
1

Taming the Complexity Beast
Darren Cofer, Ph.D.,

Fellow, Rockwell Collins Advanced Technology Center
Minneapolis, MN

Introduction
Advanced capabilities planned for the next

generation of aircraft and the Next Generation Air
Transportation System (NextGen) will be based on
complex new software. Integrated Modular Avionics
(IMA) computing platforms already enable the
implementation of more functionality in software and
tighter integration of these functions to improve
aircraft efficiency. In the future, aircraft may use
adaptive and intelligent control algorithms to provide
enhanced safety and robustness in the presence of
failures and adverse flight conditions. Unmanned
aircraft will join the National Airspace System
(NAS), incorporating advanced control algorithms
that will provide enhanced safety, autonomy, and
high-level decision-making functions normally
performed by human pilots. NextGen will encompass
airborne and ground-based nodes with significant
computational elements acting in coordination to
maintain a safe and efficient airspace.

However, there are serious barriers to the
deployment of these new capabilities. As these
systems have grown in complexity, verification of
airborne software has become the single most costly
development activity (Crum 2004). The verification
costs of even more complex NextGen systems in the
future may impact safety, not just through an
increasing incidence of errors and unforeseen
interactions, but by delaying and preventing the
deployment of crucial software-based safety
functions.

Increasing system complexity therefore poses a
threat to the continued safety of manned and
unmanned aircraft in the NAS. Testing alone cannot
establish strict bounds on all the behaviors that may
occur during operation of these software-intensive
systems. New approaches to verification based on
logic and mathematical analysis are needed to tame
the “complexity beast” and support continued
innovation in aircraft systems.

This article will briefly describe sources of
complexity in modern aircraft software and the
limitations of test-based verification methods. The
role of software testing in the certification standards
for civil aircraft will be described next, as well as
how this domain is beginning to embrace new

verification approaches based on formal methods.
The article concludes with several examples of
formal methods that have been used to verify
complex software.

Complexity and Software Testing
Edsger Dijkstra famously said, “Testing shows the

presence, not the absence, of bugs” (Dijkstra 1969).
For relatively simple programs, it is possible to
exhaustively test all possible inputs and cover all the
internal states of the program. However, for most
realistic software systems testing can only hope to
sample the enormous space of behaviors. Therefore,
the fact that a set of test cases does not reveal any
errors is not a guarantee that the software is, in fact,
error-free. And because of the discrete nature of
software, even a large test suite cannot provide the
assurance that we might expect in a system with
continuous dynamics. This difference is critical for
safety-critical software in aircraft.

In addition to the discrete (vs. continuous) nature
of software, there are a number of other sources of
complexity:
 By any measure, the amount of safety-critical

software deployed in commercial and military
aircraft is rising exponentially. All other things
being equal, this alone increases complexity.

 Flight deck software is not a single, monolithic
program, but a collection of asynchronous
programs that interact in real-time. In this
environment, errors related to transients and
race conditions are notoriously difficult to
replicate and track down.

 Taken as a whole, an aircraft is a hybrid system,
consisting of both discrete (computer hardware
and software) and continuous (aerodynamics
and the physical environment) elements. While
control theory itself is quite mature, the
rigorous mathematical analysis of hybrid
systems that account for software behavior is
still a relatively new field.

For safety-critical systems, the safety assurance
process must establish that system reliability is
extremely high. In the aerospace domain this has
been translated into a probability of failure of less
than 10−9 per flight hour (SAE International 1996).

2

It should be obvious that software does not
physically fail as hardware does since it is a logical
construct not susceptible to wearing out or
environmental effects. Any software faults are
inherent in its design and present throughout the life
of a system. Software is either correct or incorrect
with respect to its requirements.

Nevertheless, software systems are embedded in
physical environments that are subject to failures and
environmental effects (including electromagnetic
radiation and high-energy particles.) The physical
environment, including pilot commands, may be
viewed as a stochastic sequence of inputs to the
software. For each input, the program produces
either a correct or an incorrect answer. Thus, in a
systems context, the software system produces errors
in a stochastic manner. To achieve satisfactory
statistical significance for failure rates less than 10-7
per hour would require over a million years of testing
(Butler 1993).

Therefore, measurement of the reliability of
software systems through testing alone is a practical
impossibility. In practice, the objectives of software
testing are to demonstrate a sampled compliance with
requirements, and to detect and eliminate as many
software design errors as possible. More on this in
the next section.

A recent discussion of the foundations of software
testing, the limitations of testing, and efforts to
improve its effectiveness in detecting errors can be
found in (Staats 2011).

Airborne Software Certification
For software in commercial aircraft, software

assurance guidance is found in DO-178C, Software
Considerations in Airborne Systems and Equipment
Certification. Certification authorities in North
American and Europe have agreed that an applicant
(aircraft manufacturer) can use this guidance as a
means of compliance with the regulations governing
aircraft certification.

The software assurance process makes sure that
components are developed to meet their requirements
without any unintended functionality. This means
that the process will include activities specifically
designed to provide evidence that the software does
only what its requirements specify and nothing else.

DO-178C defines five levels of software
criticality (A – E, with level A being the most
critical) with specific objectives, activities, and
evidence required for each level. The processes and
objectives in the document assume a traditional
development process and rely heavily on test-based
verification.

Guidance specific to new software technologies is
provided in supplements which can add, modify, or
replace objectives in the core document. New

supplements were developed in the areas of object-
oriented design, model-based development, and
formal methods, as well as an additional document
containing new guidance on tool qualification. DO-
178C and its associated documents were published in
2011 and accepted by the FAA as a means of
compliance in 2013.

DO-178C does not prescribe a specific
development process, but instead identifies important
activities and design considerations throughout a
development process and defines objectives for each
of these activities. It assumes a traditional
development process that can be decomposed as
follows:
 Software Requirements Process. Develops High

Level Requirements (HLR) from the output of
the system design process.

 Software Design Process. Develops Low Level
Requirements (LLR) and Software Architecture
from the HLR.

 Software Coding Process. Develops source
code from the Software Architecture and the
LLR.

 Software Integration Process. Combines
executable object code modules with the target
hardware for hardware/software integration.

Each of these processes produces or updates a
collection of artifacts, culminating in an integrated
executable. The results of these development
processes are verified through the verification
process. The verification process consists of review,
analysis, and test activities that must provide
evidence of the correctness of the development
activities.

In general, verification has two complementary
objectives. One objective is to demonstrate that the
software satisfies its requirements. The second
objective is to demonstrate with a high degree of
confidence that errors that could lead to unacceptable
failure conditions, as determined by the system safety
assessment process, have been removed.

One of the foundational principles of DO-178C is
requirements-based testing. This means that the
verification activities are centered around explicit
demonstration that each requirement has been met.
Test cases must be developed for both normal and
abnormal input ranges to demonstrate robustness.

A second principle is complete coverage, both of
the requirements and of the code that implements
them. This means that every requirement and every
line of code will be examined in the verification
process. Furthermore, several metrics are defined
which specify the degree of structural coverage that
must be obtained in the verification process,
depending on the criticality of the software being
verified. The use of structural coverage metrics are

3

key in that they can help identify missing
requirements and unintended functionality.

A third principle is traceability among all of the
artifacts produced in the development process. This
means that:
 Every requirement must have one or more

associated test cases. All testing must trace to a
specific requirement.

 Every requirement must be traceable to code
that implements it. Every line of code must be
traceable to a requirement.

 Every line of code (and, in some cases, every
branch and condition in the code) must be
exercised by a test case.

Together, these objectives provide evidence that
all requirements are correctly implemented and that
no unintended function has been implemented. As
discussed above, this evidence is not a guarantee of
correctness. Historically, it has been sufficient to
produce highly reliable software for aircraft. Our
concern is whether it will continue to be sufficient in
the face of increasing software complexity.

Formal Methods in Certification
So if testing is inadequate for verifying complex

software systems, what is the alternative? Formal
methods are mathematical techniques for the
specification, development, and verification of
software aspects of digital systems. Formal methods
are based on formal logic, discrete mathematics, and
computer-readable languages. The use of formal
methods is motivated by the expectation that, as in
other engineering disciplines, performing appropriate
mathematical analyses can contribute to establishing
the correctness and robustness of software. Formal
methods for software analysis can be viewed as the
analog of finite element analysis for mechanical
structures.

Unlike testing, formal methods can provide a
complete assessment of software behavior, limited
only by the soundness of the modeling abstractions
that are used. A formal analysis is a proof of
correctness of the design relative to its requirements.
If we can apply formal methods to the verification of
software or a software design, we will be able to cope
with growing complexity in a way that is impossible
for test-based verification.

DO-333, the Formal Methods Supplement to DO-
178C, extends the guidance provided in DO-178C
and describes how formal methods may be used to
satisfy its certification objectives. Several case
studies showing examples of how to use different
formal verification tools to satisfy various
certification objectives are available in (Cofer 2014).
DO-333 generally allows the testing described above
to be replaced by a comparable formal analysis.

However, even when formal methods are used some
on-target testing is still required.

One constraint imposed by DO-178C is that
requirements must be verifiable, which in the past has
meant “testable.” This meant that in practice there
could be no negative requirements such those related
to safety (e.g., “The system can never enter an unsafe
state.”) However, with the advent of DO-333, such
requirements can now be addressed analytically and
may be very useful in demonstrating the safety of a
complex avionics system.

Complex Components
The wide-spread use of model-based development

(MBD) tools is facilitating the use of formal methods
for verification. MBD refers to the use of domain-
specific (often graphical) modeling languages that
can be executed in simulation before the actual
system is built. The use of such modeling languages
allows engineers to create a model of the system,
execute it on their desktop, and automatically
generate code and test cases. Furthermore, tools are
now available to translate these design models into
analysis models that can be verified by formal
methods tools with the results translated back into the
original modeling notation. This process leverages
the original modeling effort and allows engineers to
work in familiar notations for their domain.

Model checking is a category of formal methods
that is particularly well suited to integration in MBD
environments. A model checker will consider every
possible combination of system input and state, and
determine whether or not a specified set of properties
is true. If a property is not true, the model checker
will produce a counterexample showing how the
property can be falsified. Model checkers are highly
automated, requiring little to no user interaction, and
provide the verification equivalent of exhaustive
testing of the model.

In the Certification Technologies for Flight
Critical Systems (CerTA FCS) project funded by the
U.S. Air Force, we analyzed several software
components of an adaptive flight control system for
an unmanned aircraft. One system we analyzed was
the redundancy manager which implements a triplex
voting scheme for fault-tolerant sensor inputs. We
performed a head-to-head comparison of verification
technologies with two separate teams, one using
testing and one using model checking. In evaluating
the same set of system requirements, the model
checking team discovered 12 errors while the testing
team discovered none. Furthermore, the model
checking evaluation required 1/3 less time (Whalen
2007).

The case studies in (Cofer 2014) provide
examples of three classes of formal methods (model
checking, theorem proving, and abstract

4

interpretation) applied to several different avionics
software components. These case studies
demonstrate the effectiveness and practicality of
using formal methods to verify complex software
components in an aircraft certification context.

Complex Systems
As system size and complexity grow, verification

demands can easily exceed the capabilities of current
formal methods tools. System-level verification can
be accomplished using a compositional approach to
break down the analysis task into manageable pieces
according to the system architecture. Furthermore,
many important sources of errors appear at the
system architecture level. However, tools for
modeling and analyzing system-level properties using
formal methods have been quite limited.

Without the means to rigorously model the system
architecture, system and safety engineers are unable
to effectively communicate and review ever more
complex system designs. Without tools to effectively
analyze behaviors resulting from the system
architecture, most system-level design errors will not
be detected until system integration when the cost of
correction is far greater and likely to introduce still
more errors. As more functions are implemented as
asynchronous software components, testing becomes
less and less effective at finding race conditions and
deadlocks, requiring greater emphasis on analysis.
Without a precise specification of the system
architecture, analytic techniques can only be applied
to hand-crafted models that are unlikely to represent
the true system design and that may not be
completely trusted by developers.

Our research group is addressing these challenges
by developing compositional reasoning methods and
tools that will permit the verification of systems that
exceed the complexity limits of current approaches.
Our approach is based on:
 Modeling the system architecture using

standard notations that will be usable by
systems and software engineers.

 Developing a sophisticated translation
framework that automates the translation of
these models for analysis by powerful formal
methods verification tools.

 Developing techniques for compositional
verification based on the system architecture to
divide the verification task into manageable,
reusable pieces.

This approach has the potential to significantly
reduce verification costs by identifying and
correcting system design errors early in the life cycle
rather than waiting until system integration. We are
validating our approach and our tools on a realistic
fault-tolerant flight control system model. The Quad-
redundant Flight Control System (QFCS) has been

designed by NASA as a suitable control system for
its Transport Class Model (TCM) aircraft (Backes
2015).

Our compositional approach is designed to exploit
the verification effort and artifacts that are already
part of typical software component verification
processes. Each component in the system model is
annotated with an assume/guarantee contract that
includes the requirements (guarantees) and
environmental constraints (assumptions) that were
specified and verified as part of its development
process. We then reason about the system-level
behavior based on the interaction of the component
contracts. By partitioning the verification effort into
proofs about each subsystem within the architecture,
the analysis will scale to handle large system designs.
Additionally, the approach naturally supports an
architecture-based notion of requirements refinement:
the properties of components necessary to prove a
system-level property in effect define the
requirements for those components.

There were two objectives in using this
verification approach. The first was to reuse the
verification already performed on components. The
second was to enable distributed, parallel
development of components via virtual integration.

In this process, we specify formal component-
level requirements, demonstrate that they are
sufficient to prove system guarantees, and then use
these requirements as specifications for suppliers. If
the suppliers’ implementations meet these
specifications, we have a great deal of confidence
that the integrated system will work properly.

We have chosen the Architecture Analysis and
Design Language (AADL) as our system architecture
modeling language (Fieler 2012). AADL was
designed for embedded, real-time, distributed
systems and so is a good fit for our domain. It
provides the constructs needed to model embedded
systems such as threads, processes, processors, buses,
and memory. It is sufficiently formal for our
purposes, and is extensible through the use of
language annexes that can initiate calls to separately
developed analysis tools.

We have implemented our compositional
reasoning methodology in a tool called AGREE:
Assume-Guarantee Reasoning Environment. AGREE
is implemented as an Eclipse plugin and is designed
to work with the open source OSATE AADL tool
developed by the Software Engineering Institute.
AGREE is able to check the correctness of behavioral
properties defined by the composition of component
contracts, check component contracts for
inconsistencies, and determine whether a component
contract has any possible realization. AGREE makes
use of the AADL annex mechanism to annotate
models with contracts corresponding to formal

5

assumptions and guarantees about their behaviors.
AGREE is open source software and is available at
http://github.com/smaccm.

What Next?
Beyond the challenges of complexity in software

components and system designs, there are new
challenges related to unmanned aircraft. Unmanned
aircraft having the advanced capabilities necessary to
operate safely and autonomously in the NAS will
likely be based upon software including adaptive
control (AC) and artificial intelligence (AI)
algorithms.

The current civil aviation certification process is
based on the idea that the correct behavior of a
system must be completely specified and verified
prior to operation. The fact that adaptive systems
change their behavior at run-time is contrary to this
idea in many ways. In general, many AI methods
have unique characteristics that do not fit naturally
within context of existing certification guidelines.
This is due to the fact that the certification policies,
conceived decades ago and still in use today, were
not written with the needs and capabilities of AI in
mind (Harrison 1994).

While systems based on artificial intelligence and
adaptive algorithms can be found in military and
space flight applications, they have had only limited
use in civil airspace due to the constraints and
assumptions of traditional safety assurance methods.
These barriers may delay or prevent the deployment
of some unmanned aircraft in the NAS.

An overview of these systems and the challenges
they present can be found in (Bhattacharyya 2015).
Certification challenges for these systems may
include:
 The difficulty associated with specifying and

verifying the behavior of AC and AI algorithms
in software

 The use of non-traditional programming
languages and the difficulty of measuring
structural coverage in these languages

 The inclusion of non-deterministic behaviors
 The additional complexity of AC and AI

systems compared with traditional systems
 The fact that certification authorities are

generally unfamiliar with these systems
We have explored several mitigation strategies to

address these challenges.
In our experience, there can be an expertise gap

between developers and regulators when it comes to
adopting new technologies. In fact, the commercial
aviation industry is itself very conservative and (for
good reason) usually reluctant to switch to the latest
technology. However, we are convinced that for
some adaptive algorithms this reluctance is
unwarranted. Some approaches to adaptive control

have been proven to be dependable and predictable in
flight tests, and there seem to be no actual barriers to
their certification. In this case, no changes to the
certification process are required.

Current standards assume static behavior
specifications for aircraft functions. It may be
possible to relax this assumption and other
constraints in a principled way. The goal here would
be to modify our existing standards in a way that
retains the underlying safety principles, but also
permits a more dynamic software structure.

Certification approaches based on the
development of a safety case for the aircraft
(including its adaptive components) would in
principle provide more flexibility to use advanced
algorithms, demonstrating the safety of the adaptive
algorithm by using the most appropriate evidence,
while not sacrificing safety. However, there is much
work to be done before applicants would have
sufficient expertise to produce an accurate and
trustworthy safety case, and regulators would be
prepared to evaluate one (Holloway 2014).

Current test-based verification processes will
never be sufficient to assess the behavior of adaptive
systems. Factors such as software size, complexity,
unconventional artifacts, probabilistic computations,
and large state spaces have been discussed as reasons
for the difficulty of testing. Testing will have to be
replaced or augmented by analysis based on formal
methods or other mathematical techniques from the
control theory or computer science domains.

There may be architectural approaches that could
mitigate certification barriers for adaptive systems.
Suppose that we are to certify an adaptive function
that provides some advanced capability related to
improved performance or recovery from a failure or
upset, but we are unable to verify the behavior of the
function with the required level of assurance. It may
be possible to bound the behavior of the adaptive
function by relying three smaller, high-assurance
functions: a system status monitor, a simpler backup
for the adaptive function, and a switching function.
During normal operation, outputs from the adaptive
function are used by the rest of the system. If the
monitor detects that the adaptive function is not
behaving correctly then the system will switch to
using outputs from the simpler backup function. The
key idea is to be able to treat the adaptive system
differently based on when it executes (e.g., during
different phases of flight).

Conclusion
Advances in aircraft performance and safety will

be based on software-intensive systems with
frightening levels of complexity. However, we need
not fear this complexity if we are willing to tame it
using appropriate tools. Moving from test-based

6

verification to analysis-based verification will be
critical to maintaining the safety record that the civil
aerospace industry provides today.

DARREN COFER, Ph.D., is a Fellow at the
Rockwell Collins Advanced Technology Center. He
earned his Ph.D. in electrical and computer
engineering from The University of Texas at Austin.

His principal area of expertise is developing and
applying advanced analysis methods and tools for
verification and certification of high-integrity
systems. His background includes work with formal
methods for system and software analysis, the design
of real-time embedded systems for safety-critical
applications, and the development of nuclear
propulsion systems in the U.S. Navy.

He has served as principal investigator on
government-sponsored research programs with
NASA, NSA, AFRL, and DARPA, developing and
using formal methods for verification of safety and
security properties. He is currently the principal
investigator for the air vehicle team in DARPA's
High Assurance Cyber Military Systems project,
focusing on formal proof of security properties for
unmanned air vehicles.

Dr. Cofer recently served on RTCA committee
SC-205 developing new certification guidance for
airborne software (DO-178C) and was one of the
developers of the Formal Methods Supplement (DO-
333). He is a member of the RTCA Forum for
Aeronautical Software, the Aerospace Control and
Guidance Systems Committee (ACGSC), and a senior
member of the IEEE.

Email: darren.cofer@rockwellcollins.com

References

Crum, V., J. Buffington, G. Tallant, B. Krogh, C.
Plaisted, R. Prasanth, P. Bose, T. Johnson. 2004.
Validation and verification of intelligent and adaptive
control systems. In Proceedings Aerospace
Conference, 2004, IEEE.

SAE International. 1996. ARP4761, Guidelines
and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment.

Feiler, P. H., D. P. Gluch. 2012. Model-Based
Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language. 1st edn.
Addison-Wesley Professional.

Dijkstra, E., J.N. Buxton and B. Randell, eds.,
1969. Software Engineering Techniques, April 1970,
p. 16. Report on a conference sponsored by the
NATO Science Committee, Rome, Italy, 27–31
October 1969.

Butler, R., G. Finelli. 1993. The infeasibility of
quantifying the reliability of life-critical real-time

software. IEEE Transactions on Software
Engineering, 19 (1).

Staats, M., M. Whalen, M. Heimdahl. 2011.
Programs, Tests, and Oracles: The Foundations of
Testing Revisited. In Proceedings International
Conference on Software Engineering, May 21–28,
2011, Honolulu, HI, USA.

Cofer, D., S. Miller. 2014. Formal Methods Case
Studies for DO-333. NASA Contractor Report
NASA/CR-2014-218244.

Whalen, M., D. Cofer, S. Miller, B. Krogh, W.
Storm. 2007. Integration of formal analysis into a
model-based software development process. In
Proceedings Formal Methods for Industrial Critical
Systems, Berlin, Germany, July 2007.

Backes, J., D. Cofer, S. Miller, M. Whalen, 2015.
Requirements Analysis of a Quad-Redundant Flight
Control System. In Proceedings NASA Formal
Methods Symposium, Pasadena, CA. May 2015.

Harrison, L. P. Saunders, J. Janowitz, 1994.
Artificial Intelligence with Applications for Aircraft,
FAA Technical Center Report DOT/FAA/CT-94/41.

Bhattacharyya, S., D. Cofer, D. Musliner, J.
Mueller, and E. Engstrom 2015. Certification
Considerations for Adaptive Systems. In Proceedings
International Conference on Unmanned Aircraft
Systems. Denver CO.

Holloway, C. M. 2012. Towards Understanding
the DO-178C/ ED-12C Assurance Case. In
Proceedings 7th International IET System Safety
Conference, Incorporating the Cyber Security
Conference, pp. 15–18, October 2012.

	Introduction
	Complexity and Software Testing
	Airborne Software Certification
	Formal Methods in Certification
	Complex Components
	Complex Systems
	What Next?
	Conclusion
	References

