
Creating Formally Verified Components for Layered
Assurance with an LLVM to ACL2 Translator∗

David S. Hardin
†

Advanced Technology Center
Rockwell Collins

Cedar Rapids, IA, USA
dshardin@rockwellcollins.com

Jedidiah R. McClurg
‡

Department of Computer
Science

University of Colorado
Boulder, CO, USA

jedidiah.mcclurg@colorado.edu

Jennifer A. Davis
Advanced Technology Center

Rockwell Collins
Cedar Rapids, IA, USA

jadavis4@rockwellcollins.com

ABSTRACT
In our current work, we need to create a library of formally
verified software component models from code that has been
compiled (or decompiled) using the Low-Level Virtual Ma-
chine (LLVM) intermediate form; these components, in turn,
are to be assembled into subsystems whose top-level assur-
ance relies on the assurance of the individual components.
Thus, we have undertaken a project to build a translator
from LLVM to the applicative subset of Common Lisp ac-
cepted by the ACL2 theorem prover. Our translator pro-
duces executable ACL2 specifications featuring tail recur-
sion, as well as in-place updates via ACL2’s single-threaded
object (stobj) mechanism. This allows us to efficiently sup-
port validation of our models by executing production tests
for the original artifacts against those models. Unfortu-
nately, features that make a formal model executable are of-
ten at odds with efficient reasoning. Thus, we also present a
technique for reasoning about tail-recursive ACL2 functions
that execute in-place, utilizing a formally proven “bridge” to
primitive-recursive versions of those functions operating on
lists.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs—Me-
chanical Verification

General Terms
Languages, Verification

∗Approved for Public Release, Distribution Unlimited
†The views expressed are those of the authors and do not
reflect the official policy or position of the Department of
Defense or the U.S. Government.
‡The work described herein was performed during a co-op
session at Rockwell Collins.

.

Keywords
Formal verification, Theorem proving, ACL2, LLVM

1. INTRODUCTION

“Remember that all models are wrong; the
practical question is how wrong do they have to
be to not be useful.” [2] – George Box, British
Statistician

Layered assurance for software often requires the creation
of a library of assured software component models, start-
ing with code that lacks a formal pedigree. These assured
components can then be assembled into subsystems whose
top-level assurance relies on the assurance of the individual
components. In our current work, we need to create such
a library of formally verified software component models
from code that has been compiled (or decompiled) using the
Low-Level Virtual Machine (LLVM) intermediate form [14].
Thus, we have undertaken a project to build a translator
from LLVM to the applicative subset of Common Lisp [11]
accepted by the ACL2 theorem prover [9], and perform ver-
ification of the component model using ACL2’s automated
reasoning capabilities.

Formal verification cannot proceed without a model of
the artifact to be analyzed, but as George Box notes above,
all models are necessarily approximations. The “trick” with
modelling, then, is to capture the essence of the artifact
under analysis, at least with respect to the properties that
one wishes to verify.

But, how do we assure ourselves that our formal mod-
els have sufficient fidelity to “the real world” in order for
our analyses to be valid? One significant step is to auto-
mate the translation of the artifact from its “native” form to
a formal specification. This minimizes the possibility of hu-
man error, and, in our experience, makes one think carefully
about what details of the source artifact are most important
to capture. Another, complementary, way to increase con-
fidence is to produce an executable formal model, and vali-
date it by running production tests for the original artifact
on that model. Unfortunately, features that make a formal
model executable (tail recursion, in-place state updates) of-
ten make reasoning difficult.

In the present work, we are particularly concerned with es-
tablishing functional correctness properties for code that has
been compiled (or decompiled) using LLVM. LLVM is the
intermediate form for many common compilers, including

the clang compiler used by Mac OS X and iOS developers.
LLVM supports a number of language frontends, and LLVM
code generation targets exist for a wide variety of machines,
including both CPUs and GPUs.

LLVM is a register-based intermediate in Static Single As-
signment (SSA) form [5]. As such, LLVM supports any num-
ber of registers, each of which is only assigned once, stati-
cally (dynamically, of course, a given register can be assigned
any number of times). Appel has observed that “SSA form
is a kind of functional programming” [1]; this observation, in
turn, inspired us to build a translator from LLVM to the ap-
plicative subset of Common Lisp accepted by the ACL2 the-
orem prover. Our translator produces an executable ACL2
specification that is able to efficiently support validation via
testing, as the generated ACL2 code features tail recursion,
as well as in-place updates via ACL2’s single-threaded object
(stobj) mechanism. In order to ease the process of proving
properties about these translated functions, we have also de-
veloped a technique for reasoning about tail-recursive ACL2
functions that execute in-place, utilizing a formally proven
“bridge” to primitive-recursive versions of those functions
operating on lists; this technique is discussed in Section 4.

2. THE ACL2 SYSTEM
We utilize the ACL2 theorem proving system for much of

our verification work, as it best presents a single model for
formal analysis and simulation. ACL2 provides a highly au-
tomated theorem proving environment for machine-checked
formal analysis. An additional feature of ACL2, single-
threaded objects, adds to its strength as a vehicle for rea-
soning about fixed-size data structures, as will be detailed
in a future section.

ACL2 source code inherits a number of Lisp peculiarities,
and so we offer a brief tutorial so that the reader may be
able to better read the ACL2 code that appears in this paper.
Lisp is a prefix language; the operator always appears before
the operands. Lisp defines a function with defun, e.g.

(defun funname (parm1 parm2 parm3)

(<body>))

and function invocation proceeds as (funname x y z).
Multiway conditionals use the cond form. let binds vari-
ables to values within a function body. Many Lisp functions
operate on lists, the fundamental Lisp data structure; the
most basic of these are obscurely named car (first element
of a list), and cdr (rest of the list, not including the first
element). nth returns the nth element of a list; update-nth
returns a new list with the nth element replaced. take re-
turns the first n elements of a list; nthcdr returns a list
containing all but the first n elements. nil designates the
empty list, and also is boolean “false” (t is true). Lisp predi-
cate names are traditionally given a suffix of “p”; thus, endp
is a function that returns t if the end of a list has been
reached (and returns nil otherwise).

3. TOOLCHAIN OVERVIEW
Our translation toolchain architecture is shown in Fig-

ure 1. The left side of the figure depicts a typical compiler
frontend producing LLVM intermediate code. LLVM output
can be produced either as a binary “bitcode” (.bc) file, or as
text (.ll file). We chose to parse the text form, producing
an abstract syntax tree (AST) representation of the LLVM

Figure 1: LLVM-to-ACL2 translation toolchain.

program. Our translator then converts the AST to ACL2
source. The ACL2 source file can then be admitted into
an ACL2 session, along with conjectures that one wishes to
prove about the code, which ACL2 processes mostly auto-
matically. In addition to proving theorems about the trans-
lated LLVM code, ACL2 can also be used to execute test
vectors at reasonable speed.

The translator is written in OCaml [6], and successfully
parses all 5000+ legal .ll files in the LLVM source dis-
tribution. The translator produces the AST from the in-
put, removes aliases, extracts functions from labelled basic
blocks, constructs parameter lists, determines declaration
order, then generates the ACL2 code for each function.

3.1 An Example
As an example, consider the following C source code that

computes the sum of the first n elements of an array, plus
an initial value:

long sumarr(unsigned int n, long sum, long *array) {

unsigned int j = 0;

for (j = 0; j < n; j++) {

sum += array[j];

}

return sum;

}

This is admittedly a very simple example, and fails to ex-
ercise many of the more advanced features of our translator
and proof framework. However, its relative simplicity allows
us to narrate a complete translation and verification within
the confines of this paper.

We produce the LLVM code for this function by invok-
ing clang as follows: clang -O4 -S -emit-llvm sumarr.c.
The generated LLVM code for clang version 4.2 (which sup-
ports LLVM 3.2) is excerpted below:

define i64 @sumarr(i32 %n, i64 %sum, i64* %array) {

%1 = icmp eq i32 %n, 0

br i1 %1, label %._crit_edge, label %.lr.ph

.lr.ph:

%indvars.iv = phi i64

[%indvars.iv.next, %.lr.ph], [0, %0]

%.01 = phi i64 [%4, %.lr.ph], [%sum, %0]

%2 = getelementptr i64* %array, i64 %indvars.iv

%3 = load i64* %2, align 8, !tbaa !0

%4 = add nsw i64 %3, %.01

%indvars.iv.next = add i64 %indvars.iv, 1

%lftr.wideiv = trunc i64 %indvars.iv.next to i32

%exitcond = icmp eq i32 %lftr.wideiv, %n

br i1 %exitcond, label %._crit_edge, label %.lr.ph

._crit_edge:

%.0.lcssa = phi i64 [%sum, %0], [%4, %.lr.ph]

ret i64 %.0.lcssa

}

Observe that LLVM output is similar to assembly code,
with labels and low-level opcodes like br (branch), icmp (in-
teger compare) and load (load from memory). Registers are
prepended with the “%” character, and are given sometimes-
meaningful names. Consistent with the SSA philosophy, no
register appears on the left hand side of an assignment (“=”)
more than once. A peculiar feature of LLVM code is the phi

instruction, which provides register renaming at a branch
target. We will use the phi in our ACL2 translation to
match formal to actual parameters, as will be detailed later.

Keeping in mind that SSA is functional programming, we
can begin to translate this LLVM output to ACL2. First,
each label becomes its own function, so we produce defun

forms for @sumarr, .lr.ph, and ._crit_edge. We further
observe that the latter function is a trivial leaf function that
can be inlined into its callers. The formal parameters for
the remaining functions can be determined by consulting
the left hand side of the phi functions; thus, .lr.ph in-
cludes indvars.iv and %.01 in its parameter list. We also
need to identify parameters that are read, but not modi-
fied — %n and %array. Thus, our developing loop function
can be defined as (defun .lr.ph (%.01 %.indvars.iv %n

%array)...).
We are left, then, with the question of how to translate

memory and memory transactions. Typically in ACL2, a
machine state data structure is declared, and passed as a
parameter to all functions that read and/or write elements
of the state. If a given function updates the state, the mod-
ified state must be returned. Obviously, for a large state,
functional update of the state can become quite expensive.
Thus, the ACL2 developers have created a special kind of
data structure that maintains functional semantics, but is
implemented using in-place update operations “under the
hood”.

3.2 ACL2 Single-Threaded Objects
ACL2 enforces restrictions on the declaration and use of

specially-declared structures called single-threaded objects,
or stobjs [3]. From the perspective of the ACL2 logic, a
stobj is just an ordinary ACL2 object, and can be reasoned
about in the usual way. Ordinary ACL2 functions are em-
ployed to“access”and“update” stobj fields (defined in terms
of the list operators nth and update-nth). However, ACL2
enforces strict syntactic rules on stobjs to ensure that “old”
states of a stobj are guaranteed not to exist. This prop-
erty means that ACL2 can provide destructive implementa-
tion for stobjs, allowing stobj operations to execute quickly.
In short, an ACL2 single-threaded object combines a func-
tional semantics about which we can readily reason, utilizing
ACL2’s powerful heuristics, with a relatively high-speed im-
perative implementation that more closely follows “normal”
programming practice.

3.3 Completing the Translation
Our translator emits ACL2 code defining a single-

threaded object for memory, declared as a Lisp array of un-
signed bytes. It additionally defines ACL2 functions to load
and store 8, 16, 32, and 64 byte quantities, both signed and
unsigned, and supports both little-endian and big-endian en-
coding. The translator ensures that this state stobj, st, is
passed to all translated functions. Since the sumarr example
does not modify memory, st does not need to be returned.
The translated functions for sumarr are depicted in Figure
2. Referring to the figure, @sumarr_0 is a “driver” function
that does some initial parameter checking before invoking
@sumarr_%.lr.ph, which implements the loop. Within the
latter function, getelementptr computes the address of a
given element of the array, as does the LLVM instruction
of the same name, and load-i64l reads a 64-bit signed in-
teger in little-endian order from the address computed by
getelementpr.

Some additional ACL2 features should be mentioned at
this point. First, inside the standard Lisp (declare...)

form in Figure 2 one will note some ACL2-specific declara-
tions. :measure provides a measure predicate to be used in
termination analysis; this measure should decrease for ev-
ery recursive call of the function, and ACL2’s termination
analysis machinery will prove that it does. (NB: nfix casts
its input to a natural number.) :stobjs declares st as a
single-threaded object, and :guard restricts the “types” of
the input parameters to the function — if the guards are
violated during execution, the function will not be invoked.
However, guards are not a part of the ACL2 logic; thus,
one will note that these guard conditions are also explicitly
checked in the opening conditional of the generated func-
tion. But, these individual predicates are surrounded by
mbt, which signals that these checks need not be made dur-
ing execution. (ACL2 guards are a complex subject; the
curious reader is referred to the ACL2 documentation [12].)

Finally, observe that the translated function for the LLVM
loop conveniently becomes a tail-recursive function in ACL2.
Tail-recursive functions are very nice for execution, as Lisp
compilers know to optimize a tail call into a jump; thus, an
arbitrary number of recursive tail calls can be made without
exhausting the stack (by contrast, recursive calls that are
not tail-recursive can “blow up” the stack after a few thou-
sand frames.) However, tail-recursive functions are not so
convenient for reasoning, as will be addressed in the next
section.

4. FORMAL ANALYSIS OF TAIL-
RECURSIVE FUNCTIONS OPERATING
ON SINGLE-THREADED OBJECTS

As noted by several researchers (e.g. [7]), reasoning about
functions on stobjs is more difficult than performing proofs
about traditional ACL2 functions on lists which utilize prim-
itive recursion. This difficulty is compounded by the fact
that in order to scale to data structures containing millions
of elements, recursive functions must be tail-recursive (this
would be the case whether we used stobjs or not). Previ-
ous work has described a preliminary method to deal with
these issues, at least for the case of functions that operate
over large stobj arrays [8]. With this method, we have been
able to show, for a number of such functions, that a tail-
recursive, stobj-based function that “marches” from lower

(defun @sumarr_%.lr.ph (%.01 %indvars.iv %n %array st)

(declare (xargs :measure (nfix (- (nfix %n) (nfix %indvars.iv)))

:stobjs st

:guard (and (integerp %.01) (natp %indvars.iv) (natp %n)

(natp %array) (< %indvars.iv %n))))

(if (not (and (mbt (integerp %.01)) (mbt (natp %indvars.iv)) (mbt (natp %n))

(mbt (natp %array)) (mbt (< %indvars.iv %n)))) %.01

(let ((%2 (getelementptr %array %indvars.iv 8)))

(let ((%3 (load-i64l %2 st)))

(let ((%4 (ifix (+ %3 %.01))))

(let ((%indvars.iv.next (nfix (+ %indvars.iv 1))))

(let ((%exitcond (if (= %indvars.iv.next %n) 1 0)))

(if (= %exitcond 1) %4

(@sumarr_%.lr.ph %4 %indvars.iv.next %n %array st)))))))))

(defun @sumarr_0 (%n %sum %array st)

(declare (xargs :stobjs st

:guard (and (natp %n) (integerp %sum) (natp %array))))

(if (not (and (mbt (natp %n)) (mbt (integerp %sum)) (mbt (natp %array))))

(ifix %sum)

(let ((%1 (if (= %n 0) 1 (ifix %sum))))

(if (= %1 1) (ifix %sum) (ifix (@sumarr_%.lr.ph %sum 0 %n %array st))))))

Figure 2: Translation to ACL2.

array indices to upper ones is equivalent to a primitive re-
cursive version of that function operating over a simple list.
This technique, which has been named Hardin’s Bridge1, re-
lates a traditional imperative loop operating on an array of
values to a primitive recursion operating on a list.

As depicted in Figure 3, the process of building this bridge
begins by translating an imperative loop, which operates
using op on a data array d, into a tail-recursive function
(call it x-tail) operating on a stobj st containing an array
field, also named d. This tail-recursive function is invoked as
(x-tail j res st), where res is an accumulator, and the
index j counts up from 0 to the size of the data array, *SZ*.
x-tail is then shown to be equivalent to a non-tail-recursive
function x-iter that also operates over the stobj st. This
function is invoked as (x-iter k res st), where index k

counts down from *SZ* toward zero. The equivalence of
these two functions is established in a manner similar to the
defiteration capability found in centaur/misc/iter.lisp

in the ACL2 distributed books.
We now have a primitive recursion that operates on an

array field of a stobj. What we desire, however, is a primitive
recursion that operates over a list. One such recursion is as
follows:

(defun x (res d)

(if ((endp d) res

(op (car d) (x res (cdr lst))))))

This function can be related to x-iter by way of a the-
orem involving take, which as one will recall, returns the
first n elements of a list. Additionally, defthm is the ACL2
form for stating a conjecture, which the ACL2 system will
attempt to prove. Many defthm forms include an implies

operator, which unsurprisingly, is logical implication.
1In memory of Scott Hardin, father of the first author: a
civil engineer who designed several physical bridges, and a
man who valued rigor.

(defthm x-iter-take--thm

(implies (and (stp st) (natp j)

(integerp res) (<= j *SZ*))

(= (x-iter j res st)

(x res (take j (nth *DI* st))))))

Here, (nth *DI* st) is the way to refer to the entire data
array as a list; this is legal in theorems, but is not permitted
within function definitions, by ACL2 stobj rules.

If the preconditions are met, then by functional instanti-
ation (setting j = *SZ*),

(= (x res (nth *DI* st)) (x-iter *SZ* res st))

and, by the earlier equivalence,

(= (x-tail 0 res st) (x-iter *SZ* st)

so, finally,

(equal (x-tail 0 res st) (x res (nth *DI* st)))

Once some auxiliary lemmas are proven, ACL2 proves this
result automatically.

We can now prove theorems about the array-based iter-
ative loop by reasoning about x, which has a much more
convenient form from a theorem proving perspective.

We have employed this bridge technique on several predi-
cates and mutators, including an array-based insertion sort
employing a nested loop. Returning to our example, we can
use the above technique to prove that @sumarr_%.lr.ph is
equal to the following primitive recursive function:

(defun sumlist64 (res lst)

(declare (xargs :measure (len lst)))

(cond ((not (true-listp lst)) (ifix res))

((endp lst) (ifix res))

(t (+ (ifix (load-i64ll (take 8 lst)))

(sumlist64 res (nthcdr 8 lst))))))

for(k=0; k< SZ; k++) {
 res = op(d[k], res);
}

(x-tail k res st) (x-iter j res st) x-iter-take--thm

(defun x (res d)
 …
 (if (endp d) res
 (op (car d)
 (x res (cdr d))))

Form: Tail Recursive
Data: stobj
Counts: Up
Marches: Up

Form: Recursive
Data: stobj
Counts: Down
Marches: Down

Form: Imperative
Data: Array
Counts: Up
Marches: Up

Form: Recursive
Data: List
Counts: N/A

(equal
 (x-iter j res st)
 (x res (take j
 (nth *di* st)))

(x-tail 0 res st) = (x-iter *SZ* res st) /\
(x-iter *SZ* res st) = (x (take *SZ* (nth *di* st)) =>

(x-tail 0 res st) = (x (nth *di* st))

defiteration

Figure 3: Hardin’s Bridge: Relating an imperative loop to a primitive-recursive ACL2 function.

sumlist64 consumes a list of unsigned bytes eight ele-
ments at a time, converts those eight elements to a single
signed 64-bit integer observing little-endian byte order (via
the load-i64ll function), then accumulates a sum. Prov-
ing properties about @sumarr_%.lr.ph can then be accom-
plished by proving them instead about sumlist64, a much
simpler function, and one that is of a non-tail-recursive form
better-suited for theorem proving.

5. RELATED WORK
Zhao et al. [15] produced several different formalizations

of operational semantics for LLVM in Coq [4], noting that
their intention is to produce a verified LLVM compiler, sim-
ilar to the verified CompCert compiler due to Leroy [10]
(CompCert does not utilize the LLVM intermediate form).
As such, their emphasis on formalizing LLVM operational se-
mantics makes sense. We also considered creating an“LLVM
interpreter” in ACL2 (Zhao et al. utilized the OCaml ex-
traction capability of the Coq environment to produce such
an interpreter), resulting in a “shallow embedding”, but de-
cided that a translation to ACL2 (thus producing a “deep
embedding”) would allow us to begin proving properties
about LLVM programs with much less effort. Our approach
was also influenced by Magnus Myreen’s“decompilation into
logic” work [13]. Our approach could be characterized as a
sort of decompilation into logic, but we do not go to the
same lengths as Myreen to assure that the decompilation
process is sound. We also have the advantage of starting
with a form that is functional, whereas Myreen has tackled

the much more difficult problem of decompiling imperative
machine code.

6. CONCLUSION AND FUTURE WORK
We have built a translator from the LLVM intermediate

form to the applicative subset of Common Lisp accepted
by the ACL2 theorem prover. The translator produces an
executable ACL2 specification featuring tail recursion, as
well as in-place updates via ACL2’s single-threaded object
(stobj) mechanism, and we have utilized these features in
order to validate our translated models via testing. We
also presented a technique for reasoning about tail-recursive
ACL2 functions that execute in-place, utilizing a formally
proven“bridge” to primitive-recursive versions of those func-
tions operating on lists.

Future work should focus on improving the translator, es-
pecially in areas of optimizing the ACL2 output, as well as
refining the memory model in ACL2 in order to ease au-
tomated reasoning. We also need to continue to develop
techniques for reasoning about tail-recursive functions and
stobjs; some progress has been made during the current ef-
fort, but much more work is needed in order to make the
process easier.

7. ACKNOWLEDGMENTS
We thank the anonymous referees for their helpful com-

ments. This work was sponsored in part by the United
States Department of Defense.

8. REFERENCES
[1] A. W. Appel. SSA is functional programming. In

SIGPLAN Notices, volume 33, pages 17–20. ACM,
April 1998.

[2] G. E. Box and N. R. Draper. Empiricial
Model-Building and Response Surfaces. John Wiley
and Sons, 1987.

[3] R. S. Boyer and J. S. Moore. Single-threaded objects
in ACL2. PADL 2002, 2002.

[4] The Coq Development Team. The Coq Proof Assistant
Reference Manual, April 2013. Version 8.4pl21.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph. In
POPL, volume 13, pages 451–490. ACM, October
1991.

[6] D. Doligez, A. Frisch, J. Garrigue, D. Remy, and
J. Vouillon. The OCaml system release 4.00
documentation and users guide.
http://caml.inria.fr/pub/docs/manual-ocaml/.

[7] D. S. Hardin and S. S. Hardin. Efficient, formally
verifiable data structures using ACL2 single-threaded
objects for high-assurance systems. In S. Ray and
D. Russinoff, editors, Proceedings of the Eighth
International Workshop on the ACL2 Theorem Prover
and its Applications, pages 100 – 105. ACM, 2009.

[8] D. S. Hardin and S. S. Hardin. ACL2 meets the GPU:
Formalizing a cuda-based parallelizable all-pairs
shortest path algorithm in ACL2. In R. Gamboa and
J. Davis, editors, Proceedings of the 11th International
Workshop on the ACL2 Theorem Prover and its
Applications, volume 114, pages 127 – 142. EPTCS,
2013.

[9] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, 2000.

[10] X. Leroy. Formal verification of a realistic compiler. In
Communications of the ACM, volume 52, pages
107–115, 2009.

[11] LispWorks Ltd. Common Lisp hyperspec.
http://www.lispworks.com/documentation/

HyperSpec/Front/index.htm.

[12] J. Moore and M. Kaufmann. ACL2 Documentation.
http://www.cs.utexas.edu/users/moore/acl2.

[13] M. O. Myreen, M. J. C. Gordon, and K. L. Slind.
Decompilation into logic — improved. In FMCAD’12.
ACM/IEEE, October 2012.

[14] The LLVM Project. The LLVM compiler
infrastructure. http://llvm.org/.

[15] J. Zhao, S. Nagarakatte, M. M. K. Martin, and
S. Zdancewic. Formalizing the LLVM intermediate
representation for verified program transformations. In
POPL’12. ACM, January 2012.

