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Abstract. Designing protocols for multi-agent interaction that achieve
the desired behavior is a challenging and error-prone process. The stan-
dard practice is to manually develop proofs of protocol correctness that
rely on human intuition and require significant effort to develop. Even
then, proofs can have mistakes that may go unnoticed after peer review,
modeling and simulation, and testing. The use of formal methods can
reduce the potential for such errors. In this paper, we discuss our ex-
perience applying model checking to a previously published multi-agent
protocol for unmanned air vehicles. The original publication provides a
compelling proof of correctness, along with extensive simulation results
to support it. However, analysis through model checking found an error
in one of the proof’s main lemmas. In this paper, we start by provid-
ing an overview of the protocol and its original “proof” of correctness,
which represents the standard practice in multi-agent protocol design.
We then describe how we modeled the protocol for a three-vehicle sys-
tem in a model checker, the counterexample it returned, and the insight
this counterexample provided. We also discuss benefits, limitations, and
lessons learned from this exercise, as well as what future efforts would be
needed to fully verify the protocol for an arbitrary number of vehicles.

Keywords: Multi-agent systems · distributed systems · autonomy ·
model checking

1 Introduction

Many robotics applications require multi-agent interaction. However, designing
protocols for multi-agent interaction that achieve the desired behavior can be
challenging. The design process is often manual, i.e. performed by humans, and
generally involves creating mathematical models of possible agent behaviors and
candidate protocols, then manually developing a proof that the candidate proto-
cols are correct with respect to the desired behavior. However, human-generated
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proofs can have mistakes that may go unnoticed even after peer review, modeling
and simulation, and testing of the resulting system.

Formal methods have the potential to reduce such errors. However, while the
use of formal methods in multi-agent system design is increasing [2], [6], [8], [11],
it is our experience that manual approaches are still the norm. Here, we hope
to motivate the use of formal methods for multi-agent system design by demon-
strating their value in a case study involving a manually designed decentralized
protocol for dividing surveillance of a perimeter across multiple unmanned aerial
vehicles (UAVs). This protocol, called the Decentralized Perimeter Surveillance
System (DPSS), was previously published in 2008 [10], has received close to 200
citations to date, and provides a compelling “proof” of correctness backed by
extensive simulation results.

We start in Section 2 by giving an overview of DPSS, the convergence bounds
that comprise part of its specification, and the original “proof” of correctness.
In Section 3, we give an overview of the three-UAV DPSS model we developed
in the Assume Guarantee REasoning Environment (AGREE) model checker [3].
In Section 4, we present the analysis results returned by AGREE, including a
counterexample to one of the convergence bounds. Section 5 concludes with a
discussion of benefits, challenges, and limitations of our modeling process and
how to help overcome them, and what future work would be required to modify
and fully verify DPSS for an arbitrary number of UAVs.

2 Decentralized Perimeter Surveillance System (DPSS)

UAVs can be used to perform continual, repeated surveillance of a large perime-
ter. In such cases, more frequent coverage of points along the perimeter can be
achieved by evenly dividing surveillance of it across multiple UAVs. However,
coordinating this division is challenging in practice for several reasons. First,
the exact location and length of the perimeter may not be known a priori, and
it may change over time, as in a growing forest fire or oil spill. Second, UAVs
might go offline and come back online, e.g. for refueling or repairs. Third, inter-
UAV communication is unreliable, so it is not always possible to immediately
communicate local information about perimeter or UAV changes. However, such
information is needed to maintain an even division of the perimeter as changes
occur. DPSS provides a method to solve this problem with minimal inter-UAV
communication for perimeters that are isomorphic to a line segment.

Let the perimeter start as a line segment along the x-axis with its left end-
point at x = 0 and its right at x = P . Let N be the number of UAVs in the
system or on the “team,” indexed from left to right as 1, . . . , N . Divide the
perimeter into segments of length P/N , one per UAV. Then the optimal con-
figuration of DPSS as depicted in Fig. 1 is defined as follows (see Ref. [10] for
discussion of why this definition is desirable).

Definition 1. Consider two sets of perimeter locations: (1) bi + 1
2 (−1)icP/N

and (2) bi− 1
2 (−1)icP/N , where b·c returns the largest integer less than or equal
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to its argument. The optimal configuration is realized when UAVs synchronously
oscillate between these two sets of locations, each moving at constant speed V .

2 4
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x = PP/N 1 3

2 4 2 4
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Fig. 1: Optimal DPSS configuration, in which UAVs are evenly spaced along the
perimeter and synchronously oscillate between segment boundaries.

The goal of DPSS is to achieve the optimal configuration in the steady state,
i.e. when the perimeter and involved UAVs remain constant. The DPSS protocol
itself is relatively simple. Each UAV i stores a vector ξi = [PRi

PLi
NRi

NLi
]
T

of coordination variables that capture its beliefs (which may be incorrect) about
perimeter length PRi and PLi and number of UAVs NRi and NLi to its right
and left. When neighboring UAVs meet, “left” UAV i learns updated values for
its “right” variables P ′

Ri
= PRi+1

and N ′
Ri

= NRi+1
+ 1 from “right” UAV i+ 1,

and likewise UAV i + 1 updates its “left” variables P ′
Li+1

= PLi
and N ′

Li+1
=

NLi
+ 1. While values for these variables may still be incorrect, the two UAVs

will at least have matching coordination variables and thus a consistent estimate
of their shared segment boundary. The two UAVs then “escort” each other to
their estimated shared segment boundary, then split apart to surveil their own
segment. Note that UAVs only change direction when they reach a perimeter
endpoint or when starting or stopping an escort, which means a UAV will travel
outside its segment unless another UAV arrives at the segment boundary at the
same time (or the end of the segment is a perimeter endpoint).

Eventually, leftmost UAV 1 will discover the actual left perimeter endpoint,
accurately set NL1

= 0 and PL1
= 0, then turn around and update PL1

con-
tinuously as it moves. A similar situation holds for rightmost UAV n. Accurate
information will be passed along to other UAVs as they meet, and eventually all
UAVs will have correct coordination variables and segment boundary estimates.
Since UAVs also escort each other to shared segment boundaries whenever they
meet, eventually the system reaches the optimal configuration, in which UAVs
oscillate between their true shared segment boundaries.

An important question is how long it takes DPSS to converge to the optimal
configuration. Each time the perimeter or number of UAVs changes, it is as if the
system is reinitialized; UAVs no longer have correct coordination variables and
so the system is no longer converged. However, if DPSS is able to re-converge
relatively quickly, it will often be in its converged state.

Ref. [10] claims that DPSS converges within 5T , where T = P/V is the
time it would take a single UAV to traverse the entire perimeter if there were no
other UAVs in the system. It describes DPSS as two algorithms: Algorithm A, in
which UAVs start with correct coordination variables, and Algorithm B, in which
they do not. The proof strategy is then to argue that Algorithm A converges in
2T (Theorem 1) and Algorithm B achieves correct coordination variables in 3T
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(Lemma 1)4. At that point, Algorithm B converts to Algorithm A, so the total
convergence time is 2T + 3T = 5T (Theorem 2)5.
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Fig. 2: Claimed worst-case coordination variable convergence for Algorithm B.

Informally, the original argument for Lemma 1 is that information takes
time T to travel along the perimeter. The worst case occurs when all UAVs
start near one end of the perimeter, e.g. the left endpoint, so that the rightmost
UAV N reaches the right endpoint around time T . UAV N then turns around
and through a fast series of meetings, correct “right” coordination variables
are propagated to the other UAVs, all of which then start moving left. Due to
incorrect “left” coordination variables, UAV N − 1 and UAV N might think
their shared segment boundary is infinitesimally close to the left endpoint. The
UAVs travel left until they are almost at the left perimeter endpoint around
time 2T . However, since UAV N thinks its segment boundary is near the left
endpoint, it ends its escort and goes right without learning the true location of
the left perimeter endpoint. Leftmost UAV 1 learns the true location of the left
perimeter endpoint and this information will be passed to the other UAVs as
they meet, but the information will have to travel the perimeter once again to
reach the rightmost UAV N around time 3T . This situation is depicted in Fig. 2.

Through model checking, we were able to find a counterexample to this
claimed bound, which will be presented in Section 4. But first, we overview
the model used for analysis through model checking.

3 Formal Models

We briefly overview the formal models developed in AGREE for a three-UAV
version of DPSS as described by Algorithm B. Models for Algorithm A and
Algorithm B along with a more detailed description of the Algorithm B model
are available on GitHub [1]6.

4 We label this Lemma 1 for convenience; it is unlabeled in [10].
5 A version of the original proof is on GitHub [1] in file dpssOriginalProof.pdf.
6 AADL projects are in AADL sandbox projects. Algorithm A and B models for three

UAVs are in projects DPSS-3-AlgA-for-paper and DPSS-3-AlgB-for-paper. A de-
scription of the Algorithm B model is in file modelAlgorithmB.pdf.
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AGREE is an infinite-state model checker capable of analyzing systems with
real-valued variables, as is the case with DPSS. AGREE uses assume/guarantee
reasoning to verify properties of architectures modeled as a top-level system with
multiple lower-level components, each having a formally specified assume/guar-
antee contract. Each contract consists of a set of assumptions on the inputs
and guarantees on the outputs, where inputs and outputs can be reals, integers,
or booleans. System assumptions and component assume/guarantee contracts
are assumed to be true. AGREE then attempts to verify that (a) component
assumptions hold given system assumptions, and (b) system guarantees hold
given component guarantees. AGREE poses this verification problem as a satis-
fiability modulo theory (SMT) problem [4] and uses a k-induction model check-
ing approach [7] to search for counterexamples that violate system-level guar-
antees given system-level assumptions and component-level assume/guarantee
contracts. The language used by AGREE is an “annex” to the Architecture
Analysis and Design Language (AADL) [5].

AGREE’s ability to analyze systems modeled as a top-level system with
multiple lower-level components provides a natural fit for DPSS. The three-
UAV AGREE DPSS model consists of a single top-level system model, which
we call the “System,” and a component-level UAV model that is instantiated
three times, which we call the “UAV(s).” The System essentially coordinates a
discrete event simulation of the UAVs as they execute the DPSS protocol, where
events include a UAV reaching a perimeter endpoint or two UAVs starting or
stopping an escort. In the initial state, the System sets valid ranges for each
UAV’s initial position through assumptions that constrain the UAVs to be ini-
tialized between the perimeter endpoints and ordered by ID number from left to
right. System assumptions also constrain UAV initial directions to be either left
or right (though a UAV might have to immediately change this value, e.g., if it
is initialized at the left endpoint headed left). These values become inputs to the
UAVs. The System determines values for other UAV inputs, including whether
a UAV is co-located with its right or left neighbor and the true values for the
left and right perimeter endpoints. Note the true perimeter endpoints are only
used by the UAVs to check whether they have reached the end of the perime-
ter, not to calculate boundary segment endpoints. The System also establishes
data ports between UAVs, so that each UAV can receive updated coordination
variable values from its left or right neighbor as inputs and use them (but only
if they are co-located).

The last System output that serves as a UAV input is the position of the
UAV. At initialization and after each event, the System uses the globally known
constant UAV speed V and other information from each UAV to determine the
amount of time δt until the next event, and then it updates the position of each
UAV. Determining the time of the next event requires knowing the direction and
next anticipated “goal” location of each UAV, e.g. estimated perimeter endpoint
or shared segment boundary. Each UAV outputs these values, which become
inputs to the System. Each UAV also outputs its coordination variables PRi

, PLi
,

NRi , and NLi , which become System inputs that are used in System guarantees
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that formalize Theorem 1, Lemma 1, and Theorem 2 of Section 2. Note that we
bound integers NRi

and NLi
because in order to calculate estimated boundary

segments, which requires dividing perimeter length by the number of UAVs, we
must implement a lookup table that copies the values of NRi and NLi to real-
valued versions of these variables. This is due to an interaction between AGREE
and the Z3 SMT solver [4] used by AGREE. If we directly cast NRi

and NLi

to real values in AGREE, they are encoded in Z3 using the to_real function.
Perimeter values PRi and PLi are directly declared as reals. However, Z3 views
integers converted by the to_real function as constrained to have integer values,
so it cannot use the specialized solver for reals that is able to analyze this model.

4 Formal Analysis Results

In this section, we discuss the analysis results provided by AGREE for Algo-
rithm A and Algorithm B, though we focus on Algorithm B.

Algorithm A: Using AGREE configured to utilize the JKind k-induction
model checker [7] and the Z3 SMT solver, we have proven Theorem 1, that
Algorithm A converges within 2T , for N = 1, 2, 3, 4, 5, and 6 UAVs. Computation
time prevented us from analyzing more than six UAVs. For reference, N = 1
through N = 4 ran in under 10 minutes each on a laptop with two cores and 8 GB
RAM. The same laptop analyzed N = 5 overnight. For N = 6, the analysis took
approximately twenty days on a computer with 40 cores and 128 GB memory.

Algorithm B: We were able to prove Theorem 2, that DPSS converges
within 5T , for N = 1, 2, and 3 UAVs and with each UAV’s coordination variables
NRi

and NLi
bounded between 0 and 20. In fact, we found the convergence time

to be within (4+ 1
3T ). However, AGREE produced a counterexample to Lemma 1,

that every UAV obtains correct coordination variables within 3T , for N = 3. In
fact, we incrementally increased this bound and found counterexamples up to
(3 + 1

2 )T but that convergence is guaranteed in (3 + 2
3 )T .

One of the shorter counterexamples provided by AGREE shows the UAVs
obtaining correct coordination variables in 3.0129T. Full details are available on
GitHub[1],7 but we outline the steps in Fig. 3. In this counterexample, UAV 1
starts very close to the left perimeter heading right, and UAVs 2 and 3 start
in the middle of segment 3 headed left. UAVs 1 and 2 meet near the middle
of the perimeter and head left toward what they believe to be their shared
segment boundary. This is very close to the left perimeter endpoint because,
due to initial conditions, they believe the left perimeter endpoint to be much
farther away than it actually is. Then they split, and UAV 1 learns where the
left perimeter endpoint actually is, but UAV 2 does not. UAV 2 heads right and
meets UAV 3 shortly afterward, and they move to what they believe to be their
shared segment boundary, which is likewise very close to the right perimeter
endpoint. Then they split, and UAV 3 learns where the right perimeter endpoint
is, but UAV 2 does not. UAV 2 heads left, meets UAV 1 shortly after, and

7 A spreadsheet with counterexample values for all model variables is located under
AADL sandbox projects/DPSS-3-AlgB-for-paper/results 20180815 eispi.
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learns correct “left” coordination variables. However, UAV 2 still believes the
right perimeter endpoint to be farther away than it actually is, so UAV 1 and 2
estimate their shared segment boundary to be near the middle of the perimeter.
They then head toward this point and split apart, with UAV 1 headed left and
still not having correct “right” coordination variables. UAV 2 and 3 then meet,
exchange information, and now both have correct coordination variables. They
go to their actual shared boundary, split apart, and UAV 2 heads left toward
UAV 1. UAV 1 and 2 then meet on segment 1, exchange information, and now
all UAVs have correct coordination variables.

The counterexample reveals a key intuition that was missing in Lemma 1.
The original argument did not fully consider the effects of initial conditions and
so only considered a case in which UAVs came close to one end of the perimeter
without actually reaching it. The counterexample shows it can happen at both
ends if initial conditions cause the UAVs to believe the perimeter endpoints to
be farther away than they actually are. This could happen if the perimeter were
to quickly shrink, causing the system to essentially “reinitialize” with incorrect
coordination variables.

2
t = 0

1 3

2
t ≈ 0.426 T

1 3

2
t ≈ 0.851 T

1 3

2
t ≈ 0.853 T

.1 3

2
t ≈ 1.848 T

.1 3

.2
t ≈ 1.850 T

.1 3.

.2
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.1 3.
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.1 .3.
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.1 .3.
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t ≈ 2.846 T
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t ≈ 3.013 T

.1. .3.

Fig. 3: Counterexample to Lemma 1. Dots to the left of a UAV number indicate
it has correct “left” variables, and likewise for the right.

Analysis for three UAVs for Algorithm B completed in 18 days on a machine
with 256 GB RAM and 80 cores.

5 Discussion and Conclusions

Formal modeling and analysis through AGREE had many benefits. First, it al-
lowed us to analyze DPSS, a decentralized protocol for distributing a surveillance
task across multiple UAVs. Though the original publication on DPSS provided
a convincing human-generated proof and simulation results to support claims
about its convergence bounds, analysis revealed that one of the key lemmas was
incorrect. Furthermore, the counterexample returned by AGREE provided in-
sight into why it was incorrect. Second, formal modeling in and of itself allowed
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us to find what were essentially technical typos in the original paper. For ex-
ample, the formula for dividing the perimeter across UAVs only accounted for
changes in estimates of the right perimeter endpoint and not the left, so we cor-
rected the formula for our model. We also discovered that certain key aspects of
the protocol were underspecified. In particular, it is unclear what should happen
if more than two UAVs meet at the same time. Analysis showed this occurring
for as little as three UAVs in Algorithm B, and simulations in the original paper
showed this happening frequently, but this behavior was not explicitly described.
Here, we decided that if all three UAVs meet to the left of UAV 3’s estimated
segment, UAV 3 immediately heads right and the other two follow the normal
protocol to escort each other to their shared border. Otherwise, the UAVs all
travel left together to the boundary between segments 2 and 3, then UAV 3
breaks off and heads right while the other two follow the normal protocol.

This brings us to a discussion of challenges and limitations. First, in terms
of more than two UAVs meeting at a time, simulations in the original paper
implement a more complex behavior in which UAVs head to the closest shared
boundary and then split apart into smaller and smaller groups until reaching the
standard case of two co-located UAVs. This behavior requires a more complex
AGREE model that can track “cliques” of more than two UAVs, and it is diffi-
cult to validate the model due to long analysis run times. Second, we noted in
Section 4 that in our model, UAV coordination variables NRi

and NLi
have an

upper bound of 20. In fact, with an earlier upper bound of 3, we found the bound
for Lemma 1 to be (3+ 1

3 )T and did not consider that it would depend on upper
bounds for NRi and NLi . We therefore cannot conclude that even (3 + 2

3 )T is
the convergence time for Lemma 1. Third and related to the last point, model
checking with AGREE can only handle up to three UAVs for Algorithm B. Due
to these limitations, we cannot say for sure what the upper bound for DPSS
actually is, even if we believe it to be 5T . If it is higher, then it takes DPSS
longer to converge, meaning it can handle less frequent changes than originally
believed. We are therefore attempting to transition to theorem provers such as
ACL2 [9] and PVS [12] to develop a proof of convergence bounds for an arbitrary
number of UAVs, upper bound on NRi

and NLi
, and perimeter length (which

was set to a fixed size to make the model small enough to analyze).
In terms of recommendations and lessons learned, it was immensely useful to

work with the author of DPSS to formalize our model. Multi-agent protocols like
DPSS are inherently complex, and it is not surprising that the original paper
contained some typos, underspecifications, and errors. In fact, the original paper
explains DPSS quite well and is mostly correct, but it is still challenging for
formal methods experts to understand complex systems from other disciplines,
so access to subject matter experts can greatly speed up formalization.
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