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We have a keen research interest in Hardware/Software Co-Assurance. This interest is motivated in

part by emerging application areas, such as autonomous and semi-autonomous platforms for land,

sea, air, and space, that require sophisticated algorithms and data structures, are subject to strin-

gent accreditation/certification, and encourage hardware/software co-design approaches. As part of

our research, we have conducted several experiments employing a state-of-the-art toolchain, due to

Russinoff and O’Leary, and originally designed for use in floating-point hardware verification [7],

to determine its suitability for the creation of various safety-critical/security-critical applications in

numerous domains.

Algorithmic C [5] defines C++ header files that enable compilation to both hardware and software

platforms, including support for the peculiar bit widths employed, for example, in floating-point hard-

ware design. The Russinoff-O’Leary Restricted Algorithmic C (RAC) toolchain translates a subset

of Algorithmic C source to the Common Lisp subset supported by the ACL2 theorem prover, as aug-

mented by Russinoff’s Register Transfer Logic (RTL) books. In this extended abstract, we summarize

several recent experiments on the use of the RAC toolchain in various safety-critical/security-critical

domains, focusing first on software implementations, but extending to hardware design/verification,

as well as hardware/software co-assurance (in future work).

In a first experiment, we created a number of algebraic data types with fixed maximum size,

suitable for both hardware and software implementation, in Restricted Algorithmic C, including lists,

stacks, queues, deques, and binary trees. This approach was inspired by our previous work on fixed-

size formally verified algebraic data types [4], and produced a set of reusable data structures that

could be employed in further work. We used the RAC toolchain to translate these algebraic data

types to ACL2, performed proofs of correctness in ACL2, and validated the data types by testing.

This testing was conducted using a C++ compilation toolchain, as well as within ACL2. This dual

validation was not redundant effort, as the RAC translator is not itself formally verified. Our success

with this effort gave us confidence that the RAC toolchain could be productively used in domains

outside of floating-point hardware design and verification.

As a simplified example, consider the development of a basic stack data type, implemented

using a fixed-size array. The Algorithmic C header file declaration for this type is given below. We

arbitrarily set the maximum number of stack elements to 16383 for this example.

#define STK_MAX_SZ 16383

#define STK_OK 0

#define STK_OCCUPANCY_ERR 255

struct STKObj {

ui14 nodeTop;

array<i64, STK_MAX_SZ> nodeArr;

};

Note the use of specific integer widths, such as the ui14 declaration for the 14-bit unsigned

integer indices, that are not readily available in “vanilla” C++. One might deem these exacting type

declarations to be bothersome, but, in our experience, the benefits of such strong typing in areas
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such as early error identification outweigh the costs. Also note that the RAC toolchain translates this

struct-of-array into an ACL2 record, with the usual ACL2 record AG (get) and AS (set) operators.

The body of the stack code consists of a number of basic C++ functions implementing various

stack operations. Three such stack operators are the push, pop, and top operators, depicted below.

STYP STK_push (i64 v, STKObj amp(SObj)) {

if (SObj.nodeTop > 0) {

// Note: Stack grows down

SObj.nodeTop--;

SObj.nodeArr[SObj.nodeTop] = v;

}

return SVAL;

}

STYP STK_pop (STKObj amp(SObj)) {

if (SObj.nodeTop < STK_MAX_SZ) {

SObj.nodeTop++;

}

// Note: Pop of empty stack is a nop

return SVAL;

}

tuple<ui8, i64> STK_top (STKObj amp(SObj)) {

if (SObj.nodeTop < STK_MAX_SZ) {

return tuple<ui8, i64>(STK_OK, SObj.nodeArr[SObj.nodeTop]);

} else {

return tuple<ui8, i64>(STK_OCCUPANCY_ERR, 0);

}

}

Note that the stack “grows” down, towards smaller array indices, and that the top function returns

a two-tuple consisting of an error code as well as the top-of-stack value.

Once the stack data type code has been translated into ACL2 by the RAC toolchain, we can begin

to reason about the translated functions in the ACL2 environment, using the RTL books, as well as

other ACL2 books. One functional correctness property to prove of our stack representation is that

the top-of-stack resulting from a push followed by a pop is the same as the original top-of-stack,

given that space exists for the push. This is expressed in ACL2 as

(defthm STK_top-of-STK_pop-of-STK_push-val--thm

(implies

(and

(stkp Obj)

(spacep Obj)

(acl2::signed-byte-p 64 n))

(equal (nth 1 (STK_top (STK_pop (STK_push n Obj))))

(nth 1 (STK_top Obj)))))

where stkp is a well-formedness predicate for the stack object, and spacep is true if there is space

for more elements on the stack. ACL2 readily proves this theorem after a few basic lemmas are

introduced.

In a second experiment, we created an Instruction Set Architecture (ISA) simulator for a rep-

resentative 64-bit RISC ISA in the RAC C++ subset [2]. It is common practice to create such a
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simulator early in the microprocessor development process, usually written in C/C++, in order to al-

low for early compiler toolchain development, to serve as a platform to perform tradeoffs for various

candidate ISA enhancements, as well as to act as an “oracle” for subsequent detailed microproces-

sor development. We used the RAC tool to translate the simulator code to ACL2, produced small

binary programs for the ISA used to validate the simulator, and then utilized the ACL2 Codewalker

decompilation-into-logic facility to prove those test programs correct.

In a third effort, we implemented a high-assurance filter for JSON-formatted data used in an

Unmanned Air Vehicle (UAV) application [3] using the RAC toolchain. Our JSON filter was built

using a table-driven lexer/parser, supported by mathematically-proven lexer and parser table genera-

tion technology, as well as a verified stack data structure (reused from our earlier RAC data structure

work). As in previous experiments, the JSON filter implementation was validated via tests generated

via C++ compilation, as well as in ACL2, with the outputs of the two test environments compared

for equality. We also gathered performance data, indicating that our RAC-generated lexer/parser for

JSON was very competitive in speed (up to 20% faster) when compared to JSON parsers generated

by non-verified parser generators.

The aforementioned efforts have focused on software implementations of RAC applications. Re-

cently, we have begun work on targeting Field-Programmable Gate Array (FPGA) hardware using

the Mentor Graphics Catapult [6] toolsuite, in collaboration with colleagues at Kansas State Uni-

versity. A goal of this collaboration is to enable the generation of high-assurance hardware and/or

software from high-level architectural specifications expressed in the Architecture Analysis and De-

sign Language (AADL) [1]. Future experiments will include the generation of high-assurance hard-

ware/software co-designs with proofs of correctness in ACL2.
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