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Abstract. Recent work on industry-capable program verification tech-
nology has emphasized the need for greater predictability in the per-
formance of SMT-based automated verification approaches. Moreover,
foundational limitations of SMT necessitate some incorporation of man-
ual proof steps, and researchers are considering the utility of handing
off some verification obligations to more powerful semi-automated inter-
active proof assistants. In this paper, we describe how capabilities that
are usually associated with expert-level semi-automated proof assistants
can be integrated synergistically in a developer-friendly code-based proof
language to address many of the limitations of traditional SMT-based
automated verification. Our approach enables proofs of more powerful
properties to be carried out directly in a familiar programming environ-
ment rather than in separate proof assistant tools that often utilize low-
level encodings of program semantics in annotations that are unfamiliar
to industry developers. Because the proof language is implemented at the
same level of abstraction as the programming language, using familiar
syntax, our approach can provide easier-to-understand visualizations of
rewriting/simplification steps that better align with the developer’s men-
tal model of program execution (providing a better user experience). Our
approach is implemented in the open-source Logika program verifier for
Slang (a safety-critical subset of Scala). We evaluate the framework on a
collection of examples, including libraries for high assurance embedded
system data structures developed by engineers at Collins Aerospace.

1 Introduction

Program verification with SMT (Satisfiability Modulo Theories) solvers has
made significant advances in recent years, enabling formal verification of in-
creasingly complex software. However, there are several issues that frustrate
developers and impede the adoption of formal verification techniques.
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First, SMT-based program verifiers often suffer from “proof instability” (e.g.
investigated by Zhou et al. [34]) — situations in which “semantically irrelevant
changes to the query can have large effects on the SMT solver’s response”. E.g.,
simply renaming a variable might cause a previously verified procedure to take
orders of magnitude longer to verify, or fail completely. Second, the effectiveness
of SMT-based program verification depends heavily on solver heuristics and con-
figuration choices to work around the general inherent incompleteness of SMT,
creating significant usability challenges for developers [9]. Modern SMT solvers
like Z3 and CVC5 employ hundreds of heuristic rules for, e.g.: (a) quantifier
instantiation patterns, (b) theory combination strategies, (c) search-space prior-
itization, and (d) preprocessing transformations. These implementations differ
substantially between solvers, leading to: (i) unpredictable performance profiles
for similar verification tasks, (ii) non-portable verification results across solver
versions (sometimes performance on certain tasks may regress [21]), and (iii)
configuration sensitivity requiring expert-level tuning. To deal with the unpre-
dictability as well as fundamental limitations of SMT, previous work has inves-
tigated handing off some verification obligations to more powerful interactive
theorem provers, e.g., [27123]. However, the community is struggling to find the
most effective approaches for achieving these handoffs in ways that are easy
to use, that achieve the best synergy between automated and semi-automated
techniques, and that avoid disruptive steps in proof engineering workflows.

In this paper, we describe how capabilities (such as induction proofs for
recursive data structures, term rewriting and simplification) that are usually as-
sociated with expert-level semi-automated proof assistants can be integrated in
a developer-friendly code-level proof language. This stands in contrast to other
“hand-off” approaches that require developers to complete the hand-off in a sep-
arate proof assistant tool that uses low-level encodings of program semantics
in annotations that are unfamiliar to industry developers [19]. We show how
these integrated capabilities can be synergistically combined with SMT to ad-
dress the limitations of traditional SMT-based automated verification described
above. Our approach is implemented in the open-source Logika program verifier
for Slang. Previously, we gave an overview of Logika [32]. We described design
goals for Logika, Logika’s contract language, the incorporation of Logika into the
widely-used IntelliJ IDE to form an integrated verification environment (IVE),
and gave a one-page summary of capabilities of the initial version of Logika’s
proof language. In this paper, we report on our complete realization of the inte-
grated proof language concept, and its application to industry-relevant examples.
The specific contributions of this paper are as follows.

— We present our strategy for integrating associated semi-automated verification
in an approach that seamlessly and synergistically integrates with Logika’s
symbolic execution SMT-based verification.

— We describe the language’s support for inductive proofs for code that manip-
ulates inductively defined data types.

— We illustrate explainability and visualization features that we have added in
the IVE to help developer understanding of succeeding and failing proof steps.
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— We describe Logika’s rewriting and simplification proof methods that use ap-
proaches similar to partial evaluation and symbolic execution to simplify pro-
gramming language terms appearing in proofs. Because the proof language is
implemented at the same level of abstraction as the programming language,
using familiar syntax, our approach can provide easier-to-understand visual-
izations of rewriting/simplification steps that better align with the developer’s
mental model of program execution.

— We illustrate the features above using a collection of examples that includes
an embedded system data structure library developed at Collins Aerospace.
Slang and Logika are part of the Sireum framework for language processing, anal-
ysis, and verification developed at Kansas State University. The entire Sireum
framework is publicly available [36] under an open source license, as are the code

examples referenced in this paper [35].

2 Background

In this section, we summarize the rationale for Slang and Logika’s design,

drawing from the more detailed presentations in [3IU32/T3].
Slang: The Slang (safety-critical) dialect of Scala was designed “hand in glove”
with Logika to achieve effective, efficient, and usable verification while also sup-
porting development for programming language and model processing, targeting
embedded systems. Slang retains some of the expressive higher-level features of
Scala (classes, traits, higher-order functions) while restricting them to a form
that enables more effective verification. A subset of Slang (called “Slang Embed-
ded”) is further restricted to constructs that can be translated to C and Rust
appropriate for embedded systems without the need for dynamic memory alloca-
tion/automatic memory management. For a detailed overview of Slang features
and design rationale, see [31].

Examples of Slang’s restrictions of higher-level Scala features include: (a)
a modified type system that strictly separates immutable from mutable types,
and (b) restrictions on mutable object aliasing, allowing aliasing to only be intro-
duced in a single programming construct (i.e., method invocation) under certain
object separation constraints. These customizations reduce developer reasoning
effort and significantly simplify formal analyses (i.e., reducing verification costs).
Slang’s extension interfaces (akin to those in the Bogor model checker [30]) allow
Slang to interface with full Scala, Java or any other JVM-based language, and
C/Rust libraries, as well as facilitating domain-specific customizations.

While Slang is a strict Scala subset, its programming language features are
still rich enough to support large application development. The largest system
implemented in Slang is Sireum itself (which includes Slang and Logika). This
allows for self-application of Sireum tooling to its own Slang codebase. At this
point, the Sireum codebase consists of 41 (Maven) modules with close to 391k
lines of code as 84% Slang, 11.4% Scala, and 4.6% JavalT|

In addition to using Slang with standard JVM-based Scala/Java tools and
ecosystems, the Slang Embedded subset can be transpiled to C without requiring

! mttps://github.com/sireum/kekinian/tree/04afeba
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garbage collection at runtime (i.e., objects are globally /stack-allocated). For ad-
ditional assurance, the translated C code can be compiled using the CompCert
verified C compiler [26]. We are developing transpilation of Slang Embedded
code and contracts to Rust (with Verus [24] contracts) as part of an ongoing
DARPA PROVERS project led by Collins Aerospace.

Slang and Logika have primarily been used on industrial research projects
on high-assurance model-based development at Collins Aerospace [6J7] and Ga-
lois [I7I16]. Given an AADL [3] component-based system architecture model, the
Sireummn HAMR high assurance embedded system engineering framework gener-
ates AADL runtime services in Slang Embedded that can be deployed in various
platforms, including the sel.4 verified micro-kernel (via C) with formal evidence
that architectural constraints are preserved, thus enabling guarantees of safe/se-
cure inter-component spatial and temporal separations [6]. In collaboration with
Collins Aerospace and sel.4 developers, HAMR was used to build an experimen-
tal mission control subsystem running on sel.4 for the Boeing CH-47 Chinook
helicopter platform. Regarding the primary developer-facing tooling, the Sireum
Integrated Verification Environment (IVE) — a customized version of Intelli]
IDEA - integrates various Sireum tools such as the Slang front-end (provid-
ing, e.g., type checking, refactoring, etc.), the Proyek incremental /parallel build
tool, and Logika, all running as microservices in a background Sireum server.
Moreover, we recently added VSCode integration for Sireum.

Logika: Slang’s contract language is based on classical logic and supports asser-
tions, pre/post-conditions, data type invariants, and global invariants for global
states. Verification of code conformance to contracts is performed composition-
ally and employs multiple back-end solvers in parallel, including Alt-Ergo [§],
CVC4 [B], CVC5 [4], and Z3 [29]. In principle, other theorem provers could also
be employed. To provide a continuous user abstraction experience, however, a
developer should be supported within Slang/Logika as much as possible. Current
work on Logika focuses on proof constructions within Slang to allow this. Logika
uses a forward verification approach based on symbolic execution instead of a
backward approach based on weakest pre-condition computation. Based on two
decades of experience of implementing symbolic execution tools for both Java
and SPARK, we believe that the symbolic execution approach produces diagnos-
tic information about verification steps that is much easier to understand and
also allows a more intuitive summary of the underlying verification algorithm
for engineers and students. The scalability of Logika is complemented by using
incremental, focused, and parallel (distributable) verification algorithms. Ver-
ification results, developer feedback on verification status, and contract/proof
editing are supported in the Sireum IVE. With the IVE, we are able to support
testing concepts with conventional unit libraries for Scala (e.g., ScalaTest) as well
as provide testing coverage concepts using IntelliJ’s built in coverage facilityﬂ

2 See https://doc.sireum.org/venues/presentations/logika/tccoe22/ for a
video of a 25-minute technical talk and demonstration of Logika’s IVE user interface
and server-based checking architecture.
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21 ~ v |Validity Check for Loop invariant at the beginning of while-loop at [28, 17]: Valid
Validity Check for Loop invariant at the beginning of while-loop at [28, 25]: Valid
Validity Check for Loop invariant at the beginning of while-loop at [28, 33]: Valid

Validity Check for Loop invariant at the end of while-loop at [28, 17]: Valid

// Definition by cases, equational
// Specification of the factorial function
© % (@abs def fac(n: Z): Z = n match {

3 case 0 = 1 Validity Check for Loop invariant at the end of while-loop at [28, 25]: Valid
©% case m if m > 0 = m * fac(m - 1) Validity Check for Loop invariant at the end of while-loop at [28, 33]: Valid
3 case _ = halt("Negative factorial")
} ; Result: Valid

Solver: /Users/hatcliff/Dev/Sireum/kekinian/bin/cvc5.com

; Arguments: --lang=smt2.6 --rlimit=2000000 --t1imit=6000 --fu
// SMT proof of the iterative factorial function

; Time: 0.017s
@pure def fac_it(n: 2): Z = {
Contract( Sequent:
Requires(n > 0), ne o,
% Ensures(Res = fac(n)) At(x, 8) == 1,
) At(n, 0) == 0,
var x: Z = 1; var m: Z = 0; 8 <= At(m, 1),

At(m, 1) <= n,
x == fac(At(m, 1)),
At(m, 1) < n,

white (m < n) {
Invariant(Modifies(x, m),

3 0 <mm< n, x = fac(m)) m == At(m, 1) + 1,
m=m+1 At(y, 0) == 0,
var y: Z = 0; var k: Z =0 At(k, 0) == 0,
) 0 <= At(k, 1),
while (k < m) { At(k, 1) <=m,
Invariant(Modifies(y, k), At(y, 1) == At(k, 1) * x,
0 <k k<my=Fk5%*x) At(k, 1) <m,
y=y+x;k=k+1 y == Atlk, 1) % x + X,
' k == At(k, 1) + 1,
0 <= k,
X =y kK <=m
} +
E3 return x y s koxx
+
o Filter B

Fig. 1. Fully automated verification of factorial using Logika SMT-based symbolic
execution

3 Proof Language Principles

In this section, we summarize basic features of Logika’s proof language using
a very simple example — an iterative version of the factorial function implemented
using addition as the only numerical operation. Figure[I] presents a version of the
example in the Sireum IVE in which the proof language is not utilized, i.e., ver-
ification is performed automatically using SMT. At the top left of the function,
a Slang (executable) specification function fac is defined. The Scala annotation
@abs indicates that the function is “strictly pure” (it is a side-effect free construct
that can be directly translated to the SMT-LIB expression language) and can be
used in Logika specifications and proof contexts. However, in contrast to Slang’s
similar @strictpure functions (see [31] for a detailed discussion of Slang’s func-
tion flavors), @abs functions will not be unfolded automatically unless explicitly
requested in Logika’s rewrite tactics (similar to Isabelle’s definition and fun
distinction as illustrated below). Then, the iterative version fac_it is defined
with: (a) a contract precondition requiring the argument to be non-negative, and
(b) a post-condition stating that the method return value (denoted as Res) is
equal to the result of the specification function. As the developer types, Logika
continously runs in the background to check for possible run-time exceptions,
assertion violations, and to verify that the code conforms to declared contracts.

Significant engineering efforts have been devoted to displaying verification
results directly in terms of program features that the developer can recognize in-
stead of lower level representations such as information flowing to/from the SMT
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solver. The engineering involves mapping Logika’s three-address code interme-
diate representation and internal logic variables back to Slang-level program
expressions and variables, and also maintaining mappings between program ar-
tifacts and SMT-LIB encodings. One of Logika’s most distinguishing features
is to make this verification information available to developers at each program
point in the code via clickable annotations in the left margin of the editor. There
are two types of information: the lightbulb icons ¢ display facts roughly cor-
responding to statement level pre/post-conditions; and lightning bolt icons %
display sequents representing verification conditions that are encoded as calls to
the underlying configured SMT solvers.

As Logika works, it collects facts that it discovers by symbolically moving
forward step-by-step through the code. Some of the accumulated facts are imme-
diately apparent from the structure of each program statement (we will refer to
these as immediate facts). Others are the result of deductions that it has made
by calling the underlying SMT solvers (we will refer to those as deduced facts).
Logika can display all the inferred facts that it has accumulated at any point
in the program (via the lightbulb icons) to provide valuable hints about how
to reason systematically about the program. These Slang-level inferred facts are
computed based on Logika’s internal symbolic execution path conditions that
must hold at the particular program points, which are intuitive as they are di-
rectly in line with the regular (concrete) program execution.

The % annotations indicate the points at which Logika makes automated
deductions that require interactions with its underlying SMT solvers. Logika
terms these interactions as summonings because the power of SMT solving is
being “summoned” to make a deduction that cannot be carried out using simple
syntactic manipulation of the current facts. Clicking on # shows the details of
the summoning. Generally, summonings occur for each line of a post-condition,
for (implicit/explicit) assertions, invariants, for checking the pre-condition of a
called method, and for code branches to determine the feasible path(s) along
which verification should proceed. The right side of Figure [I] shows selected
aspects of clicking on # (annotated with a red circle) at the second loop invariant.
The loop invariant contains three (implicitly conjoined) clauses, and for each of
these, Logika establishes two verification conditions (VCs, one that requires the
clause to hold at the beginning of the loop, and another for the end of the
loop). From the six total VCs for the selected #, the user has selected the final
one (the end of the loop VC, the clause y == k * x). The display provides
information about the underlying SMT solver invocation (e.g., cved is invoked
with the particular configured set of arguments). Below this, the sequent display
is given with the relevant clause as the conclusion. The sequent antecedents hold
the accumulated facts relevant to the verification. Annotations such as At (k, 1)
refer to the value of variable k as its second occurrence (zero-based counting)
within the method.

Figure[2| presents verification excerpts of the same example with selected fea-
tures of Logika’s manual proof language. The excerpts include the body of the
inner while loop (an additional assignment to an intermediate variable yn has
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@pure def fac_it(n: Z): Z = { 15 ~ v |Info: Matched:
. _ Matched:
I—,g. var k: Z = 0 (yn - x +x) = (K* x + %)
R ] while (k < m) {
Invariant(Modifies(y, k), After rewriting #3:
£ 0 <k ksmy=Fksx) (y +x) = (k*xx+x)
E 3
y Becucal . and/or after simplifying the step claim to:
v 4 1 (y = k * x) by Premise, (y + %) = (K% X + x)
4 2 (y + x = Kk % x + x) by Simpl and 1
) Trace:
E 3 val yn = y + X
N U v Begin rewriting (y + x) = (k * x + x) ...
E 3 Deduce (
4 1 (yn = y + x) by Premise, Trace:
£ 2 (y = yn - x) by Algebra and 1,
v, 3(y+x—=K%x+x) by Premise by [eval] substitution using #2 [y/yn - x]:
yn - x
4 ((yn - x) + x = K * X + x) oy
106 by Rewrite(RS(), 3) and 2,
£ 5 (yn = k * x + x) by Algebra and 4, So(yn - x + x) = (kK *x x + x)
£ 6 (yn = (k + 1) * x) by Algebra and 5 = by = (kxx+)
)
y =yn
E 3 k=k+1
fac_itin: 2) k Filter trace ...

Fig. 2. Verification of factorial using proof language (excerpts)

been introduced to facilitate the illustration). Proof blocks are presented Logika’s
Deduce(..) construct, which includes a numbered list of proof steps. Each proof
step has a claim and an associated justification (or tactic) to apply to prove the
claim. In the first Deduce, the claim y == k * x is justified by Premise because
it follows immediately, since the invariant is assumed to be true at the top of
loop body following the usual Hoare logic approach. In general, any claim shown
in a ¥ can be copy-pasted “as is” as Premise in the corresponding program
point. In addition to serving as user feedback, % claims as Premises facilitate
integration of Logika automation and interactive verifications. The second proof
step is proved using Simpl, which rewrites terms using known facts in the form
of equations and capturing the semantics of Slang expressions (akin to partial
evaluation). Using the operator and, the justification Simpl can be restricted to
equality claims supplied as arguments (the claim of proof step 1 in this case).
Note that the claim is proven without an external call to the SMT solvers (indi-
cated by having the “check mark” « icon instead of #), thus illustrating one of
the avenues for proof engineers to avoid the potential instability and increased
overhead of SMT. Simpl can also be used without any and argument, in which
case it can use any preceding proof step claim in scope for equality subtitutions.
We recently introduced ESimpl (not shown), which offers a backtracking vari-
ant of Simpl that can recover from detrimental substitutions that diverge from
proving the stated proof step claim. Table [1] lists some of Logika’s justifications.

In the second Deduce, the second claim is proved using Algebra. This step is
proven by an external call to SMT (as indicated by the bolt gutter annotation),
but it uses SMT in a very limited way that is less costly and likely more stable:
it only uses explicitly referenced claims (the claim from step 1 in this case) and
does not include implicitly any facts from the context. Proof of the fourth claim
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Justification Informal desciption

Simpl Simplify current clause in proof into known fact, or fail

ESimpl Backtracking version of the above

Rewrite Rewrite indicated clause in proof into current clause, or fail

Premise Known fact

Subst Substitute one term for another left-to-right “>” or right-to-left “<”
Al1I, AllE Complete set of natural deduction rules (not all shown here)

Auto Summon unconstrained configured SMT solvers

Algebra Summon SMT solvers specialized to unquantified arithmetics and logics

Table 1. Logika manual proof step justifications

illustrates Logika’s Rewrite justification. In general, Rewrite takes an ordered
rewrite set consisting of lemmas/theorems and references to @abs methods to
unfold (not shown), and a proven claim to be rewritten. For the fourth claim,
rewriting is applied to claim 3 and the rewrite set RS () is empty, but the rewriting
is specified to utilize the equality claim 2 as a left-to-right rewrite rule. Rewrite
sets RS are defined using Slang sequence types and can be specified inline or by
given an annotated Slang value definition @rw val. Set union and difference work
on RS, e.g., myRewriteSet ++ otherSet - RS(m _), which can also be stored
in a @rw val or inlined. In practice, RS members are names of Slang definitions.

Thus, Rewrite gives yet another way to avoid invoking SMT for a proof.
Logika’s rewriting approach is similar to Isabelle’s, but it is currently not as
powerful. However, it does have several of the key capabilities (flexible definition
of rewrite sets with controlled unfolding of definitions). Even in its current form,
we have found that it is powerful enough to address most common scenarios. By
avoiding having to export VCs using hard-to-understand encodings to an exter-
nal theorem prover, the developer works directly in terms of the programming
language syntax, definition constructs, and abstraction level in the same pro-
gramming/verification environment. In addition, clicking on « annotation for
the claim provides a trace of the rewriting directly in terms of the program-level
constructs. The right side of Figure 2]shows the rewriting trace for claim 4. First,
the trace illustrates that claim 3 is to be rewritten. Then, it is written using the
indicated equality of claim 2 (left to right), by substituting y for yn - x. This
yields a match with claim 4, thus proving the claim.

4 Case Study

To assess the utility of Logika’s proof language, we used it to prove the
correctness of several data structure libraries. One of those is a Slang imple-
mentation of a doubly-linked linked list (DLL) based on similar approaches used
in embedded security devices at Collins Aerospace [I4]. The initial Slang im-
plementation was completed several years ago with only a few simple aspects
verified because it was difficult to complete the verification with the earlier im-
plementations of Logika. The recent Logika addition of proof language features
and better support for abstraction and refinement has enabled us to significantly
expand the scope of the proofs.

Abstractly, a list can be easily expressed algebraically using the constructors
Nil and Cons for values of type List. However, for high assurance embedded
devices, it is undesirable to use such list directly because its manipulation re-
quires dynamic memory allocation, which introduces unpredictable behaviors.
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@datatype class Node[E] (elem: E, used: B, left: DLLPool.PoolPtr, right: DLLPool.PoolPtr) {}

object DLLPool {
type PoolPtr = Z
type PoolMem[E] = MSZ[Node[E]]
val Null: PoolPtr = -1

Qabs def isPointer[E](pool: PoolMem[E], p: PoolPtr): B = { p == Null || pool.isInBound(p) }
Q@abs def isValidPointer[E](pool: PoolMem[E], p: PoolPtr): B = { pool.isInBound(p) }
Q@abs def freeNodesPropl[E](pool: PoolMem[E], free: Z): B = { free == count_free(pool) }

Qabs def asList[E](pool: PoolMem[E], head: PoolPtr): List[E] =
if (isValidPointer(pool, head)) {
Cons (pool (head) .elem, asList(pool, pool(head).right))
} else { Nil(Q) }

}

Q@record class DLLPool[@imm E] (eDefault: E, poolSz: Z) {
val defaultNode: Node[E] = Node[E] (eDefault, F, Null, Null)
val maxSz: Z = if (poolSz > 0) poolSz else 0
val pool: PoolMem[E] = MSZ.create(maxSz, defaultNode)
var free: Z = maxSz
var head: PoolPtr = Null
var tail: PoolPtr =

@spec def freeNodes = Invariant( freeNodesProp(pool, free) )

Fig. 3. DLL excerpts - primary declarations and concept outline

Instead, we use such list and its accompanying theorems indirectly as abstract
specification and in proof only. The data representation chosen for the concrete
DLL implementation is challenging for understanding and verification in that
it is not obvious that a list is implemented. The logical ordering of elements in
the DLL does not follow their physical ordering in pool memory. Allocating new
element storage and subsequent reclaiming must be managed explicitly. There
are also several fairly complex invariants that need to be maintained by each
DLL operation.

4.1 Overview

Figure [3] presents some of the primary definitions in the DLL library. In the
concrete DLL implementation, in order to avoid dynamic memory allocation
and guarantee locality of all memory access, all data of the DLL is stored in a
memory block of fixed size represented as a Slang mutable sequence (line .
The pool holds items of type Node. Each node (line [2) includes a data element
elem of type E, indices of Nodes to the logical left (towards the head of the
list) and right (towards the tail of the list). head and tail are pool indices for
the current logical head and tail of the list (see Fig. .

Our verification strategy is as follows. Approximately 13 invariants are spec-
ified on the DLL structure. For example, Figure [3] line [29] illustrates a simple
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AL ’ Cons("A", Cons("B", (Cons("C", Nil())))) ‘
[

AL = asList(CL): “Follow the thick arrows in pool from head”

) [— \bl T
o |m BELL] ELLL) Rl

Fig. 4. DLL data structure and its list abstraction

invariant freeNodes that specifies that the pool variable free that holds a count
of the number of free nodes in the pool matches the count computed by travers-
ing the memory blocking and counting the nodes marked unused (note that the
invariant uses the freeNodesProp helper property defined earlier in the figure).
All DLL operations are proved to maintain the invariants. The DLLPool object
contains approximately 20 helper methods with specification and proofs (starting
at line Figure [3| shows some of the simpler ones like isPointer).

Next, we create an abstract operational specification of the DLL using an
easily expressible and understandable inductively defined List type (for lack of
space, these definitions are omitted since they correspond to the familiar cons-list
data structure). Operations on List are written using the pure functional pro-
gramming language features of Slang. This functional modeling style is common
in theorem proving based on type theory.

Subsequently, a family of relations asList are defined as Slang specification
methods that relate concrete DLL values to abstract List values (one of the
methods is shown in Figure [3| line . Figure (4] illustrates the relationship be-
tween the concrete and abstract values. At the top of the figure the abstract
list is shown as an expression, at the bottom the concrete DLL implementation
is shown where the left and right fields of a node point to other locations in
the mutable sequence pool. The refinement relation between the two representa-
tions consists of reconstructing the abstract list by following the right pointers
from the head onwards. Subsequently, the concrete implementation of the DLL
is verified against the abstract list model using refinement. In other words, we
show that the concrete implementation is a simulation of the abstract list.

Figure [5]illustrates key concepts of the proof approach. Abstract list AL and
concrete (implementation) list CL stored in the buffer are related by the relation-
ship AL = asList (CL), describing the simulation of AL by CL. This simulation is
used to relate abstract functions such as length that yields the length of a list
to the CL function size0Of that yields the length of a CL. In order for sizeOf to
implement length correctly, the value returned by CL.size0f for a list must be
equal to that AL.length if AL = asList(CL). (This is addressed in Figure|8] dis-
cussed later). Similarly, the CL. cons simulates the abstract constructor Cons of
the abstract list if the buffer is not full. (This is addressed in Figure EL discussed
later).

Generally speaking, proofs in the library dealing with more abstract concepts
are more algebraic relying on rewriting, while pure implementation-level proofs
require more complex properties that cannot be cast in the form of equations.
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Simulation of abstract list by concrete list implementation

Abstract List (AL) ¢——— Simulation ¢——— Concrete List (CL)

AL = asList(CL) H

Cons("B", (Cons("C", Nil()))) MSZ(Node("B", T, -1, 1), Node("C", T, 0, -1), Node("", F, -1, -1))

Simulation of abstract list length by concrete list size0f
AL.length ¢————— AL = asList(CL) $———— CL.sizeOf

Simulation of abstract list Cons by concrete list cons
Cons("A", Cons("B", (Cons("C", Nil())))) 4——— AL = asList(cL) $— CL.cons("A")

MSZ(Node("B", T, 2, 1), Node("C", T, 0, -1), Node("A", T, -1, 0))

Fig. 5. Case Study Proof Approach

The refinement relationship is an invariant of the concrete implementation and
by mentioning both abstraction levels requires a mix of algebraic proofs and
proofs that use properties with more complex shapes. In our experience, SMT
solvers require some help from the user in order to achieve such proofs. In the
approach that we follow, Slang’s flexibility enables proofs to be carried out in
supporting objects as much as possible and not in the code so as not to blur the
implementation with more complex proofs.

4.2 Programming and Proof

The development and proof of the abstract list with its concrete implementation

as doubly-linked list is separated into three parts:

(1) The abstract list modeled as an algebraic datatype List [E] with construc-
tors Nil () and Cons(value, list), where value of generic type E and list
of type List [E]. Properties of abstract lists are proved a in corresponding
List companion object (see theorem length_impl_with_acc_sum in Fig-
ure @

(2) A doubly-linked list companion object DLLPool (see Figure[3) with theorems
relating to implementation concerns, the theorems about refinement, and
related executable specification functions.

(3) The doubly-linked list class DLLPool[E] (see Figure [3) with the implemen-
tation code and correctness proofs expressed in terms of theorems proved in

and .

Abstract list properties. Properties of abstractions are often needed to support
refinement proofs. For instance, the refinement proof of CL sizeOf (see Figure
needs to establish that the result Res equals AL list.length, the length of the
corresponding abstract list. In the CL operation, Res is iteratively computed by a
loop using a local variable res. To achieve res == list.length on termination,
the progress in the computation of res must be recorded. This can stated as
the universal claim All1{(acc: Z) => acc + 1l.length == 1l.len_acc(acc)}.
To help with proving the claim, we introduced the length_impl_with_acc_sum
Logika method theorem shown in Figure [} The theorem is proven by using
Logika’s @induction (line . In the base case of Nil(), the theorem claim can
be discharged automatically by SMT solving, thus there are no proof annota-
tions (line [20). The inductive step of Cons(...) (line[) illustrates the use of
Logika’s simplification and natural deduction tactics. The previous declaration
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Opure def length_impl_with_acc_sum[T](1: List[T]): Unit = {
Contract (Ensures(Al1{(acc: Z, bcc: Z) => bcc+l.len_acc(acc) == 1l.len_acc(bcctacc)}))
(1: @induct) match {
case Cons(v, n) =>
Deduce(
1 (All{(acc: Z, bcc: Z) => bcc+n.len_acc(acc) == n.len_acc(bcctacc)}) by Premise,
2 (Cons(v, n).length == 1 + n.length) by Simpl,
3 Let((acc: Z) => SubProof (
4 Let((bcc: Z) => SubProof (
5 (Cons(v, n).len_acc(bcc + acc) == n.len_acc(l + (bcc + acc))) by Simpl,
(A11{(bcc: Z) => bcctn.len_acc(l+acc)==n.len_acc(bcc+i+acc)}) by ALIE[Z] (1),
(bcc + n.len_acc(l + acc) == n.len_acc(bcc + (1 + acc))) by Al1E[Z](6),
(bcc + Cons(v, n).len_acc(acc) == bcc + n.len_acc(l + acc)) by Simpl,
9 (bcc+Cons(v, n).len_acc(acc) == Cons(v, n).len_acc(bcct+acc)) by Auto,
10 (bcc + 1l.len_acc(acc) == 1l.len_acc(bcc + acc)) by Auto
),
11 (A11{(bcc: Z) => bcc+l.len_acc(acc) == l.len_acc(bcctacc)}) by A11I[Z] (4)
),
12 (All{(acc: Z, bcc: Z) => bcc+l.len_acc(acc) == 1l.len_acc(bcctacc)}) by A11I[Z](3))
case Nil() => return

13

0 N o

Fig. 6. Example AL operation (high-level specification for DLL)

of the @induct proof strategy (line causes the induction hypothesis to be
implicitly introduced in the fact set when in the Cons proof case (in the IVE,
the fact would show up in # annotation information). Because of this, the ex-
plicit statement of the induction hypothesis at line [f] can be discharged using the
Premise justification. Overall, some of the proof steps appear obvious, but none
of the simplification steps using Simpl can be discharged by SMT solving due
in part to the presence of uninterpreted functions, quantifier manipulation, etc.
in the Slang-to-SMT encoding. To help direct SMT solving, we manually elimi-
nate/instantiate and re-introduce the universal claim by using Logika universal
quantifier elimination and introduction (A11E/A111) rules (see lines [11]and [L7).
With quantifiers removed, and by judicious use of Simpl to prove facts to help
SMT along, other parts of proof can be discharged via SMT solving using the
Auto justification (lines and [15).

This example illustrates nicely the common interplay between Logika SMT-
based automated verification and interactive theorem proving found in many
other parts of the DLL code, where automation is used as best as can be af-
forded using SMT solvers, coupled with some interactive proofs done using
Logika’s rewriting system. One very attractive aspect of our approach is that
these activities are all integrated in a single tool (the IVE — built on a widely
used IDE) and carried out using program-level features (instead of lower-level
language encodings as they would appear in a separate theorem proving tool).

Implementation and refinement properties. Properties concerning the implemen-
tation of the doubly-linked list are stated and proved in the companion object
DLLPool declared in Figure[3|line[f] Figure[7]gives one example of such a property
refines_p_not_Nil that states that if a provide concrete representation satisfies
the refinement relation and there is a valid pointer p (i.e., the pointer does not
reference an unused node), then the abstract list is not equal to Nil. Intuitively,
the presence of rewriting and simplification tactics in the proof indicates that



OO WO Uk WN -

—

OO0~ Uk W~

Proof Engineering in Logika 13

Opure def refines_p_not_Nil[E](pool: PoolMem[E], p: PoolPtr, 1: List[E]): Unit = {
Contract (Requires(isValidPointer(pool, p),refinesProp(pool, p, 1)), Ensures(l !'= Nil[E]J()))
Deduce (
1 (isValidPointer(pool, p)) by Premise,
2 (pool.isInBound(p)) by Rewrite(RS(isValidPointer _), 1),
3 (refinesProp(pool, p, 1)) by Premise,
4 (asList(pool, p) == 1) by Auto and 3,
5 (asList(pool, p) == Cons[E] (pool(p).elem, asList(pool, pool(p).right)))
by RSimpl(RS(asList _)) and (1, 2),
(Cons [E] (pool(p) .elem, asList(pool, pool(p).right)) == 1) by Subst_<(5, 4)) }

[}

Fig. 7. Example low-level theorem from DLL companion object

Q@pure def sizeOf: Z = {
Contract (Requires(refinesProp(pool, head, list)),
Ensures(refinesProp(pool, head, list), Res == list.length))
var res: Z = 0
var p = head
@spec var 1 = list
Spec { length_impl_with_acc(list) }
while (!isLeaf(p)) {
Invariant (Modifies(res, p, 1),
refinesProp(pool, p, 1), isPointer(pool, p), l.len_acc(res) == list.length)
Spec { length_impl_with_acc(l.tl); refines_p_not_Nil(pool, p, 1)
refines_p_sublist(pool, p, 1) }
res = res + 1
p = pool(p).right
Spec { 1 =1.t1}
}

return res

Fig. 8. Example low-level side-effect free CL method (with refinement proof)

the claim to be proved is easily deduced by appealing to involved equalities, e.g.,
from function definition isValidPointer in line [f]in Figure[7} The equality is a
consequence of the definition of isValidPointer in line[II]in Figure[3] Property
refines_p_not_Nil is used in the refinement proof of function size0f below
that needs to interpret low-level properties like isValidPointer(pool, p) in
terms of high-level properties like 1 = Nil[E] ().

Implementation of side-effect-free CL methods. We next illustrate in Figure[§] the
proof of a CL. method size0f that traverses but does not modify the CL structure.
Although the method uses imperative features, it has no visible external side
effects and so is annotated with the Slang @pure annotation. The postcondition
indicates that, given that 1ist is the abstract representation of the CL instance,
sizeOf implements the abstract function 1ist.length. The method contract
also indicates that the refinement condition refinesProp(pool, head, list)
is preserved. In the method body, the incrementally computed size of the DLL
is stored in variable res. In order to relate the current value of res to the
sublist it corresponds to, a @spec variable 1 is declared (line @ that remembers
the part of the corresponding abstract list that has not yet been visited (by
leveraging Slang’s copy-on-write semantics on mutable objects). The entire proof
has been factored out into a set of lemmas. The lemma applications are stated
as developer-friendly method invocations that are placed inside Spec blocks.
Such lemma applications can be confirmed by inspecting the ¥ claims after the
application program points (not shown). The final Spec block in line only
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def cons(elem: E): Unit = {
Contract (Modifies(list),
Case(Requires(free > 0, refinesProp(pool, head, list)),
Ensures(refinesProp(pool, head, list), list == Cons(elem, In(list)))),
Case(Requires(free <= 0, refinesProp(pool, head, list)),
Ensures(refinesProp(pool, head, list))))
if (free > 0) {
if (isEmpty) {

head = 0; tail 0

@spec val qool pool

pool(0) = Node(elem, T, Null, Null)

Spec { count_free_on_alloc(qool, pool, 0); list = List.make(elem) }

} else {

val pnew: Z = findFreeNode()

@spec val qool = pool

pool(pnew) = Node(elem, T, Null, head)

Spec { unused_inv(qool, head, list, pool, pnew)
refines_new_head(pool, head, list, pnew, elem)
count_free_on_alloc(qool, pool, pnew) }

@spec val rool = pool

pool(head) = pool(head) (left = pnew)

Spec { list_coincidence(pool, rool, head); free_coincidence(pool, rool) }

head = pnew

Spec { list = Cons(elem, list) }

}
free = free - 1
}
}

Fig. 9. Example low-level side-effecting CL method (with refinement proof)

contains the update of the abstract list 1 = 1.t1 that corresponds to the low-
level assignment p = pool(p).right in line maintaining the relationship
refinesProp(pool, p, 1) stated in the invariant (see line [L0). The use of the
lemmas keeps the “noise” in the programs code produced by proof low. It also
makes the interaction with the SMT solvers more stable due to the smaller
amount of claims involving only the contracts of the involved method theorems
but not the contained proofs, which reduces the load of the solvers.

Implementation of side-effecting CL methods. Figure [ shows the low-level CL
function cons of DLL, which corresponds to the abstract list constructor Cons.
Because the pool memory is limited in size, a call of cons only extends the CL
if there is still space. This is expressed by the two cases of the contract of cons:
the case free > 0 permits extending the list, the case free <= 0 leaves the CL
unchanged. Note that free is proved to be the number of unused cells of the
pool memory by means of the invariant freeNodes (see Figure [3] line . The
condition is reflected by the leading if-statement in line [7}

The library includes a number of other methods for finding items, and in-
serting and deleting items, and the same proof strategies are applied for those.

5 Illustrations

In addition to the full artifacts for the DLL example presented in this paper,
we have prepared examples of varying complexity to further illustrate Logika’s
proof language features (see [39]).
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o Abstract list: Inductive proof of 1 = 1.t1.tl for any list 1. This develop-
ment shows how a common inductive proof is carried out in Logika relying on
rewriting and simplification to guide the proof.

e Sequence sum: In Logika, sequence induction is often done using while loops.
This development shows how recursive properties are used in such proofs and
how abstract properties are propagated to refinements.

o Mazimum of sorted sequence: The maximum of a sequence of increasing values
can be computed by returning the last value of the sequence. The proof of this
is a program that computes the maximum value, confirming that the last value
is the maximum. Except for the returned maximum, the entire program is
enclosed in a Spec block. The program itself becomes a correctness annotation
similar to typing information that confirms that values have the correct type.

e Symbol table: This example provides a symbol table that one might use, e.g.,
in a program/model implementation environment. The development demon-
strates the use of function calls as theorem references and the replacement of
abstract predicates in pre-conditions by more efficient implementations with-
out affecting the difficulty of the proofs. This approach is useful when compile-
time and run-time-verification use are combined in practice.

Due to space constraints, in this paper we have focused on illustrating con-
cepts. Full evaluations of efficiency gains and usability are part of our plans for
future work. It is worth emphasizing, however, that we believe Logika provides
a uniquely high degree of usability by the fact that it provides a continuous
of abstraction on its streamlined automated and interactive theorem proving
approach at the level that is familiar to regular system engineers in realistic
development workflows and supported by industrial-scale programming/verifi-
cation environments. Regarding efficiency, one of the motivations for our work
was to provide pathways for reducing the time and instability of verification.
Anecdotally, besides failing to discharge VCs in numerous situations, our early
SMT-heavy versions of the case study code required minutes for full verification.
By using simplification/rewriting instead of SMT calls and by using the proof
language to minimize the size of constraint sets sent to SMT, we were able to not
only succeed in verification, but also to reduce verification time of this example
to a few seconds.

6 Related Work

The Why3 framework [I0] is a good example of previous work that aims
to provide support for both SMT and interactive theorem proving (ITP). It
provides an intermediate language (WhyML - combining both imperative and
functional features) for encoding behavior and specifications, and a VC genera-
tor that generates VCs dischargable using automated calls to a variety of SMT
solvers (Z3, CVC4/CVC5, and Alt-Ego) or exportable to the Coq interactive
theorem prover. Coq proof scripts for Cog-proven VCs can be re-incorporated
back into the WhyML artifacts. SPARK 2014 [20] (a contract-based specifica-
tion and verification framework for a safety-critical subset of Ada) is an example
of a powerful industrial verification framework that uses Why3 as its verifica-



16 S. Hallerstede et al.

tion engine. It translates SPARK programs into Why3 and relies on Why3 VC
generation and verification framework to prove that SPARK programs conform
to program contracts. This architecture provides combined automated SMT and
theorem proving verification for SPARK programs. The difference with our work
is that we aim to integrate SMT and targeted ITP directly within the program-
ming language. Why3 is designed as an intermediate language and does not have
the full support for developing, debugging, and execution that Slang does. When
ITP is used, one must work with encodings of Why3 in Coq, whereas in Slang
the developer works directly at the programming language level. When using
SPARK 2014, diagnostic information is expressed in terms of Why3 encodings
instead of directly in terms of the programming language. Moreover, when in-
teractions with ITP are needed, users must understand a double-encoding — the
encoding from SPARK 2014 to Why3, and then Why3 to Coq. An advantage
of the SPARK 2014/Why3 approach is that one has access to the full power
of a relatively mature theorem prover, whereas for our approach, we are cur-
rently providing a targeted set of tactics. As noted in [32], Logika’s extension
architecture can facilitate exporting VCs to any theorem prover in future work.

Dafny [25], Frama-C [22], AutoProof [II] and Verus [24] are examples of
program verification frameworks used in industry that also aim to incorporate
some notion of a proof language phrased in programming idioms. While these
tools have many attractive features, including some that are not supported by
Logika, their proof languages are not nearly as expansive as what we provide
in Logika. AutoProof integrates verification support to Eiffel tapping into its
contract language. Both Dafny and Verus provide specification lemmas (with no
executable code) whose pre/post-conditions can be proved using SMT and then
reused in other program contexts. Dafny supports calculation blocks that can
include “hints” to lower-level SMT solvers. Verus authors are developing an ap-
proach to translate VCs to the Lean I'TP, which the developer needs to discharge
interactively in Lean [28]. This has the same tradeoffs (dealing with encodings
and working in a separate less-user-friendly tool vs. full ITP power) as with
the SPARK / Why3 architecture described above compared to our approach.
Frama-C provides verification for C programs. Via a plug-in mechanism pow-
erful verification techniques like abstract interpretation are available. Contract
and verification annotations are kept in the comments. This make a tight inte-
gration of programming and proof concepts difficult. SED [18] uses annotations
in comments and provides graphical visualizations of verification artifacts.

With a different objective than Logika, some of the approach to proof taken
here has been used with Event-B [I] in the Rodin tool [2]. One of the design
objectives of Rodin compared to its predecessor was to decompose large proof
obligations and structure the remaining large proofs in such a way that the
remaining sequents could be easily discharged by automated provers. Although
Rodin is a tool for abstract modeling, the same approach to proof is at work in
the presented work on Logika. It is not intended to eliminate the use of SMT
(and other automated provers) from Logika but to make their use much more
reliable and predictable.
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7 Conclusion

Despite requiring “manual effort” and some level of expertise in formal meth-
ods, we believe there are significant benefits in integrating semi-automated proofs
with automated program verifiers. A primary benefit is providing a pathway to
continue verification progress when SMT-based automation becomes unstable
or simply cannot prove true claims. Our goal in this paper has been to de-
scribe one particular approach that incorporates a proof language directly in
the programming language and illustrate that it can work synergistically with
SMT verification. We believe our approach is promising because the proof lan-
guage emphasizes: (a) developer-friendly syntax and programming-like idioms,
and (b) tool feedback like simplification/rewrite traces and SMT deductions are
expressed directly in terms of program features (not lower-level encodings). We
believe this approach is novel and applicable to other SMT-based automated
program verifiers.

Regarding usability, an interesting anecdotal observation is that we teach
Logika’s full proof language as illustrated here in master’s level courses in Aarhus
University [13]. Logika’s basic natural deduction steps and substitution are
taught in an undergraduate programming logic course at Kansas State Univer-
sity, which has included 1000 students during the last six years (see [33] for online
textbook). While we would not necessarily expect all industry engineers that ap-
ply Logika or other program verifiers to use the proof language features, one can
imagine that having an integrated proof language makes it easier to hand-off to
verification engineers that are capable of applying the features. Moreover, being
able to have engineers working in a single environment (instead of having to hand
off to an external theorem prover that has completely different abstractions/no-
tations) makes user workflows smoother and artifact management easier.

There are likely other theorem proving techniques or finer-grain controls over
deduction that could be added to our framework. We have focused on rewriting
and simplification; combinations of tableau-based proof search and resolution-
like techniques as in Isabelle’s blast and fastforce tactics, which may be help-
ful for dealing with quantifier manipulation (which SMT-based solvers often
struggle with), might be useful for adoption in Logika in the future. In gen-
eral, Logika’s extension architecture allows one to realize custom proof tactics
as needed.

We are continuing applications on other industry-related examples. This in-
cludes verifying the correctness of the HAMR [I5] run-time libraries providing
real-time threading and communication being used in the Collins Aerospace
DARPA PROVERS INSPECTA project, by using a similar refinement proof
strategy presented in this paper. That is, we are proving that the Slang-based
implementation of the libraries (deployed to, e.g., seL4 via C/Rust) are a refine-
ment of a Slang purely functional executable reference semantics for the subset
of AADL supported by HAMR that have also been formalized in Isabelle [12].

Acknowledgments. This work was primarily funded by a DARPA SBIR Phase 2
SIRFUR award, with some support from the DARPA CASE and PROVERS projects.
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