
Towards Realizability Checking of Contracts
using Theories

Andrew Gacek1, Andreas Katis2, Michael W. Whalen2, John Backes1, Darren
Cofer1

1 Rockwell Collins Advanced Technology Center
400 Collins Rd. NE, Cedar Rapids, IA, 52498, USA

{andrew.gacek,john.backes,darren.cofer}@rockwellcollins.com
2 Department of Computer Science and Engineering,

University of Minnesota, 200 Union Street, Minneapolis, MN 55455,USA
katis001@umn.edu, whalen@cs.umn.edu

Abstract. Virtual integration techniques focus on building architectural
models of systems that can be analyzed early in the design cycle to
try to lower cost, reduce risk, and improve quality of complex embed-
ded systems. Given appropriate architectural descriptions and composi-
tional reasoning rules, these techniques can be used to prove important
safety properties about the architecture prior to system construction.
Such proofs build from “leaf-level” assume/guarantee component con-
tracts through architectural layers towards top-level safety properties.
The proofs are built upon the premise that each leaf-level component
contract is realizable; i.e., it is possible to construct a component such
that for any input allowed by the contract assumptions, there is some
output value that the component can produce that satisfies the contract
guarantees. Without engineering support it is all too easy to write leaf-
level components that can’t be realized. Realizability checking for propo-
sitional contracts has been well-studied for many years, both for compo-
nent synthesis and checking correctness of temporal logic requirements.
However, checking realizability for contracts involving infinite theories
is still an open problem. In this paper, we describe a new approach for
checking realizability of contracts involving theories and demonstrate its
usefulness on several examples.

1 Introduction

In the recent years, virtual integration approaches have been proposed as a means
to lower cost and improve quality of complex embedded systems. These ap-
proaches focus on building architectural models of systems that can be analyzed
prior to construction of component implementations. The objective is to dis-
cover and resolve problems early during the design and implementation phases
when cost impact is lower. Several architecture description languages such as
AADL [1], SysML [2], and AUTOSAR [3] are designed to support such an engi-
neering process, and there has been significant effort to analytically determine



system performance [4,5], fault tolerance [5], security [6], and safety [7] using
these techniques.

In an ongoing effort at Rockwell Collins and The University of Minnesota, we
have been pursuing virtual integration using compositional proofs of correctness.
The idea is to support hierarchical design and analysis of complex system archi-
tectures and co-evolution of requirements and architectures at multiple levels of
abstraction [8]. This was based on two observations about software development
for commercial aircraft: first, that component-level errors are relatively rare and
that most problems occur during integration [9], and second, that requirements
specifications often contain significant numbers of omissions or errors [10] that
are at the root of many of the integration problems. Specifically, the problem
involves demonstrating satisfaction arguments [11], i.e., that the requirements
allocated to components and the architecture connecting those components is
sufficient to guarantee the system requirements. We have created the AGREE
reasoning framework [12] to support compositional assume/guarantee contract
reasoning over system architectural models written in AADL.

Such proof systems build from “leaf-level” assume/guarantee component con-
tracts through architectural layers towards proofs of top-level safety properties.
The soundness of the argument is built upon the premise that each leaf-level
component contract is realizable; i.e., it is possible to construct a component
such that for any input allowed by the contract assumptions, there is some out-
put value that the component can produce that satisfies the contract guarantees.

Unfortunately, without engineering support it is all too easy to write leaf-level
components that can’t be realized. When applying our tools in both industrial
and classroom settings, this issue has led to incorrect compositional “proofs”
of systems; in fact the goal of producing a compositional proof can lead to en-
gineers modifying component-level requirements such that they are no longer
possible to implement. In order to make our virtual integration approach rea-
sonable for practicing engineers, tool support must be provided to check whether
components are realizable.

Realizability checking for propositional contracts has been well-studied for
many years (e.g., [13,14,15,16]), both for component synthesis and checking cor-
rectness of temporal logic requirements. Checking realizability for contracts in-
volving theories, on the other hand, is still an open problem. In this paper, we
describe a new approach for checking realizability of contracts involving theories
and demonstrate its usefulness on several examples. Our approach is similar to
k-induction over quantified formulas. We describe two algorithms. The first is
sound for both proofs and counterexamples, but computationally intractable.
The second algorithm is not sound for counterexamples (i.e., it may return a
‘false counterexample’ to a problem that is in fact realizable), but we have found
it fast and accurate in practice.

The rest of the paper is structured as follows. In Section 2 we will describe our
motivation and an example to illustrate realizability, and will define realizability
formally in Section 3. We next describe two algorithms for checking realizability
in Section 4, our implementation in the AGREE tool suite in Section 5, and our



experience using the realizability check in Section 6. Section 7 describes related
work and Section 8 concludes.

2 Motivation and Example
We have been pursuing a proof-based virtual integration approach for building
complex systems using the architecture description language AADL [1] and the
AGREE compositional reasoning system [12]. We have demonstrated the effec-
tiveness of the approach on a variety of industrial-scale systems, including the
software controller for a patient-controlled analgesia (PCA) infusion pump [17],
a dual flight-guidance system [12], and several more recent models, such as a
quad-redundant flight control system and a quadcopter control system. We are
using this approach on the DARPA HACMS program to build secure vehicles
and to demonstrate how to apply virtual integration on industrial scale systems
to facilitate technology transfer.

As part of the HACMS project, we attempted a feasibility test via a class-
room exercise. We used the AADL and AGREE tools in a class assignment in a
graduate-level software architecture class. The students were organized into six
teams of four students. Each team was asked to specify the control software for
a simplified microwave oven in AADL using a virtual integration approach. The
software was split into two subsystems: one for controlling the heating element
and another for controlling the display panel, with several requirements for each
subsystem. The goal was to formalize these component-level requirements and
use them to prove three system-level safety requirements.

The results of the initial experiment were sobering. All student groups were
able to prove the system-level requirements starting from formalizations of the
component requirements. Unfortunately, in many cases, the proofs succeeded be-
cause the components were incorrectly specified. In fact, only one of the teams
had written component-level requirements that could be implemented. The other
teams had requirements which were inconsistent under certain input conditions.
For example, one team produced the following informal component-level require-
ments:

Microwave-1 - While the microwave is in cooking mode, seconds to cook
shall decrease.

Microwave-2 - If the display is quiescent (no buttons pressed) and the
keypad is enabled, the seconds to cook shall not change.

and then produced the following formalized requirements3:

guarantee : is cooking′ ⇒ seconds to cook′ ≤ seconds to cook− 1

guarantee : (¬any digit pressed ∧ keypad enabled)⇒
seconds to cook′ = seconds to cook

3 We have translated this property and others from the higher level AGREE syntax
into a two-state form that is used throughout this paper.



These formalized guarantees fail to avoid the conflict in the seconds to cook vari-
able between the Microwave-1 and Microwave-2 requirements, as they cannot
be both satisfied in a case where the microwave is cooking and the keypad is
enabled. This error was not caught despite an analysis built into an early version
of AGREE that checks contracts for consistency, i.e., whether the conjunction of
a system’s guarantees is satisfiable. We realized that consistency checking does
not actually provide a trustworthy answer because it only checks whether the
system works in some external environment, not in all environments. Realiz-
ability checking determines whether or not the component works in all input
environments that satisfy the component assumptions.

From this experience, we decided that realizability checking was necessary for
successful tech transfer of a virtual integration approach. The analysis was not
only necessary for classroom settings. We also found problems with component-
level requirements in two of our large-scale analysis efforts. Further, existing
approaches for checking realizability do not allow predicates over infinite theories
such as integers and reals, which are native to our AGREE contracts.

In the following sections, we formally define realizability over transition sys-
tems, as well as algorithms for checking realizability over infinite-state systems
that are efficient and accurate in practice. A machine-checked formalization of
the definitions and proofs in Coq can be found in a companion paper [18].

3 Realizability

We assume the types state and input for states and inputs. We use s for variables
of type state and i for variables of type input. State represents both internal state
and external outputs. A transition system is a pair (I, T ) where I : state→ bool
holds on the initial states states and T : state × input × state → bool holds on
T (s, i, s′) when the system can transition from state s to state s′ on receipt of
input i. We assume the usual notion of path with respect to a transition relation.

A contract specifies the desired behavior of a transition system. A con-
tract is a pair (A,G) of an assumption and a guarantee. The assumption A :
state × input → bool specifies for a given system state which inputs are valid.
The guarantee G is a pair (GI , GT ) of an initial guarantee and a transitional
guarantee. The initial guarantee GI : state→ bool specifies which states the sys-
tem may start in, that is, the possible initial internal state and external outputs.
The transitional guarantee GT : state× input× state→ bool specifies for a given
state and input what states the system may transition to.

We now define what it means for a transition system to realize a contract.
This requires that the system respects the guarantee for inputs which satisfying
the contract. Moreover, the system must always remain responsive with respect
to inputs that satisfying the assumptions. In order to make this definition precise,
we first need to define which system states are reachable given some assumptions
on the system inputs.

Definition 1 (Reachable with respect to assumptions). Let (I, T ) be a
transition system and let A : state× input → bool be an assumption. A state of
(I, T ) is reachable with respect to A if there exists a path starting in an initial



state and eventually reaching s such that all transitions satisfying the assump-
tions. Formally, ReachableA(s) is defined inductively by

ReachableA(s) = I(s) ∨ ∃sprev, i. ReachableA(sprev) ∧A(sprev, i) ∧ T (sprev, i, s)

Definition 2 (Realization). A transition system (I, T ) is a realization of the
contract (A, (GI , GT )) when the following conditions hold

1. ∀s. I(s)⇒ GI(s)
2. ∀s, i, s′. ReachableA(s) ∧A(s, i) ∧ T (s, i, s′)⇒ GT (s, i, s′)
3. ∃s. I(s)
4. ∀s, i. ReachableA(s) ∧A(s, i)⇒ ∃s′. T (s, i, s′)

The first two conditions in Definition 2 ensure that the transition system
respects the guarantees. The second two conditions ensure that the system is
non-trivial and responsive to all valid inputs.

Definition 3 (Realizable). A contract is realizable if there exists a transition
system which is a realization of the contract.

Definitions 2 and 3 are useful for directly defining realizability, but not very
useful for checking realizability. We now develop an equivalent notion which is
more suggestive and amenable to checking. This is based on a notion called
viability. Intuitively, a state is viable with respect to a contract if being in that
state does not doom a realization to failure. We can capture this notion without
reference to any specific realization, because condition 2 in the definition of
realization tells us that GT is an over-approximation of any T .

Definition 4 (Viable). A state s is viable with respect to a contract (A, (GI , GT )),
written Viable(s), if GT can keep responding to valid inputs forever, starting from
s. Informally, one can say that a state s is viable if it satisfies the infinite for-
mula:

∀i1. A(s, i1)⇒ ∃s1. GT (s, i1, s1) ∧ ∀i2. A(s1, i2)⇒ ∃s2. GT (s1, i2, s2) ∧ ∀i3. · · ·

Formally, viability is defined coinductively by the following equation

Viable(s) = ∀i. A(s, i)⇒ ∃s′. GT (s, i, s′) ∧ Viable(s′)

Theorem 1 (Alternative realizability). A contract (A, (GI , GT )) is realiz-
able if and only if ∃s. GI(s) ∧ Viable(s).

Proof. For the “only if” direction the key lemma is ∀s. ReachableA(s)⇒ Viable(s).
This lemma is proved by coinduction and follows directly from conditions 2
and 4 of Definition 2. Then by conditions 1 and 3 we have some state s such
that I(s) and GI(s). Thus ReachableA(s) holds and applying the lemma we get
GI(s) ∧ Viable(s).

For the “if” direction, let s0 be such that GI(s0) and Viable(s0). Define
I(s) = (s = s0) and T (s, i, s′) = GT (s, i, s′) ∧ Viable(s′). Conditions 1, 2, and
3 of Definition 2 are clearly satisfied. Condition 4 follows from the observation
that ∀s. ReachableA(s)⇒ Viable(s) and from the definition of viability.



4 An Algorithm for Checking Realizability

In this section we develop two versions of an algorithm for automatically checking
the realizability of a contract. The first version is based on Theorem 1 together
with under- and over-approximations of viability. An over-approximation is use-
ful to show that a contract is not viable, while an under-approximation is useful
to show that a contract is viable. The second version of the algorithm follows
from the mitigating the intractability of the first version.

We first define an over-approximation of viability called finite viability based
on a finite unrolling of the definition of viability. Because this is an over-approximation,
if a contract does not have an initial state which is finitely viable, then the con-
tract is not viable. We formalize this when we prove the correctness of the
realizability algorithm.

Definition 5 (Finite viability). A state s is viable for n steps, written Viablen(s)
if GT can keep responding to valid inputs for at least n steps. That is,

∀i1. A(s, i1)⇒ ∃s1. GT (s, i1, s1) ∧
∀i2. A(s1, i2)⇒ ∃s2. GT (s1, i2, s2) ∧ · · · ∧

∀in. A(sn−1, in)⇒ ∃sn. GT (sn−1, in, sn)

All states are viable for 0 steps.

We next define an under-approximation of viability based on one-step exten-
sion. This notion looks if GT can respond to valid inputs given a finite historical
trace of valid inputs and states.

Definition 6 (One-step extension). A state s is extendable after n steps,
written Extendn(s), if any valid path of length n from s can be extended in re-
sponse to any input. That is,

∀i1, s1, . . . , in, sn.
A(s, i1) ∧GT (s, i1, s1) ∧ · · · ∧A(sn−1, in) ∧GT (sn−1, in, sn)⇒

∀i. A(sn, i)⇒ ∃s′. GT (sn, i, s
′)

We now use these two notions to formally define our realizability algorithm.
The core of the algorithm is based on two checks called the base and extend
check.

Definition 7 (Realizability Algorithm). Define the checks:

BaseCheck(n) = ∃s. GI(s) ∧ Viablen(s)

ExtendCheck(n) = ∀s. Extendn(s)

The following algorithm checks for realizability or unrealizability of a contract.



for n = 0 to ∞ do
if not BaseCheck(n) then
return “unrealizable”

else if ExtendCheck(n) then
return “realizable”

end if
end for

Theorem 2 (Soundness of “unrealizable” result). If ∃n. ¬BaseCheck(n)
then the contract is not realizable.

Proof. First we show ∀s, n. Viable(s)⇒ Viablen(s) by induction on n. The result
then follows from Theorem 1.

Theorem 3 (Soundness of “realizable” result). If ∃n. BaseCheck(n) ∧
ExtendCheck(n) then contract is realizable.

Proof. First we show how Extendn(s) can be used to shift Viablen(s) forward.
The following is proved by induction on n.

∀s, n, i. Extendn(s) ∧ Viablen(s) ∧A(s, i)⇒ ∃s′. GT (s, i, s′) ∧ Viablen(s′)

Using this lemma we can show the following by coinduction.

∀s, n. Viablen(s) ∧ ExtendCheck(n)⇒ Viable(s)

The result then follows from Theorem 1.

Corollary 1 (Soundness of Realizability Algorithm). The Realizability
Algorithm is sound.

Due to the approximations used to define the base and extends check, the
algorithm is incomplete. The following two examples show how both realizable
and unrealizable contracts may send the algorithm into an infinite loop.

Example 1 (Incompleteness of “realizable” result). Suppose the type state is in-
tegers. Consider the contract:

A(s, i) = > GI(s) = > GT (s, i, s′) = (s 6= 0)

This contract is realizable by, for example, a system that starts in state 1 and
always transitions into the same state. Yet, for all n, ExtendCheck(n) fails since
one can take a path of length n which ends at state 0. This path cannot be
extended.

Example 2 (Incompleteness of “unrealizable” result). Suppose the type state is
integers. Consider the contract:

A(s, i) = > GI(s) = (s ≥ 0) GT (s, i, s′) = (s′ = s− 1 ∧ s′ ≥ 0)

This contract is not realizable since in any realization the state 0 would be
reachable, but the contract does not allow a transition from state 0. However,
BaseCheck(n) holds for all n by starting in state s = n.



Implementing this algorithm requires a way of automatically checking the
formulas BaseCheck(n) and ExtendCheck(n) for validity. This can be done in
an SMT-solver that supports quantifiers over the language the contract is ex-
pressed in. Checking ExtendCheck(n) is rather nice in this setting since it has
only a single quantifier alternation. Moreover, using an incremental SMT-solver
one can reuse much of the work done to check ExtendCheck(n) to also check
ExtendCheck(n + 1). However, BaseCheck(n) is problematic. First, it has 2n
quantifier alternations which puts even small cases outside the reach of mod-
ern SMT-solvers. Second, the quantifiers make it impractical to reuse the results
of BaseCheck(n) in checking BaseCheck(n + 1). Finally, due to the quantifiers,
a counterexample to BaseCheck(n) would be difficult to relay back to the user.
Thus we need a simplification of BaseCheck(n) in order to make our algorithm
practical.

Definition 8 (Simplified base check). Define a simplified base check which
checks that any path of length n from an initial state can be extended one step.

BaseCheck′(n) = ∀s. GI(s)⇒ Extendn(s)

First, note that this check has a single quantifier alternation. Second, this
check can leverage the incremental features in an SMT-solver to use the results
of BaseCheck′(n) in checking BaseCheck′(n+ 1). Finally, when this check fails it
can return a counterexample which is a trace of a system realizing the contract
for n steps, but then becoming stuck. This provides very concrete and useful
feedback to system developers. The correctness of this check is captured by the
following theorem.

Theorem 4 (One-way soundness of simplified base check).

(∃s. GI(s))⇒ ∀n. (∀k ≤ n. BaseCheck′(k))⇒ BaseCheck(n)

Proof. We first prove the following by induction on n:

∀s, n. Extendn(s) ∧ Viablen(s)⇒ Viablen+1(s)

The final result follows using this and induction on n.

Thus replacing BaseCheck(n) in the realizability algorithm with BaseCheck′(n)
preserves soundness of the “realizability” result. However, because the implica-
tion in Theorem 4 is only in one direction, the algorithm is no longer sound for
the “unrealizable” result. That is, it may return a counterexample showing n
steps of a realization of the contract that gets into a stuck state. The following
example makes this point explicit.

Example 3. Consider again Example 1 where the type state is integers and the
contract is:

A(s, i) = > GI(s) = > GT (s, i, s′) = (s 6= 0)

As before, this contract is easily realizable. However, BaseCheck′(n) fails for all
n since it will consider a path starting at state n and transitioning n steps to
state 0 where no more transitions are possible.



The benefits of this second version of the algorithm outweigh its costs. The
cases where a contract is realizable, yet fails the modified base check seems
unlikely in practice. We have encountered none in our case studies. Moreover,
when a contract does spuriously fail the simplified base check, it can almost
always be rewritten into a form which would pass.

5 Implementation

We have built an implementation of the realizability algorithm as an extension
to JKind [19], a re-implementation of the KIND model checker [20] in Java. Our
tool is called JRealizability and is packaged with the latest release of JKind. The
model’s behavior is described in the Lustre language, which is the native input
language of JKind and is used as an intermediate language for the AGREE tool
suite.

We unroll the transition relation defined by the Lustre model into SMT
problems (one for the base check and another for the extend check) which can
be solved in parallel. We use the SMT-LIB Version 2 format which most mod-
ern SMT solvers support. The most significant issue for SMT solvers involves
quantifier support, so we use the Z3 SMT solver [21] which has good support
for reasoning over quantifiers and incremental search. The tool is often able to
provide an answer for models containing integer and real-valued variables very
quickly (in less than a second). Because of the use of quantifiers over a range of
theories, it is possible that for one of the checks, Z3 returns unknown; in this
case, we discontinue analysis. In addition, because our realizability check is in-
complete, the tool terminates analysis when either a timeout or a user-specified
max unrolling depth (default: 200) is reached. In this case we are able to re-
port how far the base check reached which may provide some confidence in the
realizability of the system.

6 Case Studies

As a part of testing the algorithm in actual components, we examined three
different cases: a quad-redundant flight control system, a medical infusion pump,
and a simple microwave controller. In this section, we provide a brief description
of each case study and summarize the results in Table 1 at the end of the section.

6.1 Quad-Redundant Flight Control System

We ran our realizability analysis on a Quad-Redundant Flight Control System
(QFCS) for NASA’s Transport Class Model (TCM) aircraft simulation. We were
provided with a set of English language requirements for the QFCS components
and a description of the architecture. We modeled the architecture in AADL and
the component requirements as assume/guarantee contracts in AGREE. As the
name suggests, the QFCS consists of four redundant Flight Control Comput-
ers (FCCs). Each FCC contains components for handling faults and computing
actuator signal values. One of these components is the Output Signal Analysis
and Selection component (OSAS). The OSAS component is responsible for de-
termining the output gain for signals coming from the control laws and going



to the actuators. The output signal gain is determined based on the number of
other faulty FCCs or based on failures within the FCC containing the OSAS
component. The OSAS component contains 17 English language requirements
including the following:

OSAS-S-170 – If the local Cross Channel Data Link (CCDL) has failed,
OSAS shall set the local actuator command gain to 1 (one).

OSAS-S-240 – If OSAS has been declared failed by CCDL, OSAS shall
set the actuator command gain to 0 (zero).

We formalized these requirements using the following guarantees:

guarantee : ccdl failed⇒ (fcc gain′ = 1)

guarantee : osas failed⇒ (fcc gain′ = 0)

These guarantees are contradictory in the case when the local CCDL has failed
and the local CCDL reports to the OSAS that the OSAS has failed. This error
eluded the engineers who originally drafted the requirements as well as the en-
gineers who formalized them. In this case, there should be an assumption that
if the CCDL has failed then it will not report to the OSAS that the OSAS has
failed. This was not part of the original requirements. However, AGREE’s real-
izability analysis was able to identify the error and provide a counterexample.

6.2 Medical Device Example
Our realizability tool was also used to verify the realizability of the components
in the Generic Patient Controlled Analgesia infusion pump system that was
described in [22]. The controller consists of six subcomponents that were given
as input for the tool to verify the requirements described inside. While five of the
models were proven to be realizable, a subtly incorrect requirement definition
was found in the contract for the controller’s infusion manager.

GPCA-1 - The mode range of the controller shall be one of nine different
modes. If the controller is in one of the first two modes the commanded flow
rate shall be zero.

guarantee :

(IM OUT.Current System Mode′ ≥ 0) ∧
(IM OUT.Current System Mode′ ≤ 8) ∧
(IM OUT.Current System Mode′ = 0⇒

IM OUT.Commanded Flow Rate′ = 0) ∧
(IM OUT.Current System Mode′ = 1⇒

IM OUT.Commanded Flow Rate′ = 0)

(1)



GPCA-2 - Whenever the alarm subsystem has detected a high severity
hazard, then Infusion Manager shall never infuse drug at a rate more than
the specified Keep Vein Open rate.

guarantee :

(TLM MODE IN.System On′ ∧
ALARM IN.Highest Level Alarm′ = 3)⇒

(IM OUT.Commanded Flow Rate′ = CONFIG IN.Flow Rate KVO′)

(2)

The erroneously defined guarantee (2) tries to assert that
the IM OUT.Commanded Flow Rate to some (potentially non-zero)
Flow Rate KVO if the alarm input is 3; however, this may occur when
the IM OUT.Current System Mode is computed to be zero or one, in which case
the flow rate is commanded to be 0. While discovering and fixing the problem
was not difficult, the error was not discovered by the regular consistency check
in AGREE.

6.3 Microwave Assignment

The realizability tool was used to check the contracts for the microwave models
produced by the graduate student teams described in Section 2 that provided
the initial motivation for this work. The microwave consists of two subsystems
that manage the cooking element and display panel of the device. Table 1 shows
the corresponding results for each team, named as MT1, MT2, etc. While every
team but one managed to provide an implementable set of requirements for the
microwave’s mode controller, there were several interesting cases involving the
display control component. For space reasons, we highlight only one here.

Microwave-1 - While the microwave is in cooking mode, seconds to cook
shall decrease.

Microwave-3 - When the keypad is initially enabled, if no digits are
pressed, the value shall be zero.

Team 6 formalized these requirements as

guarantee : (cooking mode′ = 2)⇒ (seconds to cook′ = seconds to cook− 1)

guarantee : (¬keypad enabled ∧ keypad enabled′ ∧ ¬any digit pressed′)⇒
(seconds to cook′ = 0)

In the counterexample provided, the state where the microwave is cooking
(cooking mode = 2) and no digit is pressed creates a conflict regarding which
value is assigned to the seconds to cook variable: should it decrease by one, or
be assigned to zero? This counterexample is interesting because it indicates a
missing assumption on the environment: the keypad is not enabled when the



cooking mode is 2 (cooking). Without this assumption about the inputs, the
guarantees are not realizable.

Case study Model Result Time elapsed (seconds)
Base check depth

(# of steps)

QFCS FCS realizable 1.762 0

QFCS FCC unrealizable 0.981 1

GPCA Infusion Manager unrealizable 0.2 1

GPCA Alarm realizable 0.316 0

GPCA Config realizable 0.102 0

GPCA OutputBus realizable 0.201 0

GPCA System Status realizable 0.203 0

GPCA Top Level realizable 0.103 0

MT 1 Mode Control realizable 0.229 0

MT 1 Display Control unrealizable 0.207 1

MT 2 Mode Control realizable 0.202 0

MT 2 Display Control unknown 1000 (tool timeout) 1

MT 3 Mode Control realizable 0.203 0

MT 3 Display Control unrealizable 0.202 1

MT 4 Mode Control realizable 0.202 0

MT 4 Display Control unrealizable 0.521 1

MT 5 Mode Control unrealizable 0.1 1

MT 5 Display Control unrealizable 0.222 1

MT 6 Mode Control realizable 0.201 0

MT 6 Display Control unknown 1000 (tool timeout) 1

Table 1. Realizability checking results for case studies

Table 1 contains the exact results that were obtained during the three case
studies. Every “realizable” result was determined to be correct since an im-
plementation was produced for each of the components analyzed, ensuring the
accuracy of the tool. Every contract that was identified as “unrealizable” was
manually confirmed to be unrealizable, i.e., there were no spurious results. Ad-
ditionally, the number of steps that the base check required to provide a final
answer was not more than one, with the unknown results being particularly in-
teresting, as the tool timed out before the solver was able to provide a concrete
answer. This shows that there is still work to be done in terms of the algorithm’s
scalability, as well as an efficient way to eliminate quantifiers, making the solving
process easier for Z3.

7 Related Work

The idea of realizability has been the subject of intensive study. Gunter et al.
refer to it using the term relative consistency in [23], while Pnuelli and Rosner
use the term implementability in [13] to refer to the problem of synthesis for
propositional LTL. Additionally, the authors in [13] proved that the lower-bound
time complexity of the problem is doubly exponential, in the worst case. In the
following years, several techniques were introduced to deal with the synthesis
problem in a more efficient way for subsets of propositional LTL [24], simple



LTL formulas ([14], [25]), as well as in a component-based approach [16] and
specifications based on other temporal logics ([26], [15]), such as SIS [27]. Finally,
an interesting and relevant work has been done regarding the solution to the
controllability problem using in [28] [29] and [30], which involves the decision
on the existence a strategy that assigns certain values to a set of controllable
activities, with respect to a set of uncontrollable ones.

Recent work in solving infinite game problems [31,32] can be specialized to
the problem of realizability. In this work, the authors describe a framework for
analyzing arbitrary two-player games. To provide proofs within the framework,
template formulas must be provided by the user that describe the shape of a
Skolem function that is used to explicitly define an inductive invariant that
demonstrates the realizability of a model. Although this work is more general
than ours, the applicability of the approach requires user-provided templates
that are problem specific, so is not entirely automated.

The main contribution of our work is that it automatically checks the realiz-
ability of infinite domain systems. The problem is, in general, undecidable. Still,
the application of bounded model checking can still offer an approximate answer
to the realizability problem as we experienced by the fact that Z3 managed to
solve the majority of our test models.

8 Conclusions and Future Work

In this paper, we have presented a new approach for determining realizability
of contracts involving infinite theories using SMT solvers. This approach allows
analysis of a class of contracts that were previously not solvable using automated
analysis. The approach is both incomplete and conservative, i.e., it may return
“false positive” results, declaring that a contract is not realizable when it could
be realized. However, it has been shown to be both fast and effective in practice
on a variety of models.

The results of this paper provide a good foundation towards further research
in realizability. In much the same way that many properties are not inductive,
some contracts cannot be proven realizable using one step extensions. We are ex-
amining alternate algorithms, similar to approaches such as IC3 [33], which sup-
port property-directed invariant generation, to improve the approach presented
here. However, this requires generalizing the IC3 approach to solve quantified
formulas (as well as to generalize counterexamples over quantified formulas).
We hope to demonstrate an approach involving a IC3-like algorithm in the near
future.

In addition, for realizable systems, it is likely that we want to consider the
synthesis problem, which we have not explicitly considered in this paper. Syn-
thesis aims to construct a concrete implementation of the contract, rather than
determine its existence. It is known for propositional systems that the synthesis
problem is equivalent in complexity to the realizability problem [13], but it is
not known (to us) whether this equivalence is true in the infinite-state case.

Acknowledgments. This work was funded by DARPA and AFRL under con-
tract FA8750-12-9-0179 (Secure Mathematically-Assured Composition of Con-



trol Models), and by NASA under contract NNA13AA21C (Compositional Ver-
ification of Flight Critical Systems), and by NSF under grant CNS-1035715
(Assuring the safety, security, and reliability of medical device cyber physical
systems).

References

1. SAE-AS5506: Architecture Analysis and Design Language. SAE (2004)
2. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: Systems

Modeling Language. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2008)

3. Consortium, A.: Automotive Open System Architecture (AUTOSAR) Revision
4.2.1. AUTOSAR (2014)

4. Varona-Gomez, R., Villar, E.: Aadl simulation and performance analysis in sys-
temc. In: Engineering of Complex Computer Systems, 2009 14th IEEE Interna-
tional Conference on. (2009) 323–328

5. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended aadl models. Comput. J. 54
(2011) 754–775

6. Apvrille, L., Roudier, Y.: SysML-Sec: A model-driven environment for developing
secure embedded systems. In: SAR-SSI 2013, 8ème Conférence sur la Sécurité
des Architectures Réseaux et des Systèmes d’Information, 16-18 Septembre 2013,
Mont-de-Marsan, France, Mont-de-Marsan, FRANCE (2013)

7. Bozzano, M., Cimatti, A., Katoen, J.P., Katsaros, P., Mokos, K., Nguyen, V.Y.,
Noll, T., Postma, B., Roveri, M.: Spacecraft early design validation using formal
methods. Reliability Engineering and System Safety 132 (2014)

8. Whalen, M.W., Gacek, A., Cofer, D., Murugesan, A., Heimdahl, M.P.,
Rayadurgam, S.: Your what is my how: Iteration and hierarchy in system design.
Software, IEEE 30 (2013) 54–60

9. Rushby, J.: New challenges in certification for aircraft software. In: Proceedings
of the ninth ACM Int’l Conf. on Embedded software, ACM (2011) 211–218

10. Miller, S.P., Tribble, A.C., Whalen, M.W., Heimdahl, M.P.E.: Proving the shalls:
Early validation of requirements through formal methods. Int. J. Softw. Tools
Technol. Transf. 8 (2006) 303–319

11. Hammond, J., Rawlings, R., Hall, A.: Will it work? [requirements engineering].
In: Requirements Engineering, 2001. Proceedings. Fifth IEEE Int’l Symposium on.
(2001) 102 –109

12. Cofer, D.D., Gacek, A., Miller, S.P., Whalen, M.W., LaValley, B., Sha, L.: Com-
positional verification of architectural models. In Goodloe, A.E., Person, S., eds.:
Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012). Volume
7226., Berlin, Heidelberg, Springer-Verlag (2012) 126–140

13. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages (POPL’89) (1989) 179–190

14. Bohy, A., Bruyre, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for LTL
Synthesis. Proceedings of the 24th International Conference on Computer Aided
Verification (CAV’12) (2012) 652–657

15. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for Regular Specifications over
Unbounded Domains. Proceedings of the 2010 Conference on Formal Methods in
Computer-Aided Design (2010) 101–109



16. Chatterjee, K., Henzinger, T.A.: Assume-Guarantee Synthesis. Proceedings of the
13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’07) (2007) 261–275

17. Murugesan, A., Whalen, M.W., Rayadurgam, S., Heimdahl, M.P.: Compositional
verification of a medical device system. In: ACM Int’l Conf. on High Integrity
Language Technology (HILT) 2013, ACM (2013)

18. Katis, A., Gacek, A., Whalen, M.W.: Machine-checked proofs for realizability
checking algorithms (2015) Submitted http://arxiv.org/abs/1502.01292.

19. Gacek, A.: JKind - a Java implementation of the KIND model checker. https:
//github.com/agacek/jkind (2014)

20. Hagen, G.: Verifying safety properties of Lustre programs: an SMT-based ap-
proach. PhD thesis, University of Iowa (2008)

21. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems. Springer (2008) 337–340

22. Murugesan, A., Sokolsky, O., Rayadurgam, S., Whalen, M., Heimdahl, M., Lee, I.:
Linking Abstract Analysis to Concrete Design: A Hierarchical Approach to Verify
Medical CPS Safety. Proceedings of ICCPS’14 (2014)

23. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A Reference model for Require-
ments and Specifications. IEEE Software 17 (2000) 37–43

24. Klein, U., Pnueli, A.: Revisiting Synthesis of GR(1) Specifications. Proceedings
of the 6th International Conference on Hardware and Software: Verification and
Testing (HVC’10) (2010) 161–181

25. Tini, S., Maggiolo-Schettini, A.: Compositional Synthesis of Generalized Mealy
Machines. Fundamenta Informaticae 60 (2003) 367–382

26. Bene, N., ern, I., tefak, F.: Factorization for Component-Interaction Automata.
Proceedings of the 38th International Conference on Current Trends in Theory
and Practice of Computer Science (2012) 554–565

27. Aziz, A., Balarin, F., Braton, R., Sangiovanni-Vincentelli, A.: Sequential Synthe-
sis using SIS. Proceedings of the 1995 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’95) (1995) 612–617

28. Cimatti, A., Micheli, A., Roveri, M.: Solving temporal problems using SMT: Weak
controllability. In: AAAI. (2012) 448–454

29. Cimatti, A., Micheli, A., Roveri, M.: Solving temporal problems using SMT: Strong
controllability. In: CP. (2012) 248–264

30. Cimatti, A., Micheli, A., Roveri, M.: Solving strong controllability of temporal
problems with uncertainty using SMT. Constraints (2014)

31. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based ap-
proach to solving games on infinite graphs. In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’14, New York, NY, USA, ACM (2014) 221–233

32. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn
clauses. In: Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. (2013) 869–882

33. Bradley, A.: SAT-based model checking without unrolling. VMCAI (2011)

http://arxiv.org/abs/1502.01292
https://github.com/agacek/jkind
https://github.com/agacek/jkind

	Towards Realizability Checking of Contracts using Theories

