
FuzzM: A Model-Based Approach to Grey-Box Fuzzing

Ryan Coppa
Rockwell Collins

Grant Foudree
Rockwell Collins

David Greve
Rockwell Collins

Abstract

Fuzz testing is a form of automated robustness testing
that employs random, invalid or unusual inputs to search
for unknown and potentially exploitable system behav-
iors. Traditional fuzz testing techniques do not describe
internal system behavior, instead they rely mutations of
input sequences driven by code coverage metrics. These
techniques lack the ability to explore deep system state.
In this paper we describe model-based fuzzing, a fuzzing
technique that utilizes both a mathematical model to
guide the fuzzing process and a constraint solver to de-
duce high-quality tests capable of targeting deep system
behaviors that random testing alone would be unlikely
to reach. We describe the model-based fuzzing frame-
work FuzzM, demonstrate how it can be used to model a
simple system, and compare its performance with several
off-the-self fuzing solutions.

1 Introduction

Fuzzing is a form of robustness testing in which ran-
dom, invalid or unusual inputs are applied while moni-
toring the overall health of the system. Health monitor-
ing may include detecting crashes, exceptions, lock-up,
reduced throughput, runaway memory usage, or exces-
sive power consumption. Such anomalous events may
be indicative of potentially exploitable behaviors in the
system. The use of overall system health as a testing or-
acle, rather than a specific expected functional response,
distinguishes fuzz testing from more traditional testing
approaches.

Historically, fuzzing has been successful in finding
bugs [1, 2]. The efficacy of simple random fuzzing,
however, is often limited by software well-formedness
checks that are unlikely to succeed on random data. CRC
checks on Ethernet packets, for example, are unlikely
to be correct by chance thus most packets generated at
random are likely to be immediately discarded. Instead,

generational fuzzers allow the user to specify data for-
mat templates and to compute essential content such as
CRCs programmatically [4, 6]. Random (but well struc-
tured) inputs are then constructed by the fuzzer by fill-
ing in these data templates. More complex protocol be-
haviors can then be implemented in an ad-hoc manner.
The implementation details of the ad-hoc implementa-
tions, however, could be implemented with less rigor and
would benefit from fuzzing.

More recently, instrumented fuzzing has emerged as
a new technique to direct input transformations to bet-
ter satisfy complex software validation functions. Pop-
ular instrumented fuzzers include AFL [18] and Hong-
gfuzz [11]; each generates inputs by leveraging addi-
tional analyst-provided program information. For exam-
ple, AFL employs compile-time instrumentation to cap-
ture coverage information. This feedback is then used
in conjunction with the AFL fuzzer to guide new input
mutations, with the goal of driving broader software cov-
ereage. While such feedback-driven fuzzing techniques
have demonstrated success, the mutation strategy still re-
lies on generating massive amounts of mutated input over
time. Consequently these techniques are slow and ul-
timately reliant on some degree of luck to discover all
execution paths.

To address these issues, new hybrid fuzzing strate-
gies have sought to leverage symbolic execution and
taint analysis techniques to find deeper software flaws
[14–16]. For instance, Driller [16] uses selective con-
colic execution to force the exploration of new program
paths when the fuzzer’s mutation mechanism fails to ran-
domly discover such paths. Similarly, Vuzzer [15] uses
data-flow and control analysis to infer fundamental fea-
tures of an application to help inform the fuzzer’s muta-
tion strategy. While these new fuzzing strategies demon-
strate significant improvement over conventional instru-
mented fuzzers such as AFL in the Cyber Grand Chal-
lenge [8], limitations still persist. Input generation based
on symbolic execution alone often fails to explore deep



paths [17]. For example, Driller fails to find vulnera-
bilities in many of the Cyber Grand Challenge datasets.
Furthermore these techniques still assume complete and
unfettered access to the software binary for the purpose
of analysis and instrumentation, which may not neces-
sarily be possible in all vulnerability analysis cases.

In this paper we describe model-based fuzzing, a tech-
nique that employs a mathematical model of system be-
havior to guide the fuzzing process. Whereas a smart
fuzzing framework constructs fuzz tests by filling in data
structure templates, a model-based framework deduces
tests from a behavioral model using a constraint solver.
Coverage metrics and model features are used to formu-
late test objectives that are then expressed mathemat-
ically as logical constraints. The constraints and the
model are passed to a constraint solver which in turn de-
duces an input that will cause the device under test to ex-
hibit the desired behaviors. The use of a constraint solver
in this manner enables the creation of high-quality tests
capable of targeting deep system behaviors that random
testing alone would be unlikely to reach.

2 Model-Based Fuzzing Leveraging Lustre
Models

FuzzM is a model-based fuzzing framework that lever-
ages Lustre as a modeling language and the JKind [9]
model checker as a constraint solver. Lustre [13] is a
formally defined, declarative, synchronous dataflow lan-
guage useful for modeling reactive systems. JKind is an
SMT-based infinite-state model checker for safety prop-
erties expressed in Lustre. FuzzM is not designed to fuzz
or search for errors in Lustre models. FuzzM is intended
to fuzz systems whose abstract behaviors are described
by Lustre models. It generates actual tests with the intent
of applying those tests to an operational system while
monitoring that systems health in search of implementa-
tion vulnerabilities. FuzzM is also not designed to test
a system for conformance with a Lustre model. Rather,
FuzzM treats the Lustre model as an abstraction of the
underlying system behavior and utilizes it to guide the
fuzzing process (by either targeting or avoiding specific
features) in an attempt to direct exploration the imple-
mentation state space.

Figure 1: Conceptual feature Venn Diagram and Exam-
ple Linear Features

The model-based fuzzing philosophy is to target be-
haviors that are known and to fuzz behaviors that are un-
known. A feature is a Boolean expression that appears in
a model or as part of a constraint. Features are important
from a testing perspective because they typically parti-
tion the behavior of the system in interesting ways. In
treating the model as a guide for exploring the behavior
of the system we assume that, if there is a flaw in the sys-
tem, it is likely to be near a model feature boundary. This
approach extends the concept of boundary value testing.
In boundary value testing, testing effort is focused on
edge conditions and corner cases by employing test cases
that explore extreme or boundary values from the input
domain. We extend the notion of boundary value testing
to include sets of inputs that just barely satisfy or violate
arbitrary model features. For instance, if an array is de-
fined as being 10 bytes in the length, the fuzzer should
explore values slightly larger and slightly smaller than
10. Boundary value fuzzing means that we attempt to se-
lect random input vectors from a distribution that favors
vectors close to model features. Figure 1 illustrates both
conceptual features in a Venn diagram and actual model
features from a pedagogical example in which a triangu-
lar region in the x-y plane is defined by the intersection
of three linear features.

Figure 2: Conceptual and Measured Test Distributions

Figure 2 shows both conceptual and measured statisti-
cal distributions of tests around the model features gen-
erated by four different solvers. The heat map distribu-
tions in Figure 2 are generated by plotting thousands of
solver solutions to random constraint queries involving
arbitrary combinations of the three linear features from

2



Figure 1. Note that the test distributions are attracted
to but distributed around the feature boundaries. Model
based fuzzing uses a constraint solver to target behav-
iors that are known (the model features) and then fuzzes
around them to search for behaviors that are unknown
(behaviors not captured by the model).

3 Architecture

Figure 3: Model-Based Fuzzing Architecture

Figure 3 shows the overall architecture of a model-based
fuzzing framework. A model that describes various fea-
tures of the Device Under Test (DUT) drives the process.
The model is processed by the Test Heuristics where cov-
erage metrics and model features are used to generate test
objectives that are expressed mathematically as logical
constraints. The constraints and the model are passed to
a constraint solver that deduces an input that will cause
the DUT to exhibit the desired feature. The deduced in-
put is passed to a driver interface that has been integrated
with a target. The driver converts the fuzzer output into
an input that is broadcast to the DUT, which has been
augmented with health monitoring facilities capable of
detecting and recording system failures. The overall test
generation process is intended to run continuously.

4 The Role of Generalization

FuzzM employs coverage directed testing to formulate
constraints that drive the solver to visit states that ran-
dom testing alone would be unlikely to reach. While
progress against traditional coverage metrics can be mea-
sured against the finite Lustre model of system behavior,
the objective of fuzz testing is to explore the behavior of
a system beyond the model to search for otherwise un-
known vulnerabilities. Because the unknown state space
being explored by the fuzzer is likely to be substantially
larger than the model state space, effective exploration

of that space requires the rapid generation of large num-
bers of test vectors. Unfortunately, the need to generate
tests quickly is antithetical to using a constraint solver
for test generation [7,10]. Even for relatively small mod-
els, a single invocation of JKind requires approximately
one second of execution time.

Also, it is surprisingly difficult to induce JKind to pro-
duce random solutions. While JKind supports the SMT-
LIB random-seed option, random seeds dont have a sig-
nificant impact on the resulting solutions. Rather, solu-
tions tend to cluster around model and constraint features
or near special values like zero. To avoid clustering spe-
cially crafted hypotheses can be employed to drive the
solver away from previous solutions. The presence of
large, complex hypotheses, however, can easily degrade
solver performance.

Rectilinear Generalization helps to meet our model-
based fuzzing objectives by decoupling the constraint
solver from the test generation process. Generalization
is a technique that converts a single constraint solution
into a set of solutions that cover the state space in the
region of the original solution. Given a generalized so-
lution, test generation simply involves sampling the so-
lution set. This sampling process is amenable to effi-
cient implementation and is capable of rapidly producing
large numbers of high-quality tests from a single solver
invocation. The sampling of the solution set can also be
randomized, shifting much of the onus of generating de-
sirable, random test distributions from the solver to the
sampler. Under this configuration the JKind solver can
be directed towards producing solutions that target hard
to reach model features while generalization can be re-
lied upon to provide the bandwidth needed to explore the
state space around those solutions in search of proximate
vulnerabilities. Using Trapezoidal Generalization [12]
FuzzM is able to magnify a JKind solution stream of 1
vector per second into a fuzzing stream of nearly 2000
vectors per second.

5 Application of FuzzM

The following section outlines the two steps required to
deploy FuzzM against a new target. First, a Lustre model
of the target must be implemented. Second, a relay must
be constructed to translate between the fuzzer and the
target interface.

0start 1 2 3 4

0x02, 0x05

0x01

0x05

0x02

0x03

0x05

0x02

ASCII

0x05

0x02

0x07

Figure 4: FSM Diagram

3



0 7 8 15

Magic 0 Magic 1

Sequence Number Command

Buffer

Figure 5: FSM Packet

Figure 4 represents a fictional finite state machine
(FSM) implementation, with the transitions annotated
with valid payload values. In order to transition state,
a properly constructed sequence of inputs must be pro-
duced, else state will reset to 1. Upon successful entry
into state 4, a synthetic vulnerability (segmentation fault)
is triggered causing the executable to exit. Figure 5 illus-
trates the FSM packet structure. The first step for FuzzM
usage is to capture the target message structure, which is
accomplished using Lustre as follows:

type byte = int;

type fsm_msg = struct

{

magic0 : byte;

magic1 : byte;

seq : byte;

cmd : byte;

buff : byte[16]

}

Once the message structure is captured, individual
packet values can be constrained. For instance, this fic-
tional FSM requires two magic bytes to remain constant.
Expressing this requirement in Lustre involves the fol-
lowing code:

magic0_ok = (msg.magic0 = 170) ; -- 0xaa

magic1_ok = (msg.magic1 = 187) ; -- 0xbb

More complex interactions can also be modeled using
operators indicating time-based relationships. The fol-
lowing section of Lustre represents valid next state tran-
sitions based on the current state:

function st0() returns (y: int);

next_st = (if (cmd_reset) then 0 else

if (st0 and st0_ok) then

(if (cmd_hello) then 1 else 0) else

if (st1 and st1_ok) then

(if (cmd_data) then 2 else 1) else

if (st2 and st2_ok) then

(if (cmd_file) then 3 else 2) else

if (st3 and st3_ok) then

(if (cmd_disco) then 4 else 3) else

0);

st = st0() -> (pre next_st);

As our fictional FSM was developed with a standard
IP/UDP interface, the relay can be constructed using
standard Python libraries, as shown below:

length = int(test_vector[’length’])

msg = bytearray(length)

if (0 < length):

msg[0] = int(test_vector[’msg.magic0’])

if (1 < length):

msg[1] = int(test_vector[’msg.magic1’])

if (2 < length):

msg[2] = int(test_vector[’msg.seq’])

if (3 < length):

msg[3] = int(test_vector[’msg.cmd’])

for index in range(0,length-4):

name = ’msg.buff[’ + str(index) + ’]’

byte = int(test_vector[name])

msg[4 + index] = byte

sock.sendto(msg,

(target_ip, target_port))

The Lustre model and relay can be found at the GitHub
page for FuzzM, located in the Availability section be-
low.

The fictional FSM executable was evaluated using
FuzzM, AFL, and Honggfuzz. Using the previously de-
scribed Lustre model, FuzzM located the vulnerable sec-
tion of code after 82,000 samples. Both AFL and Hong-
gfuzz (running in persistent mode) were unable to locate
the vulnerable section after 25,000,000 and 100,000,000
samples respectively.

6 Comparing FuzzM Performance

In order to demonstrate the capabilities of FuzzM, a com-
parison including several open-source fuzzers was per-
formed on a complex embedded target. Each fuzzer
was evaluated on their speed and code coverage, as well
as relevant features and usability. Our selection was
comprised of two function-based fuzzers, AFL [18] and
Honggfuzz [11], along with two network fuzzers, Boo-
fuzz [3] and Radamsa [5]. Function-based fuzzers oper-
ate by redefining the entry-point of a program to provide
a fuzz vector as a parameter to be used as input to the pro-
gram. Upon execution, the fuzzer repeatedly invokes this

4



FuzzM Honggfuzz AFL Radamsa Boofuzz
Speed (tests/sec) 277 43590 14500 10 10
Line Coverage 4.4631% 3.6900% 3.7195% 3.6543% 3.5342%
Branch Coverage 1.6464% 1.3174% 1.3631% 1.3100% 1.2542%

Figure 6: Quantitative Comparison

user-defined function with various inputs it intelligently
generates by mutating a set of valid, example data, in or-
der to explore new sections of code. In comparison, the
network fuzzers operate by interpreting a protocol tem-
plate with various constraints, electing to fuzz specific
fields defined in the specification by sending the vectors
over a UDP socket to the target.

Since most programs contain a significant amount of
branches, an effective fuzzer must be able to deduce the
proper inputs that satisfy complex graphs of branch con-
ditions in order to test the entire program. In order to
accomplish this, FuzzM derives its tests from a series of
intricate models created in Lustre. In contrast, AFL, for
example, inserts compile-time instrumentation between
blocks of code in order to record which inputs lead to
an undiscovered block of code, building a map of exe-
cution drivers over time [18]. Network fuzzers, being
detached from the host and oblivious to the source code,
are unable to monitor the program’s execution directly,
and consequently are incapable of dynamically altering
their execution drivers to discover new blocks of code
without additional tools.

Our testing scenario consisted of running each fuzzer
independently for one hour, followed by gathering the
coverage data and interpreting the results. The func-
tional fuzzers operate over a corpus of valid messages,
this corpus was generated by a sample of valid inputs
to the system captured during normal operation. The
FuzzM model was derived from software requirements
imposed on the target. All of the tests were performed
from a Docker container that included all the dependen-
cies in order to maintain a consistent testing environ-
ment. To address the issue of having multiple entry-
points for fuzzer data (network vs. function-based), a
common input interface was created. With regard to the
network fuzzers, we had difficulty allowing them to run
at full throttle and unfortunately had to limit their speed
by inserting a 100ms delay between fuzz vectors. Conse-
quently, it is reasonable to assume that this likely altered
our results as the function fuzzers were not subject to this
restraint and were able to fuzz the program a significantly
higher amount of times.

Figure 7: Branch Coverage Comparison

Figure 8: Line Coverage Comparison

Figure 7 illustrates the number of times each unique
code branch was executed (note the logarithmic scale).
The green line represents FuzzM performance while
each colored bar represents a different open source
fuzzer. Given the intimate relationship between function-
based fuzzers and code, large coverage is expected. Of
note are the areas where FuzzM executed a large number
of branch hits, as opposed to small or zero counts for the
others. Figure 8 illustrates similar results in the context
of line execution count.

5



Figure 9: Missed Coverage Comparison

Figure 10: Unique Coverage Comparison

Further analysis of the coverage metrics reveal the
function-based fuzzers and model-based fuzzing occupy
complementary compartments within the fuzzing do-
main. As illustrated in Figure 9, while AFL has the
fewest misses (defined as for a given branch, the count
was less than 10 hits while at least one other fuzzer had
greater than 10 hits), it still missed greater than zero
while the other fuzzers were evenly distributed. In addi-
tion, Figure 10 illustrates AFL again with the most with
FuzzM still claiming approximately 25% of the unique
hits.

7 Conclusion

Based on performance comparison results, FuzzM
demonstrates unique proficiency in targeting areas of
software unreachable by state of the art fuzzers. This
ability is provided by properly constructed Lustre mod-
els based on knowledge of the target, as opposed to
driving fuzzing behavior based on coverage metrics
and a representative set of inputs (AFL, Honggfuzz)

or mutation/randomness (Radamsa, Boofuzz). As ex-
pected, overall coverage performance lies between func-
tional/white box and black box fuzzers.

The strengths of FuzzM can be leveraged in environ-
ments where full access to implementation artifacts (e.g.
firmware images, binaries, etc) is not possible, such as
embedded systems. In this case, employing model-based
fuzzing will provide a higher rate of vulnerability de-
tection as opposed to traditional network fuzzers. The
benefit is derived from the information contained in the
FuzzM models, allowing the fuzzer to intelligently ex-
plore the target state space.

8 Future Work

The Lustre model generation and refinement process cur-
rently relies entirely on an operator. Initial model genera-
tion could be derived from observed target data captures,
relieving the operator of manual construction. Incorpo-
rating feedback from the target could be used to drive
model constraints, enabling a more refined representa-
tion of target behavior. In addition, if a sufficient observ-
ables are available, the fuzzer could be driven to explore
new or desired functionality of the target.

9 Acknowledgements

This work was sponsored by DARPA/AFRL Contract
FA8750-16-C-0218. The views, opinions, and/or find-
ings expressed are those of the author(s) and should not
be interpreted as representing the official views or poli-
cies of the Department of Defense or the U.S. Govern-
ment. Approved for Public Release, Distribution Unlim-
ited

10 Availability

Complete source code for FuzzM, including all exam-
ples, is available via GitHub from:

https://github.com/collins-research/FuzzM

References
[1] Annonuncing oss-fuzz. https://testing.googleblog.com/

2016/12/announcing-oss-fuzz-continuous-

fuzzing.html.

[2] Announcing project springfield. https://

blogs.microsoft.com/ai/microsoft-previews-
project-springfield-cloud-based-bug-detector/.

[3] Boofuzz. https://github.com/jtpereyda/boofuzz/.

[4] Peach fuzzer. http://www.peach.tech/products/peach-
fuzzer/.

[5] Radamsa. https://github.com/aoh/radamsa/.

6



[6] AITEL, D. An introduction to spike, the fuzzer creation kit.

[7] CADAR, C., DUNBAR, D., AND ET AL., D. R. E. Klee: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. OSDI 8 (2008), 209–224.

[8] CGC, D. Darpa cyber grand challenge binaries. https://

github.com/CyberGrandChallenge.

[9] GACEK, A. Jkind - an infinite state model checker for safety
properties in lustre. https://github.com/agacek/jkind.

[10] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. sage: white-
box fuzzing for security testing. Queue 10, 1 (2012), 20.

[11] GOOGLE. Honggfuzz. https://github.com/google/
honggfuzz/.

[12] GREVE, D., AND GACEK, A. Trapezoidal generalization over
linear constraints.

[13] HALBWACHS, N., CASPI, P., RAYMOND, P., AND PILAUD, D.
The synchronous data flow programming language lustre. Pro-
ceedings of the IEEE 79, 9 (Sep 1991), 1305–1320.

[14] LI, Y., CHEN, B., AND ET AL, M. C. Steelix:program-state
based binary fuzzing. Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (2017), 627–637.

[15] RAWAT, S., JAIN, V., AND ET AL, A. K. Vuzzer: Application-
aware evolutionary fuzzing. NDSS (2017).

[16] STEPHENS, N., GROSEN, J., AND ET AL, C. S. Driller: Aug-
menting fuzzing through selective symbolic execution. NDSS 16
(2016), 1–16.

[17] WANG, X., ZHANG, L., AND TANOFSKY, P. Experience report:
How is dynamic symbolic execution different from manual test-
ing? a study on klee. ISSTA (2015), 199210.

[18] ZALEWSKI, M. American fuzzy lop. http:

//lcamtuf.coredump.cx/afl/.

7


