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Abstract—Our team is developing assurance technologies that
can support the use of machine learning in the design of safety-
critical aircraft systems. These capabilities have been integrated
on Boeing’s Autonomy Testbed Aircraft to show that they can
provide evidence of correct operation and safety guarantees
needed by real aircraft. We have applied run-time assurance
along with formal methods synthesis, modeling, and analysis
tools to an airborne collision avoidance system based on a neural
network. This system was demonstrated in flight and shown to
correctly monitor neural network operation and intervene when
needed to prevent violation of the “remain well clear” safety
requirement relative to an intruder aircraft.

Index Terms—machine learning, run-time assurance

I. INTRODUCTION

Aircraft systems have requirements for airworthiness certi-
fication that present barriers to the use of machine learning
technologies such as neural networks. Showing that a compo-
nent or system is correct and does no harm through behaviors
that were unintended by designers or unexpected by operators
is a critical aspect of the certification process. In a typical
machine learning application, much of the complexity and
design information resides in its training data rather than in
the actual models or software produced. This means that it
is generally not possible to determine the correctness of a
learning enabled component (LEC), such as a neural network,
by examining its implementation or tracing specific design
elements back to requirements.

Our team is developing assurance technologies that can
support the use of machine learning in the design of safety-
critical aircraft systems. These capabilities have been inte-
grated on Boeing’s autonomy demonstrator aircraft to show
that they can provide evidence of correct operation and safety
guarantees needed by real aircraft. In previous work [5] we
have used a run-time assurance (RTA) architecture to ensure
the safety of an autonomous neural network-based aircraft
taxiing application. In our current work we have applied RTA
along with formal methods modeling, synthesis, and analysis
tools to an airborne collision avoidance system based on a
neural network. This system was demonstrated in flight and
shown to correctly monitor neural network operation and
intervene when needed to prevent violation of the “remain
well clear” safety requirement relative to an intruder aircraft.
Thirty-eight test conditions were flown with various collision

course geometries to test the robustness of the neural net
trajectory generator and the RTA mitigations.

The RTA architecture includes a run-time monitor that
provides an independent assessment of the avoidance flight
plans generated by the neural network and a safe (but less
optimal) backup planner. The results of the assessment are
evaluated by a decision logic component which selects (based
on a tabular specification of safety rules) a flight plan that will
ensure safe flight. The core decision logic code is synthesized
from a formal specification, with most of the synthesis steps
producing machine-checked proofs of their correctness. The
RTA architecture has been modeled in the Architecture Anal-
ysis and Design Language (AADL) and formally analyzed to
show that it maintains the system safety requirements.

Remain-well-clear and collision avoidance capabilities are
critical to safe flight of autonomous military and commercial
aircraft. These capabilities can also be valuable for enhancing
the safety of piloted aircraft by providing pilot cueing. Run-
time assurance approaches, with run-time monitoring of ma-
chine learning software functions integrated with contingency
management functionality, will enable safe use of neural
networks and enable new autonomous capabilities for aircraft.

In this paper we will discuss:
• The assurance challenges associated with the use of LECs

in safety-critical aircraft applications
• The autonomy framework and aircraft used to demon-

strate the collision avoidance neural network capability
• The run-time assurance architecture developed to guaran-

tee that any potential unintended behaviors in the neural
network do not impact safety

• The formal methods assurance technologies applied
within the architecture, including analysis of the architec-
ture design and synthesis of decision logic from a formal
specification

• Flight testing, results obtained for various test scenarios,
and lessons learned from the demonstration

II. ASSURANCE CHALLENGES

For software in commercial aircraft, DO-178C [16] provides
the latest version of guidance regarding software aspects of
certification and is used by the aviation industry and regulators
as a means of compliance with airworthiness regulations.



At a high level, DO-178C helps manufacturers achieve two
main goals: 1) demonstrate that software complies with its
requirements (intended functionality), and 2) show that it does
nothing unexpected (unintended functionality). Unintended
functionality or unintended behavior can therefore be defined
as software behavior than cannot be traced back to any
requirement.

LECs and their software implementations break many of
the assumptions that are the basis for current certification
processes. An LEC design is created through training based
on large amounts of example data. This means, for example,
that individual elements in a neural network (weights, con-
nections, or activation functions configured during training)
do not represent design choices that can be traced back to
specific requirements. Therefore, the design intent cannot be
inferred from an examination of an LEC model or its software
implementation.

DO-178C fundamentally relies on requirements-based test-
ing (or verification) and structural coverage metrics, and works
extremely well to show that a traditional software development
process correctly implements a set of requirements. Structural
coverage metrics were constructed with the understanding that
much of the complexity of traditional software is manifested
in the logical decisions that are being implemented. This
logic should be traceable to specific software requirements.
When requirements-based tests fail to exercise part of the
software logic as revealed by structural coverage metrics,
it is reasonable to conclude that something is amiss (either
a missing requirement or some unintended behavior). Since
neural networks do not primarily implement logical decisions,
structural coverage can usually be achieved with one test case
(or possibly a small number of them) [13]. Therefore, current
structural coverage metrics are not helpful in identifying and
eliminating unintended behaviors. Several alternative coverage
metrics have been proposed for neural networks, but so far
none has been shown to provide equivalent assurance.

Since it is difficult to demonstrate assurance by examining
the LEC design (as is assumed by existing certification pro-
cesses), other approaches based on run-time monitoring and
enforcement may be effective.

III. AUTONOMY FRAMEWORK

Our experiments are carried out on Boeing’s Autonomy
Testbed aircraft and simulation environment. This testbed is
used for the development of the collision avoidance LEC, the
RTA architecture for ensuring safety, and for flight testing and
demonstration.

A. Autonomy Testbed Aircraft

The Boeing Autonomy Testbed Aircraft is a Cessna Car-
avan 208B, tail number N208BX (Figure 1). This platform
is currently serving as a test bed for the DARPA Assured
Autonomy program air domain experiments. The Testbed is
optionally piloted and serves as a means to demonstrate
commercially viable technologies leading to autonomy. It
is a research and development vehicle able to operate in

Fig. 1: Boeing Autonomy Testbed Aircraft, Cessna Caravan
208B

commercial airspace that is built on open-source middleware
with in-house developed guidance and control technologies
leveraged from across the Boeing enterprise. The Testbed
includes a full “Iron Bird” fixture for hardware-in-the-loop
evaluation in which new autonomy technology can be fully
integrated and tested before flight. With this Testbed Boeing
has demonstrated autonomy firsts including in-air detect and
avoid, ADS-B transponder-based route planning for strategic
avoidance, and fully autonomous ground taxi.

Detect and Avoid (DAA) mission operating and perfor-
mance standards are defined in RTCA document DO-365 [1].
The standard provides guidance for interactions of Unmanned
Aircraft Systems (UAS) in the National Airspace System,
requirements for safe operation of aircraft during encounters
including separation distance minimums for remaining well
clear of aircraft and avoiding mid-air collisions, and proper
aircraft equipage to achieve safe detect and avoid operations.
The assurance challenge posed in our work focuses on the
Autonomy Testbed Aircraft flying in the vicinity of another
“intruder” airplane, where the test flight software includes a
Boeing-developed LEC to generate an avoidance flight plan
for the Testbed to remain well clear of the intruder aircraft
as defined in DO-365. The underlying assurance technology
montors the Boeing LEC in order to assess the avoidance
trajectory from the LEC and guarantee safety.

Figure 2 shows a block diagram of the autonomy system
framework as deployed on the Testbed aircraft. System ele-
ments include:

• ADS-B – The primary sensor for perceiving the airspace
is the Automated Dependent Surveillance Broadcast
(ADS-B) system providing detection information on
nearby aircraft (intruders) to the other system functions.

• Avoidance Alerts – Evaluates potential future traffic con-
flicts and issues “alerts” to the Avoidance functions as
specified in DO-365.



Fig. 2: Collision avoidance system on the autonomy testbed aircraft with run-time assurance components in green

• LEC Planner – Neural network system trained offline
through reinforcement learning to generate avoidance
flight plans satisfying DAA requirements. Training and
operation is described in the following subsection.

• Backup Avoidance Planner – A trusted but less opti-
mal backup planner that provides waypoint navigation
paths to avoid airspace incursion. Avoidance computation
method is virtual predictive radar which is designed
to provide maximum “safe passage timed corridors.”
Avoidance path terminates back on the original flight
plan.

• Run-Time Assurance – Run-time monitoring, prediction,
and assessment systems that guarantee the selection of a
safe flight plan for the aircraft. Operation and assurance
are described in Sections IV and V.

• Autonomous Executive – Constructs and manages execu-
tion of the vehicle flight plan and contains a function to
“splice in” avoidance guidance waypoint plans into the
original flight plan.

B. LEC Training with Reinforcement Learning
The LEC that generates the collsion avoidance flight plan

is trained offline with a Reinforcement Learning (RL) policy
model. RL is a sequential policy optimization method that
solves the task using the “learning by doing” concept and
requires continuous data-rich interaction with the environment
[18]. Our avoidance policy is trained on a surrogate task to
provide the large number of interactions needed to achieve
good performance. This surrogate environment developed by
Boeing is a lightweight Python environment integrated with
the OpenAI GYM framework [4].

The learned policy minimizes the risk of collision by
providing continuous control commands in the surrogate en-
vironment. These commands are converted into a geomet-
ric trajectory (a sequence of waypoints) using the surrogate
environment and a Robot Operating System (ROS) interface
(Figure 3).
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Fig. 3: System diagram of the RL environment

Our surrogate environment is a simplified 2D obstacle
avoidance problem that mimics the real task (air traffic conflict
resolution). The environment simulates the movements of
two aircraft on a 20x20 km square. The controlled agent
(representing the Autonomy Testbed Aircraft) has to go around
the intruder, provide minimal horizontal separation, and merge
back to the next safe waypoint from the original route before
the simulation ends.

The surrogate dynamics imitate the dynamics of the Auton-
omy Testbed Aircraft. Both aircraft are represented by a simple
dynamic model assuming massless kinematics and using Du-
bin’s vehicle model for turn dynamics. All the observation and
control values are normalized to [-1..1] for the RL agent. To
make sure the agent generalizes the problem, we rewrap the
observations and focus only on relative positions rather than
absolute. Observations consumed by the agent are heading,
airspeed, distance to goal, tracking angle to goal, intruder
heading, intruder airspeed, distance to intruder, and tracking
angle to intruder.



C. RL Policy Agent

The RL policy agent learns the task by interacting with the
simulation and iteratively updating the parameters of the policy
model using Stochastic Gradient Descent (SGD) optimization.
We approximate the policy with a multi-layered perceptron
shown in Figure 4.
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Fig. 4: Neural network function approximation used for the
policy model consists of 2 hidden layers, 256 neurons each

To solve the optimization problem as Markov Decision Pro-
cess (MDP), we refactor it into Markovian states s, transitions
T (s′|s, a), and transition reward R(s′|s, a). The state of the
system (including both agent and intruder) is fully observable,
assumes the perfect knowledge, and is enough to describe the
Markovian state of the MDP system. The state of the agent is
described as

s = {va, ψa, vi, ψi, βi, di, βg, dg}

where va is agent speed, ψa is agent heading, vi is intruder
speed, ψi is intruder heading, βi is angle to intruder, di is
distance to intruder, βg is angle to goal, and dg is distance to
goal.

The optimization is set to find the optimal policy π∗(s) as
a set of state-action mappings that maximizes the expected
reward V (s) [18].

π(s) = P (a|s) (1)
π∗(s) = argmax

π
V π(s) (2)

= argmax
a

(R(s, a) + γT (s′|s, a)V (s′)) (3)

The value of the state is the expected future reward accumu-
lated over the trajectory and defined by the Bellman function
as:

V (s) = E[R|s, π] (4)

=
∑
s′

T (s′|s, a) (R(s′|s, a) + γ(V (s′))) (5)

= R(s′|s, a) + γ
∑
s′

T (s′|s, a)V π(s′) (6)

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′

T (s′|s, a)V ∗(s′)

)
(7)

The RL policy model is based on the Actor-Critic architec-
ture that helps to improve the stability of the training [18].
The SGD-based update for Actor θ and Critic w network is:

δ = Rt+1 + γV̂ (st+1, w)− V̂ (st, w) (8)

w ← w + αδ∇V̂ (s, w) (9)
θ ← θ + αδ∇ lnπ(a|s, θ) (10)

The core functionality of the RL agent incorporates the
Stable Baselines library, a very reputable fork of OpenAI Base-
lines [7]. For the exploration policy and update steps, this work
used the Proximal Policy Optimization (PPO) algorithm that
becomes the state of the art in continuous-action agents [17].

D. LEC Integration on Testbed Aircraft
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Fig. 5: System diagram of the ROS-LEC node showing the
integration of the learning-enabled component (LEC) to the
aircraft using the ROS interface

System integration is done using the Robot Operating Sys-
tem (ROS) interface [14]. This allows unifying the interfaces to
the high-fidelity simulation and to the physical aircraft demon-
strator. The ROS-LEC agent, shown in Figure 5, aggregates
data from different domains and provides important utilities
to the system. Its job is designed as follows:

• receive and accumulate ROS messages regarding the
own-ship state, intruder’s state, traffic alerts, GPS-SRS
transformation data,

• translate ADS-B and GPS positioning data to local coor-
dinate frame,

• extract the goal location from the original route,
• re-wrap the observations into the agent-specific input

format,
• iteratively run the agent to get the corrective actions,
• iteratively run the surrogate environment to receive the

transitions,
• form a corrective trajectory and check if the trajectory is

good,
• translate the trajectory from local coordinate frame to

global lat-long waypoints,
• publish the trajectory as a ROS message.
On an external request, the ROS-LEC agent generates a

single avoidance flight plan and publishes it as a ROS message.



The number and spacing of waypoints are configurable. For
our experiment, the flight plan consists of 20 waypoints spaced
20 seconds apart. The last waypoint is taken from the original
route, and 19 waypoints are generated by the policy. This
allows linking the waypoints by a unique index and preserves
the indices of the original route. Because of the large time
step between the waypoints, the policy and the surrogate have
to be evaluated 20 times to make a single waypoint. The
total response time of the system is less than 60 msec for
the complete trajectory.

IV. RUN-TIME ASSURANCE

Run-time assurance architectures add high-assurance com-
ponents to the system to ensure that a complex or difficult-to-
verify component (such as our LEC) cannot cause unsafe or
unintended system behaviors. Run-time monitors continuously
check input or output values of the LEC to assess safety and
can intervene to switch to a backup function that is proven to
be safe.

In this project Collins Aerospace engineers developed a
run-time assurance architecture based on the ASTM F3269-17
standard for bounded behavior of complex systems [3], also
known as a simplex architecture [15]. The standard provides
guidance for mitigating unintended behaviors through the use
of run-time monitors. The LEC may still produce unintended
behavior, but the architecture ensures that there will be no
impact on system safety. This approach uses the verified
properties of the architecture, run-time monitor, and safety
backup function to justify a reduced level of criticality for
the LEC.

The run-time assurance architecture is illustrated in the
green box in Figure 2. Incoming ADS-B messages are assessed
by the DAA subsystem. When an avoidance alert is generated,
the Backup Avoidance Planner and the LEC Planner both
generate avoidance flight plans. The RTA monitors perform
a “remain well clear” (RWC) assessment on both plans,
determining whether either plan will result in a violation of the
DO-365 separation requirements. Based on the assessments,
Plan Selector then chooses one of the two plans and the Plan
Switch publishes the chosen flight plan.

A. Trajectory Prediction

Trajectory prediction over a defined prediction horizon (in
time units) consists of prediction of both the intruder and
own-ship trajectories based on underlying assumptions of the
intruder’s future velocity and the own-ship’s ability to track
the avoidance flight plans from the LEC and the Safe Backup
Planner. For the application in consideration, the prediction
horizon was set to 180 seconds under the assumption that the
avoidance flight plans produced would be frozen for this time
period. In cases where the avoidance plans can be generated
more frequently, the prediction horizon can appropriately
be reduced which should improve the accuracy of intruder
trajectory prediction and allow for more confidence in the
RWC evaluation.

For the intruder, each incoming ADS-B message is pro-
cessed as a measurement to a tracking filter designed as per
Appendix D in [2]. The tracking filter assumes that the intruder
aircraft is either in a constant velocity (CV) mode or in a
constant speed turn (CT) mode. The multiple-model tracking
filter is designed to be robust to basic errors in the ADS-B
message data (such as data with too small or large uncer-
tainties), missing data or repeat data, but mostly the ADS-B
data is considered a trustworthy source of information of the
intruder 3D position. The tracking filter produces estimates
of the intruder current position and velocity along with their
respective uncertainties, and with a prediction of the specific
mode of the intruder behavior (CV/CT). The trajectory predic-
tion propagates the estimate from the tracking filter forward
in time by assuming the aircraft continues in its current mode
(CV/CT) with a growth model in the longitudinal velocity
uncertainty and a cross-track position uncertainty, with the
cross-track position uncertainty capped to a maximum value.
The uncertainties in the intruder trajectories can be visualized
as ellipses whose semi-major/semi-minor axes are aligned
with the longitudinal/normal to velocity vector and whose
lengths are proportional to the uncertainties along/normal to
the velocity vector. These assumptions allow to account for
decaying confidence over longer prediction horizons.

The own-ship trajectory predictions along the avoidance
flight plans assume a kinematic model of the own-ship be-
havior using performance parameters such as maximum bank
angle, roll-rate, longitudinal acceleration, etc. The trajectory
prediction assumes that the first waypoint of the avoidance
flight plans lies directly in the path of the current velocity
vector. The own-ship trajectory consists of constant ground
speed segments between waypoints and constant speed arcs
connecting line segments between consecutive waypoints. As
the actual aircraft is flying at a constant airspeed, and not
ground speed, deviations between the predicted and actual air-
craft trajectories are expected. These deviations are accounted
for by a fixed tracking error bound that is configurable. The
tracking error bound and vehicle size parameter are added to
the specified RWC separation distance to produce a conflict
radius threshold around the own-ship.

The trajectory prediction models are run internally at a high-
rate (over 10 Hz) for both the intruder and own-ship, but
the output trajectories are sampled at 1 Hz to produce time-
stamped discretized trajectory points which are evaluated for
conflicts as discussed in the next sub-section.

B. Remain Well Clear Assessment

The RWC assessment consists of evaluating time-stamped
samples of the predicted trajectory of the intruder and the own-
aircraft trajectory along each produced avoidance flight plan.
The evaluation considers the intersection of the uncertainty
ellipse around an intruder predicted trajectory sample with the
conflict circle around the corresponding own-ship predicted
trajectory sample. The probability of intersection is determined
using the analytical approximations documented in Section IV



of [8]. If the probability exceeds a configurable threshold, then
the flight plan is determined to be unsafe.

In addition to the determination of safety, the closest
point of approach (CPA) between the own-ship and intruder
predicted trajectories is calculated along with the time to
CPA. The CPA metrics allow the Plan Selector decision logic
component to choose between plans that are both marked
unsafe by the RWC assessment. These metrics allow for a
comparison with the actual measured CPA metrics during
simulation and test flights as a way to evaluate the run-time
monitor performance.

C. Plan Selector

A critical component of the RTA architecture is the Plan
Selector, which selects the flight plan to be used based on
formally verified decision logic. This decision logic specifies
the rules that determine whether the LEC flight plan or the
Backup Avoidance flight plan (BAF) should be selected based
on the results received from the RWC Assessment component.
The decision logic is specified in a tabular format, shown in
Figure 6. After running the logic, the Plan Selector sends its
decision to the aircraft Plan Switch.

When a flight plan assessment is received, it is evaluated
based on five variables, including the RWC metrics: plan va-
lidity (whether a plan has been received), plan safety, whether
the time of closest point of approach (tCPA) is greater than
179 seconds (the end of the planning horizon), comparison of
the predicted miss distance (pmd) between the intruder and
own-ship, and whether three seconds has elapsed since the
receipt of the first plan.

If only one plan has been received by the three second
timeout, we select (publish) that plan by default. If we receive
two plans and only one is safe, we select the safe plan. If
neither plan is safe, we select the one with the larger predicted
miss distance. If both plans are safe, the LEC plan is usually
selected. However, there is some additional tie-breaking logic.
If tCPA is beyond the planning horizon for one of the plan,
this means that we don’t really know what its true CPA is
so we select the other plan. If tCPA is beyond the planning
horizon for both plans, we fall back to selecting the plan with
the greater predicted miss distance.

Different selection logic could be specified depending on ve-
hicle and program requirements, and indeed our specification
evolved over the course of the project. However, the formal
synthesis approach (described in the next section) ensures that
we can quickly regenerate a correct implementation of the
specification.

V. ASSURANCE TECHNOLOGIES

In addition to the RTA architecture itself, we have applied
formal methods technologies to several aspects of the design to
help ensure system safety. This includes analysis of the AADL
system architecture model, synthesis of the plan selector
decision logic from a formal specification, and production of
an assurance argument documenting the evidence and rationale
for safety of the RTA approach.

A. Architecture Verification

One of the steps for design-time assurance of the RTA
architecture is verifying the architecture satisfies its high-
level requirements. Traditionally, requirements verification has
been achieved using a combination of directed testing meth-
ods and manual review. However, model-based specification
enables a more rigorous approach to verification via formal
methods analysis. With both the requirements and architecture
represented in formal (well-defined, unambiguous) notations,
satisfiability modulo theories (SMT) solvers can be employed
to determine whether there is any possible sequence of inputs
that will violate a requirement. Furthermore, failure by the
solver to find a counterexample is essentially equivalent to a
mathematical proof that the requirement can never be violated.

In architectural models, we can represent high-level re-
quirements as assume-guarantee contracts on components.
Guarantees are statements about a component’s outputs which
will always hold as long as stated assumptions are valid. When
designing an architecture that includes multiple components, it
is imperative to verify that a system’s subcomponent contracts
satisfy the overall system contract, as well as whether a com-
ponent’s assumptions are valid with respect to the specified
upstream guarantees and the environment. We use the Assume
Guarantee Reasoning Environment (AGREE) [19] to specify
and analyze component contracts in our run-time assurance
architecture. AGREE is a plugin for the Open Source AADL
Tool Environment (OSATE), enabling contracts to be specified
directly on AADL model components and analyzed within the
modeling environment.

The main objective of our AGREE analysis of the collision
avoidance system was to verify that the RTA architecture is
guaranteed to publish only safe flight plans. As illustrated
in Figure 7, we annotated the AADL model with assume-
guarantee contracts for each component in the architecture,
and AGREE was able to verify the high-level property under
the assumption that the backup avoidance flight plan is always
safe. There are four guarantees shown in Figure 7:

• An ADS-B intruder conflict results in a BAF plan being
generated.

• An ADS-B intruder conflict results in an LEC plan being
generated.

• An ADS-B intruder conflict results in a safe plan being
selected by RTA under the assumption that BAF is always
safe.

• An ADS-B intruder conflict results in a safe plan being
forwarded by the Plan Switch under the assumption that
BAF is always safe.

The figure also demonstrates the use of AGREE to detect
vacuous guarantees. This refers to guarantees that are true only
because the context in which the guarantee should hold never
occurs. Figure 7 shows two such statements:

• RTA always selects BAF if it is safe.
• The Plan Switch always forwards BAF if it is safe.

In other words, we are checking to see if the RTA architecture
ever selects the LEC plan. AGREE analysis shows that these



Fig. 6: Plan Selection logic specification (hyphens match either 0 or 1)

Fig. 7: Specification and checking of Run-Time Assurance properties with AGREE

statements are false, giving legitimacy to the guarantees of the
RTA System and Plan Switch.

B. Decision Logic Synthesis

We formalized this decision table and applied our synthesis
tools, based on the ACL2 theorem prover [12], to synthesize
high-assurance decision code implementing the table logic.
This process used the def-table machinery described
in [5]. In particular, proofs are automatically performed on
the table to ensure completeness (some case always applies,
and an output is always produced) and unambiguity (no more
than one case applies, so a unique output is always produced).

Our software synthesis process starts with an executable
specification that applies our generic table evaluation proce-
dure apply-table to the specific table described above. In
this initial specification, the table is represented as a piece
of data that is interpreted by apply-table. Synthesis steps
will specialize the table evaluation process, building in the
specific table to create a cascade of conditional expressions.

We synthesize an executable Java program in two key steps:

1) Apply APT transformations to specialize and simplify
the decision logic, creating an optimized, executable
function: We use Kestrel’s APT (Automated Program
Transformations) [9] toolkit, built on ACL2, especially
the simplify transformation, which applies simpli-



fying rewrite rules from our library. Each of the APT
transformation steps produces a proof showing the
equivalence of its input and output.

2) Generate Java code using ATJ [11]: We use Kestrel’s
ATJ (ACL2-to-Java) Java code generator, built on ACL2,
to generate Java code for integration with the Collins
RTA. Extending previous work (described in [5]), ATJ
now generates idiomatic and more performant Java code.

For integration into the larger system, we created a hand-
written wrapper for the generated Java decision code. The
wrapper receives and processes incoming plan messages from
the Remain Well Clear Assessment, applies the generated
decision code to the boolean plan variables, and publishes the
decision to the Plan Switch. Communication is done via ROS.

Our methodology for synthesizing the decision logic using
program transformations allows for quick re-synthesis when
the design changes. One simply re-runs the synthesis tools
using the new table-based specification as input. This flexi-
bility was demonstrated when simulation results necessitated
additional conditions and constraints on plan selection. Specif-
ically, the table was changed to consider whether each plan’s
tCPA exceeds the 179 second planning horizon. This simply
amounted to changing the def-table encoding in ACL2,
with all the correctness proofs, synthesis/optimization steps,
and Java code generation following immediately.

Future improvements to this methodology may include:
• Outfitting ATJ with proofs: As remarked in [5], this might

involve either formalizing the semantics of Java or using
Kestrel’s Axe toolkit to lift Java bytecode into logic.

• Code generation for other languages (C, Python, Rust):
Recent work at Kestrel was able to achieve the same syn-
thesis presented above using the ATC C code generator
[10] in place of ATJ, with the additional benefit of having
proofs-of-correctness for the code generation.

• Formal synthesis of RTA-logic interface: At the time of
publication, the integration of the plan selection logic
with the Collins RTA requires a handwritten wrapper,
which could potentially also be synthesized with proofs.

C. Assurance Argument

The assurance argument for the run-time assurance ar-
chitecture is made explicit using Resolute [6]. Resolute is
a tool for specifying and instantiating assurance patterns,
and analyzing the resulting assurance argument to determine
whether all claims are supported by evidence. Resolute is
an OSATE plugin, which provides tight coupling between
an assurance argument and the system architecture under
evaluation. Consequently, Resolute is able to instantiate the
assurance pattern with context specified within the system
model, extract evidence for supporting assurance claims, and
produce a “passing” or “failing” assurance argument based on
whether all claims are satisfied.

Figure 8 depicts the assurance argument for the run-time
assurance architecture. The full argument is not shown due to
space constraints, but the general structure consists of a top-
level claim supported by three sub-claims. Overall, we wish

to argue that the RTA architecture ensures that a safe flight
plan is published (claim G1 in the figure). In the event that
the flight plan produced by the LEC is not deemed safe, we
fall back on the backup flight plan produced by the BAF. We
therefore include the assumption (A1) that the BAF flight plan
is indeed safe.

We argue the top-level goal is achieved by providing evi-
dence that the architecture is correct (G4), the implementation
logic is correct (G3), and that an unsafe flight plan can be de-
tected when it is produced by the LEC (G2). The architecture
correctness argument comprises multiple sub-claims that focus
on correct model composition with respect to requirements. As
shown in the figure, one method for demonstrating correct-
ness is AGREE verification (G14). This particular branch of
the assurance argument also demonstrates Resolute’s ability
to evaluate evidence produced by external tools as part of
evaluating the assurance argument. The implementation logic
correctness argument is supported by a proof of correctness
from the APT tool (G9). The safe backup sub-claim argues
that the decision from the run-time monitor is safe. The
evidence for this claim ensures that both the run-time monitor
requirements and implementation is correct.

VI. FLIGHT TEST RESULTS

Our flight testing plan evaluated the performance of the LEC
collision avoidance planner and the RTA architecture using the
Boeing Autonomy Testbed Aircraft and another (unmodified)
Cessna Caravan aircraft flying as an intruder. Both aircraft
executed a variety of straight-and-level trajectories headed
towards a defined collision point (but with 400 feet of vertical
separation for safety) in our test area over Central Washington
State. The flights occurred in an airspace volume closely coor-
dinated with Air Traffic Control at Grant County International
Airport in Moses Lake, Washington. The flight test plan, and
the design of all aircraft systems, underwent thorough safety
reviews by the US Air Force and the Boeing Company before
flight testing.

The two aircraft used in the flight testing were equipped
with ADS-B In and ADS-B Out functionality. The Boeing
autonomy testbed aircraft used its onboard ADS-B In system
to sense the location of the intruder aircraft which was on
a collision course towards the Control Point (CP), as shown
in Figure 9. The DAA alerting functionality on the testbed
aircraft detected the intruder at a safe distance and triggered
the generation of avoidance flight plans that the testbed would
fly to remain well clear of the intruder aircraft.

As described above, two avoidance flight plans were auto-
matically generated on the testbed aircraft, one by the LEC
and the other by the backup avoidance planner (which did not
use a neural network). The RTA architecture assessed the two
plans and determined which would be flown by the testbed to
remain well clear of the intruder.

Flight testing consisted of the live execution of multiple
two-aircraft test conditions. Each test condition specified the
following:



Fig. 8: Assurance Argument for run-time assurance generated by Resolute

1) A relative heading angle between the testbed aircraft and
the intruder

2) The specification to use one of two LECs that were
available on the testbed aircraft flight software

Multiple relative heading angles were flown, including a
head-on encounter (relative heading = 180 degrees), and
other relative headings in 45 degree intervals. The available
LECs were termed the “good LEC” and the “bad LEC.” The
“good LEC” was expected to generate safe remain-well-clear
trajectories, while the “bad LEC” was designed to generate
unsafe trajectories, simulating an LEC producing unintended
(and unsafe) behaviors.

During the numerous test conditions flown we made the
following general observations:

• In test conditions where the good LEC was used, the
generated avoidance flight plans resulted in safe and
standards conformant remain-well-clear avoidance of the
intruder. The RTA functionality successfully assessed the
LEC plans as safe, which resulted in the testbed aircraft
flying the LEC route.

• In test conditions where the bad LEC was used, the
generated avoidance flight plans resulted in violation of
the remain-well-clear avoidance criteria relative to the
intruder. The RTA functionality successfully assessed the
LEC plans as unsafe, which resulted in the testbed aircraft

flying the route from the backup avoidance planner.

There were two interesting test conditions in which we
observed unexpected results. Recall from Section IV that when
both plans are assessed as safe but predicted CPA for either
occurs at the limit of the prediction horizon, we prefer the
plan whose CPA is actually within the prediction horizon. This
situation occurred spontaneously in one of our test conditions,
resulting in the RTA functionality choosing (correctly) the
backup plan over the LEC.

In another test condition we were surprised to observe the
RTA functionality choosing to fly the plan generated by the bad
LEC. Upon further analysis, we found that both plans were
assessed as safe (though the bad LEC plan was just barely
safe) and in this case the plan selector logic correctly chose
the LEC plan. However, during execution of the test scenario
the RWC separation criteria was violated. We discovered that
several factors combined to place the intruder aircaft ahead of
its predicted position, resulting in separation slightly below
the RWC requirement. This condition was possible in our
experiment because of an initial design decision to have each
of the planners produce only a single avoidance flight plan
at the start of a collision encounter, with no updates for any
changes that might occur during test execution.



Fig. 9: Flight test plan for evaluation of LEC collision avoidance and RTA safety guarantees

VII. CONCLUSION

Our team has flight tested machine learning technology for
aircraft collision avoidance with a run-time assurance architec-
ture designed to guarantee safety in the presence of potential
unintended behaviors. These capabilities were integrated on
Boeing’s Autonomy Testbed Aircraft to show that they can
provide correct operation and safety guarantees needed by
real aircraft. Flight testing demonstrated the ability of the
RTA system to ensure that “remain well clear” separation
criteria were maintained during a variety of collision encounter
geometries. Formal methods and an assurance argument were
used to provide evidence of the correctness of the RTA design.

Future work will extend the LEC planner and the RTA archi-
tecture to handle multiple intruder aircraft and other obstacles
such as weather. We will also update the RTA architecture to
actively update RWC assessment during a collision encounter
and dynamically request new avoidance plans if safety has
been compromised due to change in intruder aircraft behavior
or the arrival of additional intruders.
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