For
details, please consult [18].

VII. HARDWARE/SOFTWARE CO-ASSURANCE

Thus far, we have only discussed message-handling com-
ponents that can be implemented as software. Many ad-
vantages would accrue in terms of speed, as well as basic
integrity of the generated artifact itself, if the core algo-
rithm could be implemented in hardware. More broadly,
the ability to selectively implement components of a system
architecture in hardware, while maintaining other elements
as software, all with very high assurance, would provide
system developers with maximum flexibility.

Formal Methods have been successfully applied to sys-
tems that are software-only, or hardware-only. Relatively

Algorithmic C
Headers

Algorithmic C
Source

C++
Compiler

Hardware
Synthesis

ACL2
Translator

Lemmas

ACL2
Theorem
Prover

Proofs

Figure 9. Restricted Algorithmic C (RAC) toolchain.

little attention has been paid to hardware/software sys-
tems, specifically to the assurance of hardware/software
co-designs. The need for hardware/software co-assurance
techniques is increasing, notably for autonomous and semi-
autonomous platforms for land, sea, air, and space, as well
as other complex, connected systems.

In order to investigate hardware/software co-assurance,
we have conducted several experiments employing a state-
of-the-art toolchain, due to Russinoff and O’Leary, and
originally designed for use in floating-point hardware veri-
fication [21], to determine its suitability for the creation of
mission-critical applications in various domains. Note that
this toolchain has already demonstrated the ability to scale
to industrial hardware designs at both Intel and Arm.

Algorithmic C [22] is a High-Level Synthesis (HLS) lan-
guage that defines C++ header files to enable compilation to
both hardware and software platforms, including support for
the peculiar bit widths employed, for example, in floating-
point hardware design. The Russinoff-O’Leary Restricted
Algorithmic C (RAC) toolchain, depicted in Figure 9, trans-
lates a subset of Algorithmic C source to the Common
Lisp subset supported by the ACL2 theorem prover, as
augmented by Russinoff’s Register Transfer Logic (RTL)
theorem libraries (“books,” in ACL2 parlance).

The ACL2 Translator component of Figure 9 converts
imperative RAC code to functional ACL2 code. Loops are
translated into tail-recursive functions. Structs and arrays are
converted into functional ACL2 records. The combination
of modular arithmetic and bit-vector operations of RAC
source code is faithfully translated to functions supported by
Russinoff’s RTL books. The RTL books are quite capable
of reasoning about a combination of non-linear arithmetic
and bit-vector operations, which is a very difficult feat for
most automated solvers.

A. Experiments in Hardware/Software Co-Assurance

In a first hardware/software co-assurance experiment, we
created a number of algebraic data types of fixed maximum
size, suitable for both hardware and software implementa-
tion, in RAC, including lists, stacks, queues, deques, and



binary trees. This effort was inspired by our previous work
on fixed-size formally verified algebraic data types [23].

In a second experiment, we created an Instruction Set
Architecture (ISA) simulator for a representative 64-bit
RISC ISA in the RAC C++ subset. We used the RAC tool to
translate the ISA simulator code to ACL2, produced small
binary programs for the ISA used to validate the simulator,
and then utilized the ACL2 Codewalker decompilation-into-
logic facility to prove those test programs correct [24].

In a third effort, we implemented a high-assurance checker
for JSON-formatted data used in an Unmanned Air Vehicle
(UAV) application, described in Section V, using the RAC
toolchain [25] instead of CakeML. As described previously,
the JSON checker component was built using a table-driven
lexer/parser, supported by mathematically-proven lexer and
parser table generation technology, as well as a verified stack
data structure (reused from our earlier RAC data structure
work). The implementation was validated by comparing
test cases produced by C++ compiled RAC code with that
produced in ACL2. We also gathered performance data, in-
dicating that the RAC-generated (software-only) lexer/parser
for JSON was very competitive in speed to JSON parsers
generated by non-verified parser generators.

The aforementioned efforts have focused on software im-
plementations of RAC applications. Recently, we have begun
work on targeting FPGA hardware, in collaboration with
colleagues at Kansas State University. A goal of this work
is to generate high-assurance hardware and/or software from
high-level architectural specifications expressed in AADL.

VIII. RELATED WORK

The LangSec initiative advocates for many of the same
goals that we pursue in our research. The LangSec com-
munity “regards the Internet insecurity epidemic as a con-
sequence of ad hoc programming of input handling at all
layers,” and posits that “the only path to trustworthy software
that takes untrusted inputs is treating all valid or expected
inputs as a formal language.” [1].

One way in which our work differs somewhat from many
LangSec efforts is our emphasis on providing standalone
high-assurance message filter and monitor components. This
is due to the fact that part of our mission statement on
DARPA CASE is to provide security-enhancing components
for existing systems, whose legacy components may not be
able to be readily changed to introduce a LangSec-based
parser as part of its codebase.

The best-known LangSec tool Hammer “tackles the prob-
lem of writing correct parsers” by implementing combinators
taken from formal language theory [26]. Hammer is written
in C and provides C developers with a familiar syntax for
expressing their input language specifications. Our work
shares the approach of creating correct parsers by building
on language-theoretic foundations, but we perform our work
primarily in theorem proving environments in order to

provide additional assurance. We do not attempt to tightly
integrate our message format specifications with a particular
development language, but we appreciate the value in so
doing from a developer adoption perspective.

A LangSec tool that is particularly related to our efforts
on DARPA CASE is Parsley [27]. As in our work, Parsley
focuses on data format parsing grounded in formal lan-
guage theory, as well as formal verification of the resulting
parser. Parsley takes on a much more difficult problem than
our work currently addresses, emphasizing context-sensitive
parsing, nested grammars, as well as very complex formats
such as PDF. Our work, on the other hand, distinguishes
itself by its integration with systems engineering, focus
on “self-describing” message formats commonly used in
mission-critical systems, verified compilation all the way
to binary, as well as our emphasis on hardware/software
co-design and co-assurance. The latter also drives us more
towards table-driven lexer/parser implementations.

Much of the work on system-level formal verifica-
tion has been performed in the context of higher-level
Model-Based System Engineering languages such as AADL
[6], or Simulink/Stateflow (e.g., [28], [29]). While hard-
ware/software co-design is enabled by these system ar-
chitecture and design tools, little work has been done on
true hardware/software co-assurance. Notable work has been
done on High-Assurance Domain-Specific languages target-
ing hardware/software implementation (e.g., [30], [31]).

Floating-point hardware verification utilizing theorem
proving technology has a notable history (e.g., [32], [33],
[21]). Many of these efforts have focused on designs ex-
pressed using traditional Hardware Description Languages,
such as Verilog; Russinoff’s work using Algorithmic C is a
notable exception.

Many tools exist for C code verification. Tools that take
a similar approach to ours include Appel’s Hoare Logic for
CompCert C [34], which is derived from the operational
semantics of the CompCert verified C compiler in Coq [35].
AutoCorres [36] arose from the seL4.verified oper-
ating system verification effort; it translates ASTs from a
parser for the restricted C dialect used in seL4 to Schirmer’s
SIMPL theory in Isabelle/HOL [37].

IX. CONCLUSION AND FUTURE WORK

We have detailed a method and toolchain for the creation
of formally verified components for critical systems. We
have demonstrated how this toolchain can be used to imple-
ment security-enhancing transformations on system archi-
tectures specified in AADL, with implementations automat-
ically synthesized using the verified CakeML compiler. Such
transformations, e.g., message handlers based on regular lan-
guages or context-free languages, can be used to improve re-
siliency against cyber attack. We have documented examples
of the use of regular expressions, context-free languages, as
well as a novel contiguity type specification language, to



describe message formats. We have also described formal
synthesis techniques for wellformedness checkers, carried
out in the context of the DARPA CASE high-assurance
system development workflow.

We have also described methods and tools for enhancing
the safety and security of critical systems using a hard-
ware/software co-assurance approach for systems imple-
mented in a High-Level Synthesis (HLS) language. We have
employed one such state-of-the-art toolchain, Restricted
Algorithmic (RAC), due to Russinoff and O’Leary, to de-
velop high-assurance architectural transformations that can
be realized as hardware, software, or a combination of the
two. We have utilized the RAC toolchain on a number
of development examples, including a JSON lexer/parser
application featuring algebraic data types, verified table-
driven lexing, as well as verified table-driven parsing.

In future work, we will enhance our verified synthesis
tools for high-level engineering specification languages, and
pursue end-to-end validation of the toolchain for increas-
ingly complex systems, demonstrating formal composition
of components generated using the toolchain. We will con-
tinue to evolve the contiguity type specification language,
developing a compiler for contiguity type specifications, and
bridging the gap with conventional parsing technology based
on context-free grammars.

The CakeML compiler correctness theorem can transport
our theorems about an application to the binary level, with
one important caveat: it preserves semantics up to the fact
that the binary can abort if it runs out of memory. Hence
liveness becomes “liveness unless we run out of memory”.
Our components as designed should not run out of memory,
but we should be able to state and prove unconditional
liveness for the binary. This proof will build on recent work
on the space-cost semantics for CakeML [38].

On the hardware/software co-assurance front, we are keen
to implement a verified version of the RAC-to-ACL2 transla-
tor using the verified lexer/parser technology used to create
the JSON lexer/parser; however, we first need to develop
a means for high-assurance invocation of “action code”.
Colleagues at Kansas State University will continue devel-
opment of a transpiler from a modern functional/imperative
language to HLS code, building on the existing Scala-subset-
to-C transpiler featured in the HAMR tool [12], and produce
a working proof-of-concept application on a common FPGA.
Finally, we will investigate hardware/software applications,
using the languages and tools described in this paper, with
correctness proofs that span hardware/software boundaries.
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