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Abstract. RTCA DO-333, Formal Methods Supplement to DO-178C and DO-
278A, provides guidance for software developers wishing to use formal 
methods in the certification of airborne systems and air traffic management 
systems.  This paper presents three case studies describing the use of different 
classes of formal methods to satisfy DO-178C certification objectives.  The 
case studies examine different aspects of a common avionics example, a dual-
channel Flight Guidance System (FGS), which is representative of the issues 
encountered in actual developments.  The three case studies illustrate the use of 
theorem proving, model checking, and abstract interpretation.  Each of these 
techniques has strengths and weaknesses and each could be applied to different 
life cycle data items and different objectives than those described here.  Our 
purpose is to illustrate a reasonable application of each of these techniques to 
produce the evidence needed to satisfy certification objectives in a realistic 
avionics application.   We hope that these case studies will be useful to industry 
and government personnel in understanding formal methods and the benefits 
they can provide. 

Keywords: Formal methods, certification, model checking, theorem proving, 
abstract interpretation 

1   Introduction 

Certification can be defined as legal recognition by a government authority that a 
product, service, organization, or person complies with specified requirements.  In the 
context of commercial aircraft, certification consists primarily of convincing the 
relevant certification authority (the FAA in the U.S. or EASA in Europe) that all 
required steps have been taken to ensure the safety, reliability, and integrity of the 
aircraft.  Software itself is not certified in isolation, but only as part of an aircraft 
design.  Certification differs from verification in that it focuses on evidence provided 
to a third party to demonstrate that the required activities were performed completely 
and correctly, rather on performance of the activities themselves.   

For software in commercial aircraft, the relevant certification guidance is found in 
DO-178C, “Software Considerations in Airborne Systems and Equipment 
Certification” (known in Europe as ED-12C) [10].  Certification authorities in North 
American and Europe have agreed that an applicant (aircraft manufacturer) can use 
this guidance as a means of compliance with the regulations governing aircraft 
certification.   

   



Its predecessor, DO-178B, allowed for the use of formal methods to satisfy 
certification objectives, but did so only as an “Alternative Method.”  DO-178C now 
provides guidance specific to newer software technologies including formal methods, 
model-based development, and object-oriented software.  This technology-specific 
guidance is contained in supplemental documents which may add, modify, or replace 
objectives in the core document.  With the publication of DO-333, Formal Methods 
Supplement to DO-178C and DO-278A [12], the use of formal methods has become a 
recognized means of compliance (rather than an alternative method), streamlining the 
process for  aircraft manufacturers to obtain certification credit through the use of 
formal verification techniques.     

This paper presents three case studies describing the use of different classes of 
formal methods to satisfy DO-178C certification objectives using the guidance in 
DO-333.  The three case studies illustrate the use of theorem proving, model 
checking, and abstract interpretation.  Each of these techniques has strengths and 
weaknesses, and each could be applied to different life cycle data items and different 
objectives than those described here.  The material presented is not intended to 
represent a complete certification effort.  Rather, the purpose is to show how formal 
methods can be used in a realistic avionics software development, focusing on the 
evidence produced that could be used to satisfy the verification objectives found in 
DO-178C.  The complete version of the case studies along with all the associated 
models, code, and verification artifacts will be available as a NASA contractor report 
in 2014.   
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Fig. 1.  Formal Methods applications in the Flight Guidance System example. 

The case studies examine different aspects of a common avionics system, a dual-
channel Flight Guidance System (FGS), shown in Fig. 1. While not intended as a 
complete example, it is representative of the issues encountered in actual development 



projects and includes design artifacts specified using PVS, MATLAB 
Simulink/Stateflow®, and C source code.   

An FGS is a component of the overall Flight Control System (FCS). It compares 
the measured state of an aircraft (position, speed, and attitude) to the desired state and 
generates pitch and roll guidance commands to minimize the difference between the 
measured and desired state.  The pilots interact with the FGS via the Flight Control 
Panel (FCP), Primary Flight Display (PFD), and the Display Control Panel (DCP).   

The FGS subsystem accepts input about the aircraft's state from the Attitude 
Heading Reference System (AHRS), the Air Data System (ADS), the Flight 
Management System (FMS), and the Navigation Radios. Using this information, it 
computes pitch and roll guidance commands that are provided to the autopilot (AP).  
When engaged, the AP translates these commands into movement of the aircraft's 
control surfaces necessary to achieve the commanded changes about the lateral and 
vertical axes.   

The FGS has two physical sides, or channels – one on the left side and one on the 
right side of the aircraft. These provide redundant implementations that communicate 
with each other over a cross-channel bus. Each channel of the FGS can be further 
broken down into the mode logic and the flight control laws. The flight control laws 
accept information about the aircraft’s current and desired state, and compute the 
pitch and roll guidance commands. A flight control law is active if its guidance 
commands are being used to control the aircraft or to provide visual cues to the flight 
crew. A flight control law that is operational but that is not yet active is armed. The 
mode logic determines which lateral and vertical modes of operation are active (e.g. 
controlling the aircraft or providing visual guidance cues to the flight crew) and 
armed (e.g. operational but not yet active) at any given time. These in turn determine 
which flight control laws are active and armed. 

2   Certification and DO-333 

General guidance is provided in DO-333 that is applicable to the overall verification 
process when formal methods are used.  This includes the following requirements:   

− All formal notations used must have unambiguous, mathematically defined 
syntax and semantics. 

− The soundness of each formal analysis method should be documented. A sound 
method never asserts that a property is true when it may not be true.  Soundness 
here refers to the underlying analysis method, not soundness of the tool 
implementation.  Tool soundness issues are addressed separately as part of the 
tool qualification process described in DO-330 [11].   

− All assumptions related to the formal analysis should be described and justified 
(e.g. assumptions about execution semantics on the target computer, or 
assumptions about data range limits).  

Beyond these general requirements, specific guidance is provided to describe how 
formal methods can be applied within each of the verification activities and objectives 
defined in DO-178C.  This is illustrated in Fig. 2 for Level A software, the highest 
criticality level defined in DO-178C.  These include compliance with requirements, 



accuracy and consistency of requirements, compatibility with the target computer, 
verifiability of requirements, conformance to standards, traceability between life cycle 
data items, and algorithmic correctness.   
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Fig. 2.  Relationship of Case Studies to DO-178C Level A Objectives (adapted from DO-333). 

Fig. 2 also shows the relationship between the three case studies and DO-178C 
objectives.  Theorem proving was applied to the verification of the High-Level 
Requirements (HLR) for the Pilot Flying synchronization logic of the two channels of 
the FGS, focusing on the objectives of DO-333 Table FM.A-3.  Theorem proving is 
generally considered the most powerful and versatile class of formal methods, but it is 
also the least automated, and usually requires the significant expertise and user 
training.  This case study is described in Section 3. 

Model checking has been applied to the verification of the Low-Level 
Requirements (LLR) for the mode logic of a single FGS channel, focusing on the 
objectives of DO-333 Table FM.A-4.  Current model checking tools are very 
powerful and provide much more automation than theorem provers.  In general, less 
user expertise is required, but the user must be able to specify requirements to be 
analyzed in a formal language.  These tools are relatively mature and (in our opinion) 



the benefits of using formal methods are greatest at this level.  This case study is 
described in Section 4. 

Abstract interpretation has been applied to the Source Code implementing one of 
the control laws of the FGS, focusing on the objectives of DO-333 Table FM.A-5.  
Abstract interpretation is the most automated of the three techniques, at least as used 
in currently available commercial tools, and typically requires the least expertise from 
users.  Part of this is due to the use of abstract interpretation to check non-functional 
requirements, eliminating the need to formally specify requirements.  We should note, 
however, that more powerful versions of abstract interpretation tools exist which 
require much more expertise to specify and check user-defined abstract domains.  
This case study is described in Section 5. 

Another issue we address in each case study is tool qualification.  Tool 
qualification is the process necessary to obtain certification credit for the use of a 
software tool within the context of a specific airborne system.  The purpose of 
qualification is to ensure that the tool provides confidence at least equivalent to that of 
any process which is eliminated, reduced, or automated.  DO-178C specifies that tool 
qualification should be performed in accordance with DO-330, Software Tool 
Qualification Considerations [11].  

Each case study includes:   
− The objectives to be satisfied and the evidence produced  
− A general description of the portion of the example system to be verified 
− A description of the verification approach, including the life cycle data items 

produced and the tools used, corresponding to some of the information that should 
be included in a Software Verification Plan 

− Tool qualification issues for the formal methods tools used 
− A detailed description of the verification effort that was performed 

There are some parts of DO-333 that are not covered in these case studies.  In 
particular, we do not address the verification of Executable Object Code (DO-333 
Table FM.A-6), nor do we address the replacement of coverage testing by formal 
analysis (DO-333 Table FM.A-7).  

3   Theorem Proving Case Study 

This case study illustrates the use of the PVS [9] and the HOL4 [7] theorem proving 
systems to verify the outputs of the software requirements process (DO-178C Section 
5.1) focusing on the objectives of Table A-3 in DO-178C and Table FM.A-3 in DO-
333.  The purpose of these verification activities is to detect any errors that may have 
been introduced during the software requirements process.  The DO-178C and DO-
333 objectives satisfied through theorem proving are summarized in Table 1. The 
table indicates whether an objective was satisfied (fully or partially) in the case study 
for each software level, A through D.  Some objectives do not need to be satisfied for 
the less critical Level C or Level D software and  are indicated by shaded boxes in the 
corresponding columns of the table.  



Table 1.  Summary of Objectives Satisfied by Theorem Proving 

Obj Description A B C D Notes 
A-3.1 High-level requirements comply 

with system requirements. 
■ ■ ■ ■ Established by proof the system requirements are 

implemented by the high-level requirements and the 
system architecture. 

A-3.2 High-level requirements are 
accurate and consistent. 

■ ■ ■ ■ Accuracy is established by formalization of the high-
level requirements.  Consistency is established by 
proving the absence of logical conflicts.   

A-3.3 High-level requirements are 
compatible with target computer. 

    Not addressed 

A-3.4 High-level requirements are 
verifiable. 

■ ■ ■  Established by formalizing the requirements and 
completion of the proof. 

A-3.5 High-level requirements conform to 
standards. 

□ □ □  Partially established by specifying the high-level 
requirements as formal properties. 

A-3.6 High-level requirements are 
traceable to system requirements. 

■ ■ ■ ■ Established by verification of the system 
requirements, and by demonstrating the necessity of 
each high-level requirement for satisfying some 
system requirement. 

A-3.7 Algorithms are accurate. ■ ■ ■  Correctness of the pilot flying selection logic is 
established by proof. 

FM.A-
3.8 

Formal analysis cases and 
procedures are correct. 

■ ■ ■  Established by review. 

FM.A-
3.9 

Formal analysis results are correct 
and discrepancies explained. 

■ ■ ■  Established by review. 

FM.A-
3.10 

Requirements formalization is 
correct. 

■ ■ ■  Established by review. 

FM.A-
3.11 

Formal method is correctly defined, 
justified, and appropriate. 

■ ■ ■ ■ Established by review. 

■ Full credit claimed     □ Partial credit claimed               Satisfaction of objective is at applicant’s discretion 

Consider Objective A-3.1 in Table 1 (high-level requirements comply with system 
requirements).  The system architecture is captured in the PVS theory 
Pilot_Flying_System.  This theory describes how the system components interact in 
the overall system. The system requirements are stated formally as theorems in the 
PVS theory Pilot_Flying_System_Requirements.  Machine checked proofs are 
developed in PVS to prove that these requirements are satisfied by the system 
architecture and the high-level requirements for the system components. The high-
level software requirements are specified for each FGS side in the Side_HLR theory. 
This theory uses axioms and uninterpreted types, constants, and functions to eliminate 
design detail from the requirements. The axioms are proven consistent by 
demonstrating that at least one concrete implementation exists that satisfies the 
axioms. The objective is satisfied by proving with the PVS theorem prover that the 
system level requirements specified as theorems in theory Pilot_Flying_-
System_Requirements are implemented by the system architecture defined in theory 
Pilot_Flying_System, the high-level software requirements specified as axioms in 
theory Side_HLR and the high-level hardware requirements specified as axioms in 
theory Bus_HLR.  A more detailed discussion of how each objective is satisfied is 
provided in the full contractor report available from NASA. 

The specific example used in the theorem proving case study is the synchronization 
of the Pilot Flying side of the aircraft. The overall FGS system has two physical sides, 
or channels, one on the left side and one on the right side of the aircraft. These 
provide redundant implementations that communicate with each other over a cross-



channel bus as shown in Fig. 3.  Bidirectional communication between the left and 
right sides is modeled separately as LR_Bus and RL_Bus.   
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Fig. 3.  Overview of the Dual FGS System 

Most of the time, the FGS operates in dependent mode where only one FGS 
channel is active and provides guidance to the AP. In this mode, the flight crew can 
choose whether the left or the right FGS is the active, or pilot flying, side by pressing 
the Transfer Switch. The other side serves as a hot spare and sets its modes to agree 
with those of the active side. In this example, there are five system-level requirements 
related to the synchronization of the pilot flying side. Stated informally, these are: 

R1. At least one side shall be the pilot flying side. 
R2.  At most one side shall be the pilot flying side. 
R3.  Pressing the Transfer Switch shall always change the pilot flying side. 
R4.  The system shall start with the Primary Side as the pilot flying side. 
R5.  The system shall not change the pilot flying side unless the Transfer Switch is 

pressed. 
The case study formalizes these system-level requirements in PVS and HOL4, 

develops high-level software and hardware requirements for each side and the cross-
channel bus, and proves that that the system architecture, the high-level software 
requirements, and the high-level hardware requirements comply with the system 
requirements. This is done in both PVS and HOL4 for a synchronous design in which 
all components are driven from single master clock.  The example was repeated in 
PVS for an asynchronous design in which the components are driven by separate 
clocks. 

For example, the PVS specification of the requirements R1 and R2 for the 
synchronous design is shown in Fig. 4. Note that formalizing these requirements 
required a precise statement of what it means for the system to be switching sides. 

The case study then develops a set of high-level requirements for each 
subcomponent, i.e., the FGS sides and the buses of Fig. 3, that are completely free of 
design detail by using uninterpreted PVS types and axioms specifying the relationship 
of their outputs to their inputs.  These high-level requirements are then proven to be 
consistent (i.e. to not contradict each other) by creating a concrete implementation 
using interpreted PVS types and functions and showing that the concrete 
implementation is a PVS theory interpretation of the high-level component 



requirements. Finally, we prove that the system architecture and the high-level 
requirements of the components comply with the system requirements by proving that 
the system requirements are satisfied by the synchronous design instantiated with any 
components that satisfy the high-level component requirements.  
%――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
% The system is switching sides when either side has become the 
% pilot flying side and that change has not reached the other side 
%――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
switching_sides(s) : bool =  
   pilot_flying(Left_Side(s))  AND NOT output(LR_Bus(s)) OR 
   pilot_flying(Right_Side(s)) AND NOT output(RL_Bus(s)) 
 
%――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
% R1. At least one side shall be the pilot flying side. 
%――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  R1: THEOREM 
      Reachable_State(s) =>  
        Left_Pilot_Flying_Side(s) or Right_Pilot_Flying_Side(s) 
%――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
% R2. At most one side shall be the pilot flying side 
%     except while the system is switching sides. 
%――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  R2: THEOREM 
      Reachable_State(s) AND NOT switching_sides(s) =>  
         Left_Pilot_Flying_Side(s) /= Right_Pilot_Flying_Side(s) 

Fig. 4.  Example of FGS System Requirements in PVS 

The verification was then repeated for an asynchronous design in which each side 
and each bus is driven by its own independent clock (CLK1-4 in Fig. 3). We followed 
the same process for the asynchronous case. However, the sides and the buses needed 
to be modified to allow an acknowledgement signal to be exchanged between the two 
sides to implement a hand-shaking protocol to synchronize on the pilot flying side. 
Aside from changing the definition of what it meant to be switching sides, the system 
level requirements did not need to be modified. 

The synchronous Dual FGS example was also verified using HOL4. HOL4 proofs 
were developed using both the next-state approach used with PVS and a stream 
approach similar to that used in synchronous data flow languages such as Lustre [4]. 
In the next-state approach, the evolution of each component and the overall system 
was specified by defining a next-state function that returns the next state given its 
current state and inputs as arguments. In the stream-based approach, each system 
variable is specified as a mapping from a natural number representing the system step 
to the variable’s value on that step. The evolution of each component and the overall 
system is then specified by defining the value of each system variable for each step. 

Qualification of a theorem prover may be a difficult task.  The largest part of a 
normal qualification effort is focused on defining operational requirements for the 
tool (what the tool claims to do – the processes eliminated, reduced, or automated), 
and then developing a comprehensive test suite to show that those requirements are 
satisfied over an appropriate range of tool inputs.  An alternative approach is to avoid 
the need to qualify the theorem prover itself by providing an independent check of the 
proof it produces.  This may be feasible depending on the nature of the proof artifacts 
generated by a particular theorem prover. 



PVS is based on a classical strongly-typed higher-order logic and the theorem 
prover itself is a based on a sequent calculus for this logic.  PVS does not normally 
emit a proof that could be checked by a separate (qualified) proof checking tool, 
though this option is available.  Depending upon the nature of the proof rules used, 
this expansion could in principle be independently checked by a separate tool.  
However, we are not aware of this having been done in practice and development of 
an appropriate independent checker for PVS is still a research topic. 

Table 2.  Summary of Objectives Satisfied by Model Checking 

Objective Description A B C D Notes 

A-4.1 Low-level requirements 
comply with high-level 
requirements. 

■ ■ ■  Established by proof that the high-level requirements are 
implemented by the low-level requirements and the 
software architecture. 

A-4.2 Low-level requirements are 
accurate and consistent. 

■ ■ ■  Established by modeling using an executable language 
and translation to a formal specification language. 

A-4.3 Low-level requirements are 
compatible with target 
computer. 

    Not addressed 

A-4.4 Low-level requirements are 
verifiable. 

■ ■   Established by modeling using an executable language 
and translation to a formal specification language. 

A-4.5 Low-level requirements 
conform to standards. 

□ □ □  Established by use of Simulink/Stateflow design language. 

A-4.6 Low-level requirements are 
traceable to high-level 
requirements. 

□ □ □  Established by verification of the high-level requirements.  

A-4.7 Algorithms are accurate. ■ ■ ■  The accuracy of the mode logic is established by model 
checking.  

A-4.8 Software architecture is 
compatible with high-level 
requirements. 

■ ■ ■  Established by proof that the high-level requirements are 
implemented by the low-level requirements and the 
software architecture. 

A-4.9 Software architecture is 
consistent 

■ ■ ■  Established by modeling using an executable language 
and translation to a formal specification language. 

A-4.10 Software architecture is 
compatible with target 
computer. 

    Not addressed 

A-4.11 Software architecture is 
verifiable. 

■ ■   Established by modeling using an executable language 
and translation to a formal specification language. 

A-4.12 Software architecture 
conforms to standards. 

□ □ □  Partially established by use of Simulink/Stateflow. 

A-4.13 Software partitioning 
integrity is confirmed. 

    Partitioning integrity has been established using formal 
methods for several commercial operating systems.  This 
is not addressed in the current case study.   

FM.A-
4.14 

Formal analysis cases and 
procedures are correct. 

■ ■ ■  Established by review 

FM.A-
4.15 

Formal analysis results are 
correct and discrepancies 
explained. 

■ ■ ■  Established by review 

FM.A-
4.16 

Requirements formalization 
is correct. 

■ ■ ■  Established by review 

FM.A-
4.17 

Formal method is correctly 
defined, justified, and 
appropriate. 

■ ■ ■ ■ Established by review 

■ Full credit claimed □ Partial credit claimed               Satisfaction of objective is at applicant’s discretion 

The HOL4 implementation is based on a small trusted kernel, which encapsulates 
just the primitive inference rules, axioms, and definition mechanisms of the logic.  
The logic kernel is an abstract data type, having the property that the only way a 
theorem can be obtained is ultimately by making primitive inference steps, which are 
very close in granularity to those in the mathematical definition of the logic.  As a 



consequence, it is straightforward to instrument HOL kernels so that they emit formal 
proofs. This has been done in a variety of research projects [8][5]. Programs that 
check the correctness of such proofs are small and relatively easy to verify. 

4   Model Checking Case Study 

This case study illustrates the use of the Kind [3] and MathWork’s Design Verifier 
model checkers to perform verification activities associated with the outputs of the 
software design process, focusing on the objectives of Table A-4 in DO-178C and 
Table FM.A-4 in DO-333.  The purpose of these verification activities is to detect any 
errors that may have been introduced during the software design process (DO-178C 
Section 5.2).  The DO-178C and DO-333 objectives satisfied through model checking 
are summarized in Table 2. 

The specific example used in the model checking case study is the verification of 
the mode logic of one side of the FGS. Specifically as it relates to the FGS, FAA 
Advisory Circular AC/ACJ 25.1329 defines a mode as a system configuration that 
corresponds to a single (or set of) FGS behavior(s) [2]. In the FGS, the modes are 
actually abstractions of their associated flight control law and reflect the current state 
of the flight control law. The FGS modes are organized into the lateral modes, which 
control the behavior of the aircraft about the roll and yaw axes of the aircraft and the 
vertical modes, which control the behavior of the aircraft about the pitch axis of the 
aircraft. The lateral modes in the example include Roll Hold, Lateral Navigation, 
Lateral Approach, and Lateral Go Around. The vertical modes include Pitch Hold, 
Vertical Speed, Flight Level Change, Altitude Hold, Altitude Select, Vertical 
Approach, and Vertical Go Around.  

In the case study, the mode logic is viewed as the software low-level requirements 
and is specified using MATLAB Simulink and Stateflow. For example, the Stateflow 
diagram for the Lateral Navigation (NAV) mode is shown in Fig. 5. Details of the 
transition guards are specified as Stateflow truth tables. 

ARMED

ACTIVE
en: NAV_Active = true
ex: NAV_Active = false

SELECTED
en: NAV_Selected = true
ex: NAV_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

NAV

[Capture()]

 
Fig. 5.  Lateral Navigation (NAV) Mode Low-Level Requirements in Stateflow 

The mode logic of the FGS specifies these individual modes and the rules for 
transitioning between them. To provide proper guidance of the aircraft, these modes 
are tightly synchronized so that only a small portion of their total state space is 
actually reachable. For example, since at least one lateral and one vertical mode must 



be active and providing guidance whenever the AP is engaged, one mode is 
designated as the basic mode for each axis. The basic mode is automatically activated 
if no other mode is active for that axis. In this example, the basic modes are Roll Hold 
and Pitch Hold. In similar fashion, only one lateral mode and one vertical mode can 
provide guidance to the AP at the same time, so the mode logic must ensure that at 
most one lateral and one vertical mode are ever active at the same time. 

Other constraints enforce relationships between the modes that are dictated by the 
characteristics of the aircraft and the airspace. For example, Vertical Approach mode 
is not allowed to become active until Lateral Approach mode has become active to 
ensure that the aircraft is horizontally centered on the localizer before tracking the 
glideslope.  These constraints constitute the high-level software requirements for the 
mode logic and are captured as 118 high-level properties written in the Lustre 
specification language. For example, the requirement that at least one lateral mode is 
always active is specified in Lustre as 

 
At_Least_One_Lateral_Mode_Active =  
    ROLL_Active or HDG_Active or NAV_Active or  
    LAPPR_Active or LGA_Active; 
 

To verify that the Simulink and Stateflow low-level requirements for the mode 
logic satisfy these high-level requirements, the Simlink/Stateflow model of the mode 
logic is translated into Lustre, the input language of the Kind model checker, using 
the Rockwell Collins formal translation framework [6] and merged with the high-
level requirements written in Lustre. This file can then be analyzed by the Kind model 
checker. Sixteen errors were discovered in the mode logic using the Kind model 
checker and three errors are discussed in detail in the full report.   

Once these error were corrected, the model checker showed that the 
Simulink/Stateflow model (the software LLR) complies with the Lustre specifications 
(the software HLR).  This corresponds to Objective A-4.1 in Table 2.   

The mode logic was also verified using MATLAB Design Verifier. Properties can 
be specified either textually as MATLAB function blocks or graphically as 
Simulink/Stateflow models. For example, the requirement that at least one vertical 
mode is active is specified textually as a MATLAB function block.   
function At_Least_One_Vertical_Mode_Active(PITCH_Active, VS_Active,   
    FLC_Active, ALT_Active, ALTSEL_Active, VAPPR_Active, VGA_Active) 
    % At least one vertical mode shall be active. 
    P = ( PITCH_Active  || FLC_Active   || ALT_Active    ||  
          ALTSEL_Active || VAPPR_Active || VGA_Active); 
sldv.prove(P); 
 

The command sldv.prove(P) instructs Design Verifier to attempt to prove that P is 
true for all combinations of inputs and outputs. 

Model checkers do not (in general) produce independently checkable output.  This 
means that a model checker must be qualified if its outputs are to be used for 
certification credit.  In addition to the development artifacts that must be provided, 
tool qualification requires that Tool Operational Requirements (TOR) be defined.  
The TORs describe what the tool claims to do relative to the certification objectives.  
Then a comprehensive test suite must be developed to show that those requirements 
are satisfied over an appropriate range of tool inputs. For a model checker, this would 



mean producing a collection of models and properties that span the full range of 
constructs found in the model and property specification language(s) of the tool.  
These example models would need to contain property errors which the model 
checker would have to be shown to identify correctly.  We are not aware of any 
existing efforts to qualify an academic open source model checker like Kind.  For 
commercial tools like Simulink Design Verifier, some support from the tool vendor 
may be needed to achieve qualification.   

Table 3.  Summary of Objectives Satisfied by Abstract Interpretation 

Objective Description A B C D Notes 

A-5.1 Source Code complies with low 
level requirements. 

    Not addressed 

A-5.2 Source Code complies with 
software architecture. 

    Not addressed 

A-5.3 Source Code is verifiable. □ □   This may be partially satisfied by demonstrating that 
the code conforms to input restrictions for the tool. 

A-5.4 Source Code conforms to 
standards 

□ □ □  This may be partially or fully satisfied by different 
analysis tools, depending upon the coding standards 
and tool qualification 

A-5.5 Source Code is traceable to low-
level requirements. 

    Not addressed 

A-5.6 Source Code is accurate and 
consistent. 

□ □ □  The absence of some classes of run-time errors is 
established through analysis with abstract 
interpretation tools.  

A-5.7 Output of software integration 
process is complete and correct. 

    Not addressed 

A-5.8 Parametric Data Item File is 
correct and complete. 

    Not addressed 

A-5.9 Verification of Parametric Data 
Item File is achieved. 

    Not addressed 

FM.A-
5.10 

Formal analysis cases and 
procedures are correct. 

■ ■ ■  Established by review 

FM.A-
5.11 

Formal analysis results are 
correct and discrepancies 
explained. 

■ ■ ■  Established by review 

FM.A-
5.12 

Requirements formalization is 
correct. 

■ ■ ■  Established by review 

FM.A-
5.13 

Formal method is correctly 
defined, justified, and 
appropriate. 

■ ■ ■ ■ Established by review 

■ Full credit claimed □ Partial credit claimed                 Satisfaction of objective is at applicant’s discretion 

5   Abstract Interpretation Case Study 

This case study illustrates the use of two commercial static analysis tools (AbsInt’s 
Astrée and MathWorks’ Polyspace) to perform verification activities associated with 
the outputs of the software coding process, focusing on the objectives of Table A-5 in 
DO-178C and Table FM.A-5 in DO-333.  The purpose of these verification activities 
is to detect any errors that may have been introduced during the software coding 
process (DO-178C Section 5.3).  The DO-178C and DO-333 objectives satisfied 
through abstract interpretation are summarized in Table 3. 

The Heading Control Law (Fig. 6) is one of the flight modes in the FGS that is 
selected by the mode logic.  It computes aileron, elevator, rudder, and throttle 



commands based on sensor inputs and commanded aircraft heading, altitude, and 
speed.  For this case study, we are using a publicly available model provided by 
researchers at the University of Minnesota (UMN) [1].  The complete flight software 
implemented by UMN consists of a sensor data acquisition module, a navigation 
module, a guidance law, a main control law, and a number of other modules 
associated with sensor faults and system identification.  The heading control law that 
we are using is one mode available in the main control law.  It is comparable in many 
ways to flight control laws that would be found in commercial aircraft.  The other 
functions of the UMN flight test platform would be carried out by other parts of our 
FGS example system. 

 
Fig. 6.  Heading Control Law Model.   

In this case study, we have used abstract interpretation to verify the outputs of the 
software coding and integration process.  In the example, this corresponds to 
verification that the source code implementing the Heading Control Law is correct.  
Current abstract interpretation tools are best suited to detecting run-time errors in the 
code rather than satisfaction of behavioral requirements.  Verification was performed 
on C source code generated from the Simulink control law model.  Our primary 
objective was to check the code for accuracy and consistency (DO-333 Section 6.3.4.f 
and Objective A-5.6 in Table 3).  We can also check for unreachable code.  We 
assume that the code will be tested against high and low level requirements–based test 
cases as part of a traditional test-based verification process. 

Astrée can be used to prove that no floating-point overflow errors can occur during 
the execution of the control code, but this is only possible if the user does some fine-
tuning in order to eliminate false alarms. This fine-tuning is done by indicating to 
Astrée that at certain points in the program, different cases need to be distinguished, 
which is called partitioning in the terminology of Astrée. In order to find the places in 
the code where partitioning needs to be done, and to determine the conditions which 
distinguish the different cases in the partitioning, the user needs to have some 
understanding of the implemented system. 

Astrée initially reported four potential issues in the source code, corresponding to 
C statements which might cause floating-point overflow errors.  The code of the 
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control law implements four integrators, which are protected from overflow by anti-
windup mechanisms. However, the abstraction made by Astrée keeps the tool from 
detecting the effectiveness of the overflow prevention. To enable Astrée to prove that 
these mechanisms are effective, the analysis needs to be guided by some partitioning 
information provided by the user. 

Astrée is, in general, not able to provide direct user feedback to show where the 
case partitions must be done. However, an experienced user can find the necessary 
fine-tuning relatively easily. Also, there is some hope that future versions of Astrée 
will be able to treat this kind of program completely automatically using new 
partitioning heuristics currently under development.  

We also analyzed the example source code using Polyspace and obtained similar 
results.  Polyspace identified unreachable code which was determined to be caused by 
branch conditions in the anti-windup logic which always evaluate to false.  The 
unused branch of the logic can be optimized away by either the code generator or the 
compiler, eliminating the unreachable code.   

Polyspace also identified  several floating-point overflow errors.  Polyspace 
provides a Data Range Specification (DRS) mechanism to specify range limits on 
inputs to the system.  These limits can then be used to more precisely compute the 
actual range of the variables whose values are computed from these inputs.  Once a 
DRS is setup for each of the system inputs, the potential overflow errors are 
eliminated. 

A DO-178C/DO-330 tool qualification kit is available for Polyspace from the 
vendor.  The qualification kit includes development artifacts and an extensive list of 
TORs.  Test cases are defined with input code for the errors that the tool is intended to 
detect. For Astrée, a Qualification Support Kit (QSK) is available from its vendor, 
AbsInt. The currently available QSK can be used for qualification up to level A under 
DO-178B. 

6   Conclusion 

We have provided an overview of three case studies illustrating the use of different 
formal methods tools to satisfy the certification objectives defined in DO-178C and 
its accompanying formal methods supplement, DO-333.  These case studies provide a 
practical demonstration of theorem proving, model checking, and abstract 
interpretation applied to a Flight Guidance System design that is representative of 
systems deployed in commercial aircraft.  The case studies show how the evidence 
produced by these three techniques might be used in an actual certification effort.  
Each technique has strengths and weaknesses and each could be applied to different 
life cycle data items and different objectives from those described here.   

Formal methods and tools have already been used to a limited extent in several 
actual aircraft certification efforts.  However, due to the proprietary nature of the 
models, code, and other artifacts, it has not been possible to make these results public.  
We hope that by providing a collection of publicly available examples, our case 
studies will be useful to industry and government personnel in understanding both the 



new certification guidance in DO-333 and the benefits that can be realized through the 
use of formal methods.   

The complete version of the case studies along with all the associated models, 
code, and verification artifacts will be available as a NASA contractor report.   
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