
Model Checking: Cleared for Take Off

Darren Cofer

Rockwell Collins, Advanced Technology Center

400 Collins Rd. NE
Cedar Rapids, IA 52498

ddcofer@rockwellcollins.com

Abstract. The increasing popularity of model-based development tools and the
growing power of model checkers are making it practical to use formal methods
for verification of avionics software. This paper describes a translator
framework that enables model checking tools to be easily integrated into a
model-based development environment to increase assurance, reduce cost, and
satisfy certification objectives. In particular, we describe how formal methods
can be used to satisfy certification objectives of DO-178C/ED-12C, the soon-
to-be-published guidance document for software aspects of certification for
commercial aircraft.

Keywords: model checking, verification, certification, avionics

1 Introduction

Modern commercial aircraft contain millions of lines of complex software, much of it
performing functions that are critical to safe flight. This software must be verified to
function correctly with the highest levels of assurance, and aircraft manufacturers
must demonstrate evidence of correctness through a rigorous certification process.
Furthermore, the size and complexity of the on-board software are rising
exponentially. Current test-based verification methods are becoming more expensive
and account for a large fraction of the software development cost. New approaches
to verification are needed to cope effectively with the software being developed for
next-generation aircraft.

Formal analysis methods such as model checking permit software design models to
be evaluated much more completely than is possible through simulation or test. This
permits design defects to be identified and eliminated early in the development
process, when they have much lower impact on cost and schedule. Advances in
model checking technology, the adoption of model-based software development
processes, and new certification guidance are enabling formal methods to be used by
the aerospace industry for verification of software.

This paper provides an overview of our work applying model checking to the
development of software for commercial and military aircraft. Model checking is
being used to provide increased assurance of correctness, reduce development cost,
and satisfy certification objectives. We also discuss the new certification guidance

supporting the use of formal methods that will be included in DO-178C, the industry
standard governing software aspects of aircraft certification.

2 Model Checking and Model-Based Development

Model-based development (MBD) refers to the use of domain-specific modeling
notations such as Simulink or SCADE to create detailed software designs that can be
evaluated for desired behavior before a system is built. MBD environments allow the
engineer to create a model of the system early in the lifecycle that can be executed on
the desktop, analyzed for desired behaviors, and then used to automatically generate
code and test cases. The emphasis in model-based development is to focus the
engineering effort on the early lifecycle activities of modeling, simulation, and
analysis, and to automate the later lifecycle activities of coding and testing.

Formal methods may be applied in a MBD process to eliminate requirements,
design, and coding errors, and should be viewed as complementary to testing. While
testing shows that functional requirements are satisfied for specific input sequences
and detects some errors, formal methods can be used to increase confidence that a
system will always comply with particular requirements when specific conditions
hold. Informally we can say that testing shows that the software does work for certain
test cases while formal methods show that it should work for all cases. It follows that
some verification objectives may be better met by formal, analytical means and others
might be better met by testing.

Although formal methods have significant technical advantages over testing for
software verification, they are only just beginning to be used in the aerospace
industry. The additional cost and effort of creating and reasoning about formal
models in a traditional development process has been a significant barrier. Manually
creating models solely for the purpose of formal analysis is labor intensive, requires
significant knowledge of formal methods notations, and requires that models and code
be kept tightly synchronized to justify the results of the analysis.

The value proposition for formal methods changes dramatically with the
introduction of MBD and the use of automated analysis tools. Many of the notations
in MBD have straightforward formal semantics. This means that it is possible to use
models written in these languages as the basis for formal analysis, removing the
incremental cost for constructing and updating separate verification models.

In collaboration with the University of Minnesota under NASA’s Aviation Safety
Program, Rockwell Collins has developed a translation framework that bridges the
gap between some of the most popular industrial MBD languages and several model
checkers (Fig. 1). These automated tools allow us to quickly and easily generate
models for verification directly from the design models produced by the MBD
process [1]. The counterexamples generated by model checking tools can be
translated back to the MBD environment for simulation. This tool infrastructure
provides the means for integration of formal methods directly and efficiently into the
MBD process. Software engineers can continue to develop design models using the
tools that they are already familiar with.

Design Verifier

SCADE

Lustre

NuSMV

PVS

Safe State
Machines

SAL

ICS

Symbolic
Model Checker
Bounded
Model Checker
Infinite
Model Checker

Simulink

StateFlow

Reactis

ACL2

Prover

Rockwell Collins
translation framework

Translation paths
provided by others

C, Ada code

counterexamples

Fig. 1. Rockwell Collins translation framework.

The translators use the Lustre formal specification language, developed by the
synchronous language research group at Verimag, as an intermediate representation
for the models [2]. Models developed in Simulink, StateFlow, or SCADE are
transformed into Lustre. Once in Lustre, the specification is loaded into an abstract
syntax tree (AST) and a number of transformation passes are applied to it. Each
transformation pass produces a new Lustre AST that is syntactically closer to the
target specification language and preserves the semantics of the original Lustre
specification (Fig. 2). This allows all Lustre type checking and analysis tools to be
used after each transformation pass. When the AST is sufficiently close to the target
language, a pretty printer is used to output the target specification. This customized
translation approach allows us to select the model checker whose capabilities are best
suited to the model being analyzed, and to generate an analysis model that has been
optimized to maximize the performance of the selected model checker.

Fig. 2. Illustration of automated transformation steps used to translate Lustre models.

Since Lustre is the underlying language for SCADE models, the initial translation
step is immediate. For Simulink and StateFlow models, we use the Reactis test case
generator tool to support the initial translation step. We also use the Reactis simulator
as the primary means for playback of the counterexample test cases. To ensure that
each Simulink or Stateflow construct has a well-defined semantics, the translator
restricts the models that it will accept to those that can be translated unambiguously
into Lustre.

Our translation framework is currently able to target eight different formal analysis
tools. Most of our work has focused on the NuSMV model checker and the Prover
model checker. We can also use the same translation framework to generate C or Ada
source code.

3 Benefits of Model Checking

The potential benefits of using formal methods, including model checking, are well-
known. In this section we focus on three benefits and how they relate to the
aerospace industry.

The traditional justification for the use of formal methods has been to provide
increased assurance of correctness, especially for systems or components that
implement safety-critical functions. Model checking excels in this area, providing
comprehensive exploration of system behavior and exposure of design errors.

However, the strongest motivation for adoption of model checking in the industry
seems much more likely to be cost reduction. The ability to detect and eliminate
defects early in the development process has a clear impact on downstream costs.
Errors are much easier and cheaper to correct in the requirements and design phases
than during subsequent implementation and integration phases.

An additional benefit which may become increasingly important is the ability to
satisfy certification objectives through the use of formal methods, including model
checking. As the first two benefits have been described in detail elsewhere, we will
touch on these briefly and devote most of the remainder of the paper to the use of
formal methods as part of the certification process.

3.1 Increased Assurance

Model checking performs a comprehensive evaluation of system behavior over all
reachable states and allowable inputs. This provides much more effective error
discovery capability compared with testing.

As an illustration, in the Certification Technologies for Flight Critical Systems
(CerTA FCS) project funded by the U.S. Air Force, we analyzed several software
components of an adaptive flight control system for unmanned aircraft [3]. In this
project we analyzed the redundancy manager software which implements a triplex
voting scheme for fault-tolerant sensor inputs. We performed a head-to-head
comparison of verification technologies with two separate teams, one using testing

and one using model checking. Neither team communicated directly with the other,
and both teams started with identical software models and requirements to be verified.

Both teams developed extensions to their base verification technologies. The
model checking team extended their existing tools to add support for several new
block types found in the software. Likewise, the testing team also made comparable
investments in enhancing their testing environment. These one time, non-recurring
costs were not included in the final comparison of the effectiveness of testing and
model checking.

The model checking team developed a total of 62 properties for analysis from the
original software requirements. Analysis of these properties with the model checker
uncovered 12 errors in the redundancy management logic. In similar fashion, the
testing team developed a series of tests cases from the same set of software
requirements. However, testing failed to find any errors in the software.

The conclusion of both teams was that in this case study, model checking was
more effective than testing in finding design errors. Some of the errors found by the
model checking team would be difficult, if not impossible, to discover through
testing. For example one such error involved a complex timing interaction between
the inputs to the voter which resulted in a good sensor being declared faulty.

3.2 Reduced Cost

A key benefit of using model checking in an industrial context turns out to be cost
savings. Savings can be achieved through early detection and elimination of errors as
well as through automation.

Our first application of model checking to an actual product was the mode logic of
the Rockwell Collins FCS 5000 Flight Control System used in business and regional
jet aircraft [4]. The mode logic determines which lateral and vertical flight modes are
armed and active at any time. Analysis of an early specification of the mode logic
found 26 errors. Seventeen of these were found by the model checker. Of these 17
errors, 13 were classified by the FCS 5000 engineers as being possible to be missed
by traditional verification techniques such as testing and inspections. One was
classified as being unlikely to be found by traditional techniques. The ability to
eliminate these errors during modeling, as opposed to during testing in the lab (or
worse, during aircraft integration testing) results in significant savings.

In a more recent example, we used our translation and model checking tools to
analyze the leader selection software for a multi-node redundant flight control system.
The selection logic was implemented using Simulink/Stateflow and its basic
functionality validated through simulation. The design was then analyzed using
model checking and improved to eliminate the counterexamples identified. The
verified design was then autocoded and tested on prototype hardware. The
implementation achieved 100% successful test case passage on the first attempt.
Eliminating the need for rework cycles to correct errors found during lab testing may
have reduced development time by half.

In the CerTA FCS project discussed above, we discovered that not only was model
checking more thorough, it was actually less costly than verification through testing.

The testing team required 50% more time to develop and execute the required test
cases compared to the time needed to formalize properties and analyze them with the
model checker. Certainly this may not always be the case, but this experiment
demonstrates that the degree of automation possible in an MBD environment makes it
possible to perform model checking very efficiently.

3.3 Certification Credit

A third benefit of using formal methods is the evidence that can be provided in
satisfaction of certification objectives. Certification can be defined as legal
recognition by a certification authority (usually governmental) that a product, service,
organization, or person complies with specified requirements. In the context of
commercial aircraft, certification consists primarily of convincing the relevant
certification authority (the FAA in the U.S. or EASA in Europe) that all required steps
have been taken to ensure the safety, reliability, and integrity of the aircraft. Software
itself is not certified in isolation, but only as part of an aircraft. Certification differs
from verification in that it focuses on evidence provided to a third party to
demonstrate that the required activities were performed completely and correctly,
rather on performance of the activities themselves.

For software in commercial aircraft, the relevant certification guidance is found in
DO-178B, “Software Considerations in Airborne Systems and Equipment
Certification” (known in Europe as ED-12B) [5]. Certification authorities in North
American and Europe have agreed that an applicant (aircraft manufacturer) can use
this guidance as a means of compliance with the regulations governing aircraft
certification.

The original version of the document, DO-178, was approved in 1982 and
consisted largely of a description of “best practices” for software development. It was
revised in 1985 as DO-178A, adding definitions of three levels of software criticality,
with development and verification processes described in more detail. The current
version, DO-178B, was approved in 1992. It defines five levels of software criticality
(A – E) with specific objectives, activities, and evidence required for each level.

DO-178B allows for the use of formal methods to satisfy certification objectives,
but it does so as an “Alternative Method.” The processes and objectives in the
document assume a traditional development process with test-based verification.

In 2005, RTCA and EUROCAE (the publishers of the DO-178/ED-12 standards)
initiated work on a revision to be known as DO-178C/ED-12C. A committee (SC-
205) was chartered to draft the new document, with the objectives of minimizing
changes to the core document, yet updating it to accommodate approximately 15
years of progress in software engineering. Guidance specific to new software
technologies was to be contained in “supplements” which could add, modify, or
replace objectives in the core document. New supplements are being developed in the
areas of tool qualification, object oriented design, model-based development, and
formal methods. The current schedule calls for DO-178C to be approved by the end
of 2010.

The inclusion of formal methods as a means of compliance with its own
technology supplement (rather than an “alternative method”) will open the door to
aircraft manufacturers obtaining certification credit through the use of formal
verification techniques including model checking. In the next section we describe the
new certification guidance related to the use of formal methods.

4 DO-178C: New Certification Guidance

DO-178B does not prescribe a specific development process, but instead identifies
important activities and design considerations throughout a development process and
defines objectives for each of these activities. It assumes a traditional development
process producing a collection of lifecycle data items that can be decomposed as
follows:

 Software Requirements Process. Develops High Level Requirements (HLR)

from the output of the system design process.
 Software Design Process. Develops Low Level Requirements (LLR) and

Software Architecture from the HLR.
 Software Coding Process. Develops source code from the software architecture

and the LLR.
 Software Integration Process. Combines executable object code modules with

the target hardware for hardware/software integration.

The lifecycle data items and the processes that accomplish these transformations

are shown in Fig. 3. The results of these processes are verified through the
verification process. The verification process consists of review, analysis, and test
activities that must provide evidence of the correctness of the development activities.
The arcs in Fig. 3 correspond to verification activities and the labels identify the
objectives for each activity. In addition, there are “verification of verification”
objectives (not shown in the figure) to demonstrate the sufficiency of the verification
activities themselves.

In general, verification has two complementary objectives. One objective is to
demonstrate that the software satisfies its requirements. The second objective is to
demonstrate with a high degree of confidence that errors which could lead to
unacceptable failure conditions, as determined by the system safety assessment
process, have been removed. As discussed in Section 3, formal methods can be used
to meet these objectives – sometimes better than reviews or testing.

In drafting the Formal Methods Technology Supplement (FMTS) for DO-178C the
committee had the following goals:

 Identify scope of applicability formal methods. Formal methods should no

longer be treated as an “alternative method.” Guidance should be provided
regarding which objectives can be satisfied through formal methods and how
that might be done. The focus of FMTS is the verification process and

associated activities and objectives. Partial use of formal methods is acceptable
(applied to only some software, some requirements, or some objectives).

 Facilitate communication between applicants and certification authorities.
FMTS should specify what evidence should be expected for satisfying
objectives, what new process documentation is needed, and what additional or
different activities are needed when using formal methods.

 Identify areas deserving of particular scrutiny when formal methods are used.
FMTS should help to avoid common errors, and identify important questions
that must be addressed during certification.

 Facilitate use of formal methods in the aerospace community. FMTS should not
impose higher burdens than a traditional verification process, but it should also
not do anything that would reduce the level of assurance provided by DO-178B.

System

Requirements

High Level
Requirements

Source
Code

Executable
Object Code

Accuracy & Consistency

Verifiability
Conformance to standards
Algorithm accuracy

Compliance
Traceability

Compliance
Traceability

Consistency
Compatibility with the target computer

Verifiability
Conformance to standards

Partitioning Integrity

Compliance

Verifiability
Conformance to standards

Accuracy & Consistency

Completeness
& correctness

Compliance
Robustness

Compliance
TraceabilityCompatibility

Accuracy and Consistency
Compatibility with the target computer

Verifiability
Conformance to standards

Algorithm accuracy

Compliance
Robustness

Compatibility with the
target computer

Software
Architecture

Low Level-
Requirements

Traceability

Design

Compatibility with the
target computer

Review/Analysis activity

Test activity

Development activity

Review/Analysis activity

Test activity

Development activity

Fig. 3. DO-178 software development and verification activities.

General guidance is provided in FMTS that is applicable to the overall verification
process when formal methods are used. This includes the following requirements:

 All formal notations used must have unambiguous, mathematically defined
syntax and semantics.

 The soundness of each formal analysis method should be documented. A sound
method never asserts that a property is true when it may not be true.

 All assumptions related to the formal analysis should be described and justified
(e.g. assumptions about execution semantics on the target computer, or
assumptions about data range limits).

Specific guidance is provided to describe how formal methods can be used to

satisfy each of the common objectives for HLR and LLR shown in Fig. 3. These
include compliance with requirements, accuracy and consistency of requirements,
compatibility with the target computer, verifiability of requirements, conformance to
standards, traceability between lifecycle data items, and algorithmic correctness.

A new objective to demonstrate requirements formalization correctness is defined.
If a requirement has been translated to a formal notation as the basis for using a
formal analysis, then review or analysis should be performed to demonstrate that the
formal statement is a conservative representation of the informal requirement.

In addition, there is provision for some software testing to be replaced by formal
analysis. DO-178B requires that test cases corresponding to the software
requirements be produced and executed, and that adequacy (completeness) of these
test cases be determined via structural coverage metrics. When using formal
methods, verification is exhaustive so a requirement that has been verified formally
has been completely covered. However, there is no guarantee that some requirement
has not been omitted from the design. Four new objectives have been defined in the
DO-178C FMTS to provide an equivalent level of assurance with regard to the
adequacy of the formal verification activity.

5 Example: Model Checking for Certification Credit

In this section we show by means of an example how model checking could be used
to satisfy some of the certification objectives in DO-178C with the FMTS.

In a modern aircraft, the primary way that aircraft status information is displayed to
pilots is through computerized display panels. These display panels are designed to
replace the dozens of mechanical switches and dials found in earlier aircraft and to
present a unified and straightforward interface to critical flight information. The
display panels are configurable to allow pilots to select different information for
display, including navigational maps, aircraft system status, and flight checklists.
However, some information is considered critically important and must always be
displayed.

The Window Manager (WM) determines which applications should be displayed
on which display area as well as the location of the cursor on the displays. It has
several responsibilities related to routing information to the displays. First, the WM
must update which applications are being displayed in response to user selections of
display applications. Second, the WM must handle hardware or application failures.
If a display fails, the WM decides which information is most critical and moves this

information to the remaining display. Another responsibility has to do with cursor
management: some display applications support the cursor while others do not. It is
the responsibility of the WM to ensure that the cursor does not appear on a display
that contains an application that does not support the cursor. In the event of a failure,
the WM must ensure that the cursor is not tasked to a dead display. A top-level
model of a simplified Window Manager is shown in Fig. 4.

The WM is essential to the safe flight of an airplane. If the WM contains logic
errors, it is possible that critical flight information will be unavailable to the flight
crew. Hence it is required to meet the Level A objectives of DO-178B.

Fig. 4. Top-level Simulink model of a simplified Window Manager.

The WM verification effort [6] was conducted several years ago, before any
consideration of incorporation of formal methods guidance in DO-178C. At that
time, the primary objective was to identify and remove design errors early in the
development process. The comprehensive analysis provided by model checking
resulted in a higher assurance of correct behavior than test-based verification.
Detection and correction of errors earlier in the development process (during design
rather than test and integration) reduced the overall development cost.

The WM software was developed using a MBD process consisting of the following
major activities:

 HLRs were initially expressed as English “shall” statements that were

subsequently formalized as CTL for analysis.
 Software models were developed using model-based design tools (Simulink and

Stateflow), and correspond to LLRs.
 The LLR models were analyzed using a model checker to verify whether or not

they satisfy the HLRs.

 Source code was automatically generated from the LLRs and tested in
conformance with a conventional test-based process.

Approximately 90% of the functional behavior of the WM application (in terms of

the number of Simulink blocks) was verified using model checking. The remaining
10% of the model is in one subsystem that contains a significant number of floating
point variables. This subsystem does not contain much mode-specific behavior and
was verified using conventional methods.

The WM was divided into five subsystem models that were used for analyzing its
behavior. Table 1 provides an overview of these subsystems and the analysis results.

Table 1. Window Manager analysis results.

Subsystem
Simulink
Diagrams

Simulink
Blocks

State Space Properties Errors found

GG 2,831 10,669 9.8 x 109 43 56

PS 144 398 4.6 x 1023 152 10

CM 139 1,009 1.2 x 1017 169 10

DUF 879 2941 1.5 x 1037 115 8

MFD 302 1,100 6.8 x 1031 84 14

Totals 4295 16,117 n/a 563 98

The above results show that formal analysis can be applied to large commercial

software systems. The 98 errors found resulted in changes to the LLR models or
changes to the HLRs. The corrected HLRs and LLRs were re-analyzed and found to
be compliant.

The formal methods technology developed in the project was successfully
transitioned to the product development organization. By the end of the project, all
analysis work was being performed by Rockwell Collins software engineers, with
minimal assistance from researchers.

With the new guidance provided in the Formal Methods Technology Supplement
to DO-178C, many certification objectives could have been satisfied. Some examples
follow.

FM6.2 Software Verification Process Activities
a. Formal notations: Properties to be verified were specified in CTL. Formal

definition of CTL may be found in [7]. The models analyzed were specified in
Simulink and Stateflow. These models were given formal definition through the
translation process, which includes a formal syntax and translation rules for each
model element.

b. Soundness: The BDD and SAT algorithms used in the model checker are
known to be sound. Details of the BDD algorithm used for model checking and its
soundness can be found in [8]. Application of satisfiability solving to the model
checking problem and its soundness are described in [9].

c. Assumptions: Any assumptions on the subsystem inputs necessary for the
analysis were documented and justified.

FM6.3 Software Reviews and Analysis
i. Requirement formalization correctness: In this project, all requirements were

captured and managed using the DOORS tool. For each requirement, the
corresponding formalization was captured in DOORS with one or more CTL
statements. Multiple independent reviews were conducted to ensure that the CTL
statements accurately described the original English-language requirement.

FM6.3.1 Reviews and Analyses of the High-Level Requirements
d. Verifiability of HLR: The ability to express the high-level requirements for the

system in CTL is a sufficient demonstration of verifiability in this example.
e. Conformance to standards: Requirements that do not conform to the standard

for CTL syntax will be identified and rejected by the analysis tools. This feature of
the tool would need to be qualified. Alternatively, conformance to CTL syntax can be
easily checked by a manual review.

FM6.3.2 Reviews and Analyses of the Low-Level Requirements
a. Compliance with HLR: Analysis by model checking demonstrated that low-

level requirements (the system model) complied with high-level requirements. This
feature of the model checking tool would need to be qualified.

6 Conclusion

Adoption of model-based development methods is facilitating the use of model
checking for verification of software in commercial aircraft. Model checking can
provide increased assurance of correctness, reduced development costs, and (in the
near future) satisfaction of certification objectives. Further research is needed to
expand the range of models where model checking can be effectively applied. New
analysis methods are needed to handle larger data types, floating point numbers, and
non-linear functions.

Acknowledgments

The model checking and translation work described in this paper was accomplished
with Steven Miller and Lucas Wagner from the Rockwell Collins ATC Automated
Analysis group, and Michael Whalen and Mats Heimdahl from the University of
Minnesota. The work was supported in part by the NASA Langley Re-search Center
under contract NCC-01001 of the Aviation Safety Program (AvSP) and by the Air
Force Research Lab under contract FA8650-05-C-3564 of the CerTA FCS program.
The Formal Methods Technology Supplement for DO-178C has been developed by
the Formal Methods Subgroup (SG6) of RTCA committee SC-205. Thanks to all.

References

1. Miller, S., Whalen, M., Cofer, D.: Software Model Checking Takes Off. Communications
of the ACM, 53(2):58-64 (2010)

2. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language LUSTRE. Proceedings of the IEEE, pp. 1305-1320 (1991).

3. Whalen, M., Cofer, D., Miller, S., Krogh, B., Storm, W.: Integration of Formal Analysis into
a Model-Based Software Development Process. In: Leue, S., Merino, P. (eds.) FMICS 2007.
LNCS vol. 4916. Springer, Heidelberg (2008)

4. Miller, S., Anderson, E., Wagner, L., Whalen, M., Heimdahl, M.: Formal Verification of
Flight Critical Software. In: AIAA Guidance, Navigation and Control Conference and
Exhibit, San Francisco (2005)

5. DO-178B/ED-12B: Software Considerations in Airborne Systems and Equipment
Certification. RTCA/EUROCAE (1992)

6. Whalen, M., Innis, J., Miller, S., Wagner, L.: ADGS-2100 Adaptive Display & Guidance
System Window Manager Analysis. NASA Contractor Report CR-2006-213952 (2006)

7. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, 2nd ed. (2004)

8. McMillan, K. L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
9. Clarke, E. M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability

solving. Formal Methods in System Design, 19(1):7-34 (2001)

