You Keep Using That Word

Darren Cofer, Rockwell Collins Advanced Technology Center

Formal methods tools have been shown to be effective at finding defects in and verifying the correctness
of safety-critical systems such as avionics systems. The recent release of DO-178C and the accompanying
Formal Methods Supplement DO-333 will make it easier for developers of software for commercial aircraft
to obtain certification credit for the use of formal methods. However, most developers of avionics systems
are unfamiliar with formal methods, and most developers of formal methods tools are unfamiliar with cer-
tification requirements and processes. This article provides a brief overview of the certification process for
commercial aircraft, as well as some of the issues related to the use of formal methods tools in this context.

1. INTRODUCTION

Certification. Verification. Qualification.

These are words that may appear in computer science and software publications.
For example, there is active research related to certified compilers [Leroy 2006 and
certifying model checkers [Driger et al. 2010]]. In these instances, the word certifica-
tion is used in connection with the production of a proof certificate which may serve
as evidence corroborating a specific analysis result or showing the correctness of a
transformation. In other cases, certification may actually refer to a legal or regula-
tory process related to product acceptance or licensing by the government. Similarly,
in some contexts verification is used to mean a formal proof of correctness, while in
other contexts verification implies a manual code review or requirements-based test-
ing. And qualification sounds like a straightfoward concept, but has a specific technical
meaning in certain contexts.

So these words can have different meanings or implications in different contexts,
which is fine, until these contexts overlap. In fact, this is exactly what is happening as
we work toward greater adoption of formal methods tools in the development of safety-
critical embedded systems. We may soon be using a certifying model checker to satisfy
certification objectives for a flight control system, so we need to be careful about our
definitions. Otherwise, we run the risk of looking like Vizzini in The Princess Bride
[IMDB 1987|], who repeatedly exclaims “Inconceivable!” until Inigo Montoya finally
replies “You keep using that word. I do not think it means what you think it means.”

) I L y
Moo KEEP 05116 THAT WD, |-y

kbl

i b
o N7 THINY T HEas WMAT Yo THYE

Fig. 1. Certification! I do not think it means what you think it means.

ACM SIGLOG News 1 0000, Vol. 0, No. 0

There are a number of issues to be addressed before formal verification tools can
be fully integrated into the design process for safety-critical systems. For example,
most developers of avionics systems are unfamiliar with which formal methods tools
are most appropriate for different problem domains. Different levels of expertise are
necessary to use these tools effectively and correctly. Evidence must be provided of
a formal method’s soundness, a concept that is not well understood by most practic-
ing engineers. Similarly, most developers of formal methods tools are unfamiliar with
certification requirements and processes. DO-178C [RTCA 2011a] requires that a tool
used to meet its objectives must be qualified in accordance with the tool qualifica-
tion document DO-330 [RTCA 2011bf]. The qualification of formal verification tools
will likely pose unique challenges.

This article provides an overview of the concepts of certification, verification, and
qualification, and how they relate to the use of formal methods tools. As a practical
matter, we will focus on the civil aviation domain since there are published standards
addressing the use of formal methods in the certification process. Similar notions of
certification, software verification, and tool qualification are also found in the railway,
nuclear, and medical device domains.

Much of the certification material that follows is adapted from [Bhattacharyya et al.
2015]]. Additional information on formal methods and certification in commercial air-
craft can be found on our research group’s web site, Loonwerks.com.

2. CERTIFICATION

Certification is defined in DO-178C as legal recognition by the relevant certification
authority that a product, service, organization, or person complies with its require-
ments. In the context of commercial aircraft, the relevant certification authority is the
FAA in the U.S. or EASA in Europe. The requirements referred to are the government
regulations regarding the airworthiness of aircraft operating in the National Airspace
System (NAS). In practice, certification consists primarily of convincing representa-
tives of a government agency that all required steps have been taken to ensure the
safety, reliability, and integrity of the aircraft.

Type certification refers to approval of the aircraft design. Each aircraft manufac-
tured is also individually certified to comply with its certified type design. Note that
software itself is not certified in isolation, but only as part of an aircraft.

Certification differs from verification in that it focuses on evidence provided to a
third party to demonstrate that the required activities were performed completely and
correctly, rather on performance of the activities themselves. Also note that certifica-
tion connects a product or design to legal requirements for its safety. Therefore, it is
possible for a design to be safe but not certifiable. For example, the certification author-
ity may for some reason not be convinced of the adequacy of the evidence provided.

2.1. Airworthiness Requirements

In the U.S,, the legal requirements for aircraft operating in the NAS are defined in the
Code of Federal Regulations, Title 14 (14CFR), Aeronautics and Space. The purpose of
certification is to ensure that these legal requirements have been met.

Airworthiness standards for transport class aircraft are specified in Part 25 and
standards for smaller aircraft are specified in Part 23. Parts 27 and 29 apply to ro-
torcraft and Part 33 to engines. Part 25 covers topics including Flight, Structure, De-
sign and Construction, Powerplant, Equipment, Operating Limitations, and Electrical
Wiring. Some of the requirements are quite detailed. For example, Subpart B (Flight)
provides formulas and a detailed procedure for computing reference stall speed. It
also provides requirements for controllability, trim conditions, and stability. Subpart D
(Design and Construction) includes requirements for Control Systems related to stabil-

ACM SIGLOG News 2 Vol. 0, No. 0, 0000

Loonwerks.com

ity augmentation, trim systems, and limit load static tests. Some requirements cover
items that no longer apply to modern aircraft (cables and pulleys).

2.2. Certification Process

The stakeholders in the civil aviation domain (FAA, airframers, equipment manufac-
turers) have developed a collection of documents defining a certification process which
has been accepted as the standard means to comply with federal regulations. The pro-
cess includes system development, safety assessment, and design assurance. These
documents and their relationships are shown in Figure

Intended Safety Assessment Process
Aircraft —————>i Guidelines and Methods
Function (ARP 4761)

Function, Failure, &

System Design
Safety Information ¥ &

Functional
Aircraft
System Development Processes
—
(ARP 4754A)
Implementation
Hardware Software
Requirements Guidelines for Integrated Requirements
Modular Avionics
(D0-297)
Implementation
Hardware Development Software Development
Life-Cycle Life-Cycle
(DO-254) (DO-178C)

Fig. 2. Relationship among key documents in the certification process

The intended function, or requirements, for a new aircraft are the starting point
for the process. These requirements are the basis for the aircraft system design that
is produced in accordance with ARP4754A [SAE 2010], the guidelines for the system
development process. The system design along with the aircraft requirements and its
operating context are used to conduct a safety assessment in accordance with ARP4761
[SAE 1996].

The safety assessment determines, among other things, the criticality of system com-
ponents as they contribute to the safety of the overall system. The system development
process allocates functions and requirements to hardware and software components in
the system, along with their assigned criticality from the safety assessment process.
This information is used to develop the individual components and functions. The de-
sign assurance documents DO-178C (for software), DO-254 (for programmable hard-
ware), and DO-297 (for integrated modular avionics) provide guidance for ensuring
that these components satisfy the requirements that come from the system develop-
ment process.

ACM SIGLOG News 3 Vol. 0, No. 0, 0000

2.3. Safety Assessment

Safety assessment is performed in accordance with ARP4761, Guidelines and Methods
for Conducting the Safety Assessment Process on Civil Airborne Systems and Equip-
ment. This document describes guidelines and methods for performing the safety
assessment for certification of civil aircraft and is a means of showing compliance
with the safety requirements of 14CFR. These requirements are hidden in Subpart
F (Equipment) section 25.1309 with the unlikely title “Equipment, systems, and in-
stallations.”

This section states that the equipment, systems, and installations required in an
aircraft must be designed to ensure that they perform their intended functions under
any foreseeable operating condition. The airplane systems and associated components,
considered separately and in relation to other systems, must be designed so that:

— The occurrence of any failure condition which would prevent the continued safe flight
and landing of the airplane is extremely improbable, and

— The occurrence of any other failure conditions which would reduce the capability of
the airplane or the ability of the crew to cope with adverse operating conditions is
improbable.

The section goes on to state that warning information must be provided to alert the
crew to unsafe system operating conditions, and that systems, controls, and associ-
ated monitoring and warning means must be designed to minimize crew errors which
could create additional hazards. Compliance must be shown by analysis or testing that
considers possible modes of failure (including malfunctions and damage from external
sources), the probability of multiple failures and undetected failures, the resulting
effects on the airplane and occupants, and the crew warning cues, corrective action
required, and the capability of detecting faults.

2.4. System Development

Aircraft system development is described in ARP4754A, Guidelines for Development
of Civil Aircraft and Systems. This document discusses the development of aircraft
systems, taking into account the overall aircraft operating environment and functions.
This includes validation of requirements and verification of the design implementation
for certification and product assurance. It provides practices for showing compliance
with the regulations.

ARP4754A provides guidance for creating plans for the system development and
eight integral processes which span all of the system development activities. The
integral processes are safety assessment, assurance level assignment, requirements
capture, requirements validation, implementation verification, configuration manage-
ment, process assurance, and certification and regulatory authority coordination. The
system development process allocates functionality and defines requirements for com-
ponents, both hardware and software. It invokes the safety assessment process and
ensures that the system design satisfies safety requirements for the aircraft. It also
guides developers in allocating system requirements to hardware and software compo-
nents and in determining the criticality level for those components.

3. VERIFICATION

The software assurance process makes sure that components are developed to meet
their requirements without any unintended functionality. This means that the process
will include activities specifically designed to provide evidence that the software does
only what its requirements specify and nothing else.

ACM SIGLOG News 4 Vol. 0, No. 0, 0000

For software in commercial aircraft, the relevant guidance is found in DO-178C,
Software Considerations in Airborne Systems and Equipment Certification. Certifica-
tion authorities in North American and Europe have agreed that an applicant (aircraft
manufacturer) can use this guidance as a means of compliance with the regulations
governing aircraft certification.

The original version of the document, DO-178, was approved in 1982 and consisted
largely of a description of best practices for software development. It was revised in
1985 as DO-178A, adding definitions of three levels of software criticality, with de-
velopment and verification processes described in more detail. DO-178B, approved in
1992, defined five levels of software criticality (A — E, with level A being the most
critical) with specific objectives, activities, and evidence required for each level. The
processes and objectives in the document assume a traditional development process
with test-based verification.

In 2005, the publishers of DO-178 initiated work on a revision to be known as DO-
178C. A committee was chartered to draft the new document, with the objectives of
minimizing changes to the core document, yet updating it to accommodate approxi-
mately 15 years of progress in software engineering. Guidance specific to new soft-
ware technologies was to be contained in supplements which could add, modify, or re-
place objectives in the core document. New supplements were developed in the areas
of object-oriented design, model-based development, and formal methods, as well as an
additional document containing new guidance on tool qualification. DO-178C and its
associated documents were published in 2011 and accepted by the FAA as a means of
compliance in 2013.

3.1. Software Development

DO-178C does not prescribe a specific development process, but instead identifies im-
portant activities and design considerations throughout a development process and
defines objectives for each of these activities. It assumes a traditional development
process that can be decomposed as follows:

— Software Requirements Process. Develops High Level Requirements (HLR) from the
output of the system design process.

— Software Design Process. Develops Low Level Requirements (LLR) and Software Ar-
chitecture from the HLR.

— Software Coding Process. Develops source code from the Software Architecture and
the LLR.

— Software Integration Process. Combines executable object code modules with the tar-
get hardware for hardware/software integration.

Each of these processes produces or updates a collection of artifacts, culminating in
an integrated executable (see Figure [3).

3.2. Software Verification

The results of these processes are verified through the verification process. The veri-
fication process consists of review, analysis, and test activities that must provide evi-
dence of the correctness of the development activities.

In general, verification has two complementary objectives. One objective is to demon-
strate that the software satisfies its requirements. The second objective is to demon-
strate with a high degree of confidence that errors which could lead to unacceptable
failure conditions, as determined by the system safety assessment process, have been
removed.

ACM SIGLOG News 5 Vol. 0, No. 0, 0000

System

Requirements

\
\

Compliance !

Accuracy and Consistency ,’ N Traceab\l\ty:
Compatibility with the Target Computer y 7
werifiability ¢ 7
Conformancl.e to Standards AN o High-LeVe| /(B Accuracy and Consistency
Algorithm Accuracy Requirem ents o Compatibility with
/ the Target Computer
- ,’ ‘\ Verifiability
. _b_ﬁDnSl_StIf"':Y / \ Conformance to Standards
ompatibility with the - . Algorithm Accural
Target Computer ! compatibility (T'ompHSTEE \\ & i
Verifiability h racesbity |
Conformance to Standards 1
Partitioning Integrity \ \ 4
1
\ .
TGN Design
!
1

Software
Architecture

Low-Level
Requirements

Compliance :

\

\ Compliance

Verifiability 7
Conformance to Standards {
Accuracy and Consistency %
~

Completeness {,
And Correctness \
~
’
Compatibility with the f
Target Computer \\

Diagram adapted from DO-333 Formal Methods
Supplement to DO-178C and DO-278A

Source
Code

Compliance !
Tracr_‘abllltyr

Robustness !

Compliance -
Robustness ;

’ \

\

Traceability =

S '

1

4 !

F

Executable 0
Object Code

’4 P Development Activity

—————— =P Review/Analysis Activity
P Test Activity

Note: Requirements include Derived Requirements

Fig. 3. DO-178C certification activities required for Level A code.

One of the foundational principles of DO-178C is requirements-based testing. This
means that the verification activities are centered around explicit demonstration that

each requirement has been met.

A second principle is complete coverage, both of the requirements and of the code
that implements them. This means that every requirement and every line of code
will be examined in the verification process. Furthermore, several metrics are defined
which specify the degree of structural coverage that must be obtained in the verifica-

tion process, depending on the criticality of the software being verified.

A third principle is traceability among all of the artifacts produced in the develop-

ment process. This means that:

ACM SIGLOG News

Vol. 0, No. 0, 0000

— Every requirement must have one or more associated test cases. All testing must
trace to a specific requirement.

— Every requirement must be traceable to code that implements it. Every line of code
must be traceable to a requirement.

— Every line of code (and, in some cases, every branch and condition in the code) must
be exercised by a test case.

Together, these objectives provide evidence that all requirements are correctly im-
plemented and that no unintended function has been implemented.

Of particular interest is D0-333, the Formal Methods Supplement to DO-178C
[RTCA 2011c]. DO-333 extends the guidance provided in DO-178C and describes how
formal methods may be used to satisfy its certification objectives. Several case studies
showing examples of how to use different formal verification tools to satisfy various cer-
tification objectives are available in [Cofer and Miller 2014]]. DO-333 generally allows
the testing described above to be replaced by a comparable formal analysis. However,
even when formal methods are used some on-target testing is still required.

One constraint imposed by ARP4754A (and DO-178C) is that requirements must
be verifiable, which in the past has meant testable. This meant that in practice there
could be no negative requirements such those related to safety (e.g., “The system can
never enter an unsafe state.”) However, with the advent of DO-333, such requirements
can now be addressed analytically and may be very useful in demonstrating the safety
of a complex avionics system.

4. QUALIFICATION

Tool qualification is the process by which certification credit may be claimed for the
use of a software tool. Qualification is required whenever a certification process is
eliminated, reduced, or automated by a software tool without its output being verified.
The purpose of tool qualification is to ensure that the tool provides confidence at least
equivalent to that of the process it eliminates, reduces, or automates. Tool qualification
is, therefore, a significant aspect of any certification effort.

Software tools are used in development processes to automate life cycle activities
that are complex and error-prone if performed by humans. The use of such tools should,
in principle, be encouraged from a certification perspective to provide confidence in the
correctness of the software product. Therefore, we should avoid unnecessary barriers to
tool qualification which may inadvertently reduce the use of tools that would otherwise
enhance software quality and confidence.

Formal methods tools have matured to the point where they are capable of ana-
lyzing software systems of practical size, and their effectiveness in finding errors has
been demonstrated repeatedly [Woodcock et al. 2009], [Miller et al. 2010]. Commer-
cial tools used in aerospace and other safety-critical domains are beginning to include
formal verification capabilities. For example, MATLAB now markets both Simulink
Design Verifier, a model checker, and Polyspace, an abstract interpretation tool. Es-
terel Technologies includes a model checker, Design Verifier, as part of their SCADE
Suite toolset.

If formal verification is used to satisfy DO-178C objectives, DO-333 requires the ap-
plicant to provide evidence that the underlying method is sound, i.e., it will never prove
a property to be true when it is actually false. In addition, if the formal verification is
to be implemented in a software tool, the tool must be qualified in accordance with
DO-330. While clearly related, the concepts of tool qualification and soundness of the
underlying method were intentionally kept separate by the standards’ authors.

DO-330 defines five tool qualification levels (TQL) ranging from TQL-1 for software
development tools that generate Level A source code to TQL-5 for software verification

ACM SIGLOG News 7 Vol. 0, No. 0, 0000

tools. The TQL is determined both by the criticality of the software the tool is being
used on and the impact of the tool on the software development process. A strong dis-
tinction is made between a development that could potentially insert an error into the
embedded software, and a verification tool that could fail to detect an error. A trusted
compiler or code generator would be classified as TQL-1 through 4, depending on the
criticality of the code it is used to generate. Formal verification tools are classified as
TQL-4 or TQL-5.

Despite the additional guidance provided in DO-178C, D0O-330, and DO-333, there
are still many questions to be addressed. For one thing, most practicing engineers are
unaware of how to apply different categories of formal verification tools. Even within
a particular category, there are a wide variety of tools, often based on fundamentally
different approaches, each with its own strengths and weaknesses. For example, an
explicit state model checker operates in a fundamentally different way from an SMT
(Satisfiability Modulo Theories) based model checker.

Typically, a tool will be shown to meet its requirements through testing, analysis,
and reviews, just as for airborne or ground-based software developed in accordance
with DO-178C. However, formal verification tools differ from many tools in that they
are typically “exhaustive” and cover all combinations of inputs and state. Development
of the tool operational requirements and test cases for such tools may pose unique
challenges.

Using a formal verification tool to meet DO-178C objectives may require more than
just qualification of the tool itself. For example, it is frequently necessary to trans-
late a software model (e.g., a Simulink model) to the input language of the verification
tool. In such cases, consideration must be given as to why that translation is to be
trusted. Is the translation included as part of the tool operational requirements and
verified as part of the tool qualification, or are the translator and the verification tool
regarded as two separate entities? Outputs of the formal verification tool often need to
be translated back to a representation the system developers can understand and sim-
ilar questions apply to why this translation can be trusted. Potential user errors must
be considered. Are the users allowed to introduce assumptions about the environment
of the unit being checked, and if so, are these clearly identified and validated? Are
there tool configuration settings or modes of operation that can cause it to generate
unsound results? All ways in which use of the tool might provide false confidence need
to be identified and accounted for.

At the same time, it is also important to not make the cost of qualification of for-
mal methods tools so great as to discourage their use. While it is tempting to hold
formal verification tools to a higher standard than other software tools, making their
qualification unnecessarily expensive could do more harm than good.

5. CONCLUSION

Formal methods tools have the potential to ensure the quality of safety-critical systems
by providing comprehensive evaluation of the behavior of complex embedded software.
They have also been shown to reduce costs through the early detection and elimina-
tion of design errors. Improved communication between formal methods researchers,
software developers, and certification authorities will be an important enabler in the
continued adoption of formal methods in industries such as aerospace that have strong
certification requirements. With a shared understanding of this context, our expecta-
tions for the use of formal methods to satisfy certification objectives are changing from
“Inconceivable!” to “Of course!”

ACM SIGLOG News 8 Vol. 0, No. 0, 0000

ACKNOWLEDGMENTS

Thanks to Deb Turcio at DebbieDrawsFunny.com for permission to use the drawing in Figure

REFERENCES

Siddhartha Bhattacharyya, Darren Cofer, David J. Musliner, Joseph Mueller, and Eric Engstrom. 2015.
Certification Considerations for Adaptive Systems. Technical Report NASA/CR2015-218702. NASA Con-
tractor Report.

Darren Cofer and Steven P. Miller. 2014. Formal Methods Case Studies for DO-333. Technical Report
NASA/CR-2014-218244. NASA.

Klaus Dréger, Andrey Kupriyanov, Bernd Finkbeiner, and Heike Wehrheim. 2010. SLAB: A Certifying
Model Checker for Infinite-State Concurrent Systems. In Tools and Algorithms for the Construction
and Analysis of Systems, 16th International Conference, TACAS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings. 271-274.

IMDB. 1987. The Princess Bride. (1987). http://www.imdb.com/title/tt0093779/

Xavier Leroy. 2006. Formal Certification of a Compiler Back-end or: Programming a Compiler with a Proof
Assistant. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2006, Charleston SC, USA, January 11-13, 2006. 42-54.

Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. 2010. Software model checking takes off. Com-
mun. ACM 53, 2 (2010), 58-64.

RTCA. 2011a. DO-178C, Software Considerations in Airborne Systems and Equipment Certification. (2011).

RTCA. 2011b. DO-330, Software Tool Qualification Considerations. (2011).

RTCA. 2011c. DO-333, Formal Methods Supplement to DO-178C and DO-278A. (2011).

SAE. 1996. ARP4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil Air-
borne Systems and Equipment. (1996).

SAE. 2010. ARP4754A, Guidelines For Development Of Civil Aircraft and Systems on Civil Airborne Systems
and Equipment. (2010).

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John S. Fitzgerald. 2009. Formal Methods: Practice
and Experience. ACM Comput. Surv. 41, 4 (2009).

ACM SIGLOG News 9 Vol. 0, No. 0, 0000

DebbieDrawsFunny.com
http://www.imdb.com/title/tt0093779/

	Introduction
	Certification
	Airworthiness Requirements
	Certification Process
	Safety Assessment
	System Development

	Verification
	Software Development
	Software Verification

	Qualification
	Conclusion

