
Requirements Analysis of a Quad-Redundant
Flight Control System

John Backes1, Darren Cofer1, Steven Miller1, Michael W. Whalen2

1 Rockwell Collins, Bloomington MN 55438
2 University of Minnesota, Minneapolis MN 55455

Abstract. In this paper we detail our effort to formalize and prove
requirements for the Quad-redundant Flight Control System (QFCS)
within NASA’s Transport Class Model (TCM). We use a compositional
approach with assume-guarantee contracts that correspond to the re-
quirements for software components embedded in an AADL system ar-
chitecture model. This approach is designed to exploit the verification
effort and artifacts that are already part of typical software verifica-
tion processes in the avionics domain. Our approach is supported by an
AADL annex that allows specification of contracts along with a tool,
called AGREE, for performing compositional verification. The goal of
this paper is to show the benefits of a compositional verification ap-
proach applied to a realistic avionics system and to demonstrate the
effectiveness of the AGREE tool in performing this analysis.

1 Introduction

Modern aircraft are complex cyber-physical systems with safety and security
requirements that must be satisfied by their onboard software. As these systems
have grown in complexity, their verification has become the single most costly
development activity [1]. The verification costs of even more complex systems in
the future will impact safety, not just through an increasing incidence of errors
and unforeseen interactions, but by delaying and preventing the deployment of
crucial safety functions.

In a NASA-funded project with University of Minnesota and University of
Iowa we are addressing these challenges by developing compositional reasoning
methods that will permit the verification of systems that exceed the complexity
limits of current approaches. Our approach is based on:

– Modeling the system architecture using standard notations that will be us-
able by systems and software engineers.

– Developing a sophisticated translation framework that automates the trans-
lation of these models for analysis by powerful general-purpose verification
engines such as SMT-based model checkers.

– Developing techniques for compositional verification based on the system
architecture to divide the verification task into manageable, reusable pieces.



This approach has the potential to significantly reduce verification costs by
identifying and correcting system design errors early in the life cycle rather than
waiting until system integration. We are validating our approach and our tools
on a realistic fault-tolerant flight control system model. The Quad-redundant
Flight Control System (QFCS) has been designed by NASA as a suitable control
system for its Transport Class Model (TCM) aircraft.

Our compositional approach is designed to exploit the verification effort
and artifacts that are already part of typical software component verification
processes. Each component in the system model is annotated with an as-
sume/guarantee contract that includes the requirements (guarantees) and en-
vironmental constraints (assumptions) that were specified and verified as part of
its development process. We then reason about the system-level behavior based
on the interaction of the component contracts. By partitioning the verification
effort into proofs about each subsystem within the architecture, the analysis will
scale to handle large system designs. Additionally, the approach naturally sup-
ports an architecture-based notion of requirements refinement: the properties
of components necessary to prove a system-level property in effect define the
requirements for those components.

There were two objectives in using this verification approach. The first was
to reuse the verification already performed on components. The second was to
enable distributed, parallel development of components via virtual integration.
In this process, we specify formal component-level requirements, demonstrate
that they are sufficient to prove system guarantees, and then use these require-
ments as specifications for suppliers. If the suppliers’ implementations meet these
specifications, we have a great deal of confidence that the integrated system will
work properly.

We have chosen the Architecture Analysis and Design Language (AADL)
as our system architecture modeling language [2]. AADL was designed for em-
bedded, real-time, distributed systems and so is a good fit for our domain. It
provides the constructs needed to model embedded systems such as threads, pro-
cesses, processors, buses, and memory. It is sufficiently formal for our purposes,
and is extensible through the use of language annexes that can initiate calls to
separately developed analysis tools.

We have implemented our compositional reasoning methodology in a tool
called AGREE: Assume-Guarantee Reasoning Environment. AGREE is imple-
mented as an Eclipse plugin and is designed to work with the open source OSATE
AADL tool developed by the Software Engineering Institute [3]. AGREE is able
to check the correctness of behavioral properties defined by the composition of
component contracts, check component contracts for inconsistencies, and deter-
mine whether a component contract has any possible realization. AGREE makes
use of the AADL annex mechanism to annotate models with contracts corre-
sponding to formal assumptions and guarantees about their behaviors. AGREE
is open source software and is available at http://github.com/smaccm.

2

http://github.com/smaccm


The goal of this paper is to show the benefits of a compositional verification
approach applied to a realistic avionics system and its requirements, and to
demonstrate the effectiveness of the AGREE tool in performing this analysis.

2 Compositional Verification with AGREE

In this section we briefly describe the rules that AGREE uses to create compo-
sitional proofs. A more complete description is in [4] and a proof of correctness
of these rules is provided in [5,4].

AGREE is a language and a tool for compositional verification of AADL
models. The behavior of a model is described by contracts specified on each
component. A contract contains a set of assumptions about the component’s
inputs and a set of guarantees about the component’s outputs. The assumptions
and guarantees may also contain predicates that reason about how the state of
a component evolves over time. The state transitions of each component in the
model occur synchronously with every other component (i.e., each component
runs on the same clock). The guarantees of a component must be true provided
that the component’s assumptions have always been true. The goal of the anal-
ysis is to prove that a component’s contract is entailed by the contracts of its
subcomponents.

Formally, let a system S : (A,G,C) consist of a set of assumptions A, guaran-
tees G, and subcomponents C. We use the notation Sg to represent the conjunc-
tion of all guarantees of S and Sa to represent the conjunction of all assumptions
of S. Each subcomponent c ∈ C is itself a system with assumptions, guarantees,
and subcomponents. The goal of our analysis is to prove that the system’s guar-
antees hold as long as its assumptions have always held. This is accomplished
by proving that Formula 1 is an invariant.

H(Sa)→ Sg (1)

The predicate H is true if its argument has held historically (i.e., the ex-
pression has been true at every time step up until and including now). In order
to prove that Formula 1 is invariant, we prove that the assumptions of all the
subcomponents of system S hold under the assumptions of S. This invariant is
shown in Formula 2.

∧
c∈C

[
H(Sa)→ ca

]
(2)

This formula is actually stronger than what we need to prove. It may be the
case that the assumptions of certain subcomponents are satisfied by the guar-
antees of other subcomponents (and possibly the guarantees of the component
itself at previous instances in time). This weaker invariant is shown in Formula 3.

3



∧
c∈C

[(
H(Sa) ∧

∧
w∈C

Z(H(wg)) ∧
∧

v∈C,c 6=v

H(vg)
)
→ ca

]
(3)

The predicate Z is true in the first step of a trace and thereafter is true iff
its argument was true in the previous time step.

However, this formula may not be sound when the connections between com-
ponents form cycles. One could imagine a scenario where the assumptions of
each of two components are true precisely because of the guarantees of the other
component (i.e., wg → va and vg → wa for w, v ∈ C and w 6= v). Suppose com-
ponents w and v both assume that their inputs are positive, and they guarantee
that their outputs are positive. If the output of w is connected to the input of v,
and v’s output is connected to w, the state of the system is improperly defined.
To avoid this problem, AGREE creates a total ordering of a system’s subcom-
ponents. It uses this ordering to determine which subcomponent guarantees are
used to prove the assumptions of other subcomponents. This slight modification
of Formula 3 is shown in Formula 4.

∧
c∈C

[(
H(Sa) ∧

∧
w∈C

Z(H(wg)) ∧
∧

v∈C,v<c

H(vg)
)
→ ca

]
(4)

If Formula 4 is invariant then Formula 1 is proven to be invariant by showing
that the system assumptions and subcomponent guarantees satisfy the system
guarantees. Formally, if Formula 4 is invariant, then Formula 5 implies Formula 1.

H(Sa) ∧
∧
c∈C

H(cg)→ Sg (5)

AGREE uses a syntax similar to Lustre to express a contract’s assumptions
and guarantees [6]. AGREE translates an AADL model annotated with AGREE
annexes into Lustre corresponding to Formulas 4 and 5 and then queries a user se-
lected model checker. AGREE then translates the results from the model checker
back into OSATE so they can be interpreted by the user. For this project we
have used both the Kind 2.0 and JKind model checkers [7,8].

In Section 3 we describe some examples of guarantees that were written in
AGREE to model some of the requirements in the QFCS architecture. However,
the examples are presented here in a simple first order logic syntax to make them
more concise and readable.

3 Requirements Formalization

We are using NASA’s TCM aircraft simulation model [9] as a realistic example
to demonstrate and validate our compositional reasoning work. The TCM was

4



not originally developed with a set of requirements, but other researchers have
created a set of requirements representative of those that would be necessary
to certify an aircraft for operation in the national airspace system [10]. These
requirements were developed hierarchically with different requirements being
assigned to different levels of the system architecture, all the way down to the
major software components. The requirements hierarchy is shown in Figure 1.

FCS Top Level

Requirements

FAR

Part 25

Mil Std

1797B

Health

Mgmt.

Status and

Warnings

GNC Maint.

System & 

External Reqts

System Function

Reqts

Architecture

Reqts FCS Architecture

AOAActuator Air Data

Existing

Aircraft

DaC EGI FCC Pilot I/O

CLawsNav Guide ISAS OSAS CCDL

Unit Reqts

& Unit Specs

Application Reqts

& Specs

Fig. 1. The QFCS requirements hierarchy (those in grey were included in our
analysis)

3.1 QFCS Architecture

The QFCS is a quad-redundant flight control system for the TCM consisting of
four cross-checking flight control computers (FCC), as shown in Figure 2. The
QFCS model was developed in Simulink R© and includes models of the aircraft’s
control laws, sensors, and actuators, and interacts with the TCM aerodynamics
model. The fault tolerance logic was not originally part of this model, but was
added to the simulation in parallel during our project.

Our work focused on formalizing requirements for five components of the
QFCS hierarchy: the Flight Control System (FCS), the Flight Control Comput-
ers (FCC), the Output Signal Analysis and Selection component (OSAS), the
Input Signal Analysis and Selection component (ISAS), and the Control Laws
(CLAW). The FCS consists of four individual FCCs, and each FCC includes a
single OSAS, ISAS, and CLAW component, as well as several other components.
We focused on formalizing the requirements for these components for a couple
reasons. First, others were working to formalize some of the other components

5



Output:
Throttle cmds

Surface cmds

Display data

System cmds

Input:
INS/GPS

Air-data

AOA, AOS

Control inputs

Switch inputs

Actuator data

Engine data

Gear data

FCC 1

FCC 2

FCC 3

FCC 4

Fig. 2. The QFCS architecture with four flight control computers

using different techniques in parallel with this work [10]. Second, the require-
ments for these components had a much clearer path to formalization compared
to the other component requirements.

The FCS component hierarchy is shown in Figure 3. These components were
modeled in AADL with the same interfaces and connections described in the
QFCS Simulink R© model. The requirements for the QFCS were taken from the
hierarchy of requirements shown in Figure 1 and were formalized and assigned
as assume guarantee contracts to the relevant QFCS components in the AADL
model. AGREE was used to show that the requirements at each level of the
component hierarchy were satisfied by the requirements of their direct subcom-
ponents. Explicitly, the requirements formalized for the FCS were proven to
hold by the composition of the requirements of the four FCCs. Additionally,
the requirements of each FCC were satisfied by the requirements of the OSAS,
ISAS, and CLAW components. This section lists examples of some of the English
language requirements that were formalized for some of these components. In
particular, we discuss requirements related to the actuator signals that are sent
from each flight control computer.

In the remainder of this section we list examples of some of the English
language requirements that we formalized for some of these components. In
particular, we discuss requirements related to the actuator signals that are sent
from each flight control computer.

3.2 Flight Control System

The FCS requirements make up the “top level” properties that should be satisfied
by the composition of the requirements of all of the components within the

6



FCS

FCC

CCDL ISAS OSASFCC

CCDL ISAS OSASFCC

CCDL ISAS OSASFCC

CLAW ISAS OSAS

EGI

AOA

ADS

Actuator Command

Actuator Return

Actuator Sense

AGREE contract

AGREE contract

AGREE contracts

Fig. 3. The QFCS component hierarchy

FCS. Many of the FCS requirements reference functions that we have not yet
modeled, including as Guidance Navigation and Control, Maintenance Function,
and Status and Warning. We have chosen to focus our analysis on the fault
tolerance requirements for the FCS. The top level FCS requirement for the fault
handling logic is shown in Requirement FCS-120.

FCS-120 - The Health Management Function (HM) shall detect and
mitigate Flight Control System faults.

This statement is certainly too vague to be formalized. There is no guidance
given on what qualifies as “mitigating a fault”. However, Requirement FCS-
120 depends on many sub requirements that are more precise. Among these are
Requirements HM-220 and HM-240.

HM-220 - The Health Management Function shall provide Cooper
Harper Level 4 Handling Qualities after any single LRU, LRU func-
tion, or LRU IO signal failure.

Requirements HM-220 and HM-240 are also challenging to formalize be-
cause they require that the aircraft meet a specific Cooper Harper rating [11]. A
Cooper Harper rating is a subjective measurement used to describe the ease with
which a pilot is able to operate an aircraft. However, there are some objective
properties that are related to these statements. We propose Requirements HM-
240a and HM-240b as properties that can be stated precisely and are necessary
for satisfying Requirements HM-220 and HM-240.

7



HM-240 - The Health Management Function shall provide Cooper
Harper Level 4 Handling Qualities after any dual simultaneous LRU,
LRU function, or LRU IO signal failures including actuator runaways
and jams not shown to be extremely improbable.

HM-240a - The average of the signals sent to any given actuator is
bounded regardless of how many LRU failures occur.

The rationale behind Requirements HM-240a and HM-240b is that they offer
some guarantee about the controllability of the vehicle. They are also written
in precise language that can be verified using AGREE. We modeled Require-
ments HM-240a and HM-240b as Guarantees 1 and 2, respectively, in the con-
tract of the FCS component.

guarantee : low ≤ avg ∧ avg ≤ high

avg =
(act1 + act2 + act3 + act4)

4

(1)

The variable actn in Guarantee 1 represents the nth signal sent to an actua-
tor. Each of these signals comes from a set of four redundant signals. The values
of low and high are constant values that are determined for each actuator. This
guarantee is repeated for each actuator in the FCC.

The variable num valid acts in Guarantee 2 represents the total number
of valid actuator signals. Readers familiar with Lustre will recognize the pre
function [6]. The pre function returns the value of its expression on the previous
time step, in this case the previous value of num valid acts. This guarantee is
also repeated for each set of quad redundant actuator signals.

guarantee : num valid acts ≤ pre(num valid acts) (2)

3.3 Flight Control Computer

The FCS consists of four individual FCCs. The composition of the guarantees of
the four FCCs prove the guarantees of the FCS. One of the FCC requirements
is shown in Requirement FCC-S-150.

This statement also lacks the precision needed to develop a direct formaliza-
tion. It is not obvious what constitutes “mitigation logic” or what is considered
“fault detection”. This requirement needed to be linked to more precise defi-
nitions in lower level requirements. The OSAS component requirements, which
are discussed in the next subsection, contain language describing how the out-
put signal gains are computed. When the OSAS is declared faulty, its actuator

8



HM-240b - The number of FCCs with a failed OSAS component
decreases monotonically.

FCC-S-150 - The FCC OSAS application shall perform FCC com-
mand fault detection and mitigation logic.

signals are latched to zero. When the OSAS is behaving correctly each output
signal is multiplied by a factor determined by the number of faulty FCCs.

The requirements of each FCC act as lemmas about the ISAS, OSAS, and
CLAW components to prove the top level properties about the FCS component.
Based on the requirements of the OSAS and Requirement HM-240a in the FCS,
Requirement FCC-S-150 was modeled by Guarantees 3 and 4. These guarantees
fulfill some of the “mitigation logic” and “fault detection logic” functionality
mentioned in Requirement FCC-S-150. The composition of these guarantees from
all four FCCs is strong enough to prove Requirements HM-240a and HM-240b
in the FCS, and they are abstract enough to be proven by some of the OSAS
requirements.

guarantee :

(num valid = 0→ (low ≤ act ∧ act ≤ 4 ∗ high))∧
(num valid = 1→ (low ≤ act ∧ act ≤ 2 ∗ high))∧
(num valid = 2→ (low ≤ act ∧ act ≤ (3/4) ∗ high))∧
(num valid = 3→ (low ≤ act ∧ act ≤ high))

(3)

guarantee : pre(act fail)→ act fail (4)

Guarantees 3 and 4 are repeated for each actuator. The variable num valid
represents the number of valid actuator signals from other FCCs, act represents
the signal being sent to the actuator, low represents the lower bound of the
actuator signal, high represents the upper bound of the actuator signal, and
act fail is a Boolean variable that is true if the actuator signal is latched failed.

3.4 Output Signal Analysis and Selection

Each actuator signal is computed by the OSAS component. The redundant actu-
ators apply force to their associated control surface in parallel. The requirements
for the OSAS component determine the gain to be applied to each actuator sig-
nal depending on whether there have been failures in the other FCCs. The OSAS
component also has requirements that state how the value of an actuator sig-
nal is determined in the event of a failure in the OSAS component’s own FCC.
Requirements OSAS-S-180, OSAS-S-140, and OSAS-S-170 reflect some of the

9



OSAS-S-180 - OSAS shall compute the actuator command gain as
the ratio of the total number of command channels to the number of
valid command channels (i.e. 4/(number of valid command channels)).

OSAS-S-140 - When an actuator command has been latched failed,
OSAS shall set that actuator command to 0 (zero).

OSAS-S-170 - If the local CCDL has failed, OSAS shall set the local
actuator command gain to 1 (one).

requirements used to determine the gain of each actuator signal. Their formal-
izations are shown as Guarantees 5, 6, and 7, respectively.

guarantee :

(num valid = 0→ fcc gain = 4)∧
(num valid = 1→ fcc gain = 2)∧
(num valid = 2→ fcc gain = 4/3)∧
(num valid = 3→ fcc gain = 1)

(5)

guarantee : (latched failed→ fcc gain = 0) (6)

guarantee : (ccdl failed→ fcc gain = 1) (7)

There are other requirements that determine the true actuator gain value for
the OSAS component, but they have been omitted here for the sake of space.
These guarantees are used to prove Guarantee 3 in the FCC, and the composition
of the FCC contracts are used to prove Guarantee 1 in the FCS.

In the next section we discuss errors that were discovered through the process
of formalizing and analysing the QFCS requirements in AGREE.

4 Analysis Results

We ran our analysis on a laptop computer with an Intel R© i5 CPU and 16GB of
RAM. The tool was run inside a virtual machine running Ubuntu Linux. Using
JKind as the model checker and Yices [12] as the SMT Solver, the contract for
the FCS was proved in 7 seconds and the contract for the FCC (all four FCCs
had identical contracts) was proven in 115 seconds. Kind 2.0 had similar perfor-
mance. In Table 1 we list some information about the size of the QFCS AADL

10



model and the number of requirements that we formalized for each component.
The Inputs and Outputs columns list the number of input and output features,
respectively, that are present in the AADL model. Many of these features are
complex structures that consist of multiple data fields. For example, one actua-
tor output consists of 20 real number values. The number of variables generated
in the Lustre code that is sent to the model checker is on the order of hundreds
for each component. The Guarantees column reports the number of guarantees
in each component contract. This number roughly corresponds to the number of
English language requirements that we formalized for each component from the
requirements hierarchy described in Figure 1. The number of guarantees is not
exactly the same as the number of English language requirements because the
language of some of the requirements was changed somewhat during formaliza-
tion (as discussed in Section 3).

Component Inputs Outputs Guarantees

FCS 13 12 2

FCC 11 22 9

OSAS 9 4 9

ISAS 9 18 11

CLAW 1 1 1

Table 1. Information about the QFCS AADL Model

Through the course of our analysis, we discovered a number of problems with
the QFCS requirements. These errors were discovered either through formalizing
the requirements, attempting to prove properties, or using AGREE’s realizability
analysis (which we describe briefly later in this section). In this section we give
a few examples of the kinds of problems that we found.

4.1 Errors Found During Formalization

Some requirements contained clear mistakes that were found through formalizing
the English text. In our experience, this is almost always a benefit of formalizing
requirements. One of these requirements is shown in Requirement ISAS-S-260.

Interpreting this requirement at face value would indicate that the selected
signal from a set of quad redundant digital signals would be completely uncon-
strained in the event that the range of all four values of the quad-redundant
signals were exactly equal to SignalTolerance. This does not seem to be the
intent of the requirement as it is stated. This problem was discovered while for-
malizing the requirement, but it would have otherwise been discovered while
verifying assumptions about the CLAW component input signal ranges.

4.2 Errors Found During Model Checking

For some QFCS components we were able to check whether or not the imple-
mentation met its requirements. In addition to the requirements for the ISAS

11



ISAS-S-260 - ISAS shall determine the selected value for a quad digital signal using
the following table:

1. 4 good values with total range less than SignalTolerance, average all 4
2. 4 good values with total range greater than SignalTolerance, average middle 2
3. 3 good values with total range less than SignalTolerance, average all 3
4. 3 good values with total range greater than SignalTolerance, select middle value
5. 2 good values with total range less than SignalTolerance, average values

component, we were also provided with an algorithmic specification (in tabular
format) for its implementation. We formalized this specification and attempted
to prove that it met its formalized requirements. This analysis can be performed
in AGREE by determining if a component’s guarantees are entailed by asser-
tions about the component’s implementation. In essence, component assertions
are treated similarly to the component assumptions described in Section 2, but
are not checked to determine whether they hold as result of the system level
assumptions. Unlike component assumptions, which must be proven to hold by
Formula 4, component assertions are thought of as “details about how a com-
ponent is designed.”

The ISAS component is responsible for determining a selected sensor value
to send to the CLAW component from a set of redundant input signals. Some
input signals are quad redundant while others are dual redundant. Among the
quad redundant signals are values from the Embedded GPS/INS Sensor (EGI).
For each dual redundant signal, there exists a roughly equivalent signal that can
be computed from the EGI. In the event that the two values of a dual input
signal miscompare (are not equal within some tolerance) the equivalent value of
the EGI is selected to be sent to the CLAW component. During verification it
was discovered that the implementation for the ISAS component did not cor-
rectly implement Requirement ISAS-S-220. The implementation for the ISAS
component did not meet this requirement when the following scenario occurred.

– Channels 1 and 2 of a dual redundant signal are neither stale nor out-of-range
– Channels 1 and 2 of a dual redundant signal miscompare
– The equivalent value from the EGI is not declared faulty
– Channel 1 of a dual redundant signal miscompares with its equivalent EGI

parameter
– Channel 2 of a dual redundant signal does not miscompare with its equivalent

EGI parameter

ISAS-S-220 - In the case of mismatched dual input signals, ISAS shall set
the selected value equal to the equivalent selected value of EGI data.

12



In this scenario, the implementation selects the average of Channel 2 of a
dual redundant signal with its equivalent EGI parameter. AGREE produced a
counterexample showing this behavior. Through discussions with the domain
experts, it was determined that the implementation was correct, and the re-
quirement should be amended to handle this scenario in the same manner.

4.3 Errors Found During Realizability Analysis

AGREE also has an analysis option to determine if a component’s contract is
realizable. This analysis is detailed in other work [13]. Informally, a component’s
contract is realizable if there exists some implementation for the component
that obeys the contract. Realizability is a stronger notion than consistency. For
example, consider a component with a single integer input and a single integer
output. Suppose the component’s contract guarantees that the output is always
half the value of its input. The component’s contract is consistent because there
are certainly some values for the input that satisfies this contract (e.g., if the
input is 2 then the output would be 1). However, if the input is an odd value
then there is no corresponding integer value for the output. This contract is
not realizable because there is no way to implement a component that could
compute output values to satisfy this contract for every allowable input value.

A diligent reader may have noticed that Requirements OSAS-S-140
and OSAS-S-170 are stated, likewise Guarantees 6 and 7 are formulated, in
a way that makes them unrealizable. What happens in the scenario where an
actuator is latched failed and the CCDL fails? There is a contradiction in what
the selected gain value should be (should it be 0 or 1?). This error eluded the
engineers who originally drafted the requirements as well as the engineers who
formalized them. However, AGREE’s realizability analysis was able to iden-
tify the error and provide a counterexample with variables latched failed and
ccdl failed set to true.

After discussing the error with the domain experts who wrote the require-
ments, it was determined that the solution was to set an order of precedence for
how the gain value is computed. For example, Guarantees 5, 6 and 7 could be
reformalized as Guarantees 8, 9 and 10.

guarantee :

not (latched failed ∨ ccdl failed)→
(num valid = 0⇒ fcc gain = 4)∧
(num valid = 1⇒ fcc gain = 2)∧
(num valid = 2⇒ fcc gain = 4/3)∧
(num valid = 3⇒ fcc gain = 1)

(8)

guarantee :

(latched failed⇒ fcc gain = 0)
(9)

guarantee :

(not latched failed ∧ ccdl failed⇒ fcc gain = 1)
(10)

13



5 Lessons Learned

Through the course of this project we developed a number of insights about the
challenges and benefits associated with formalizing and proving requirements
compositionally.

– Many of the requirements that we attempted to formalize were not conducive
to compositional verification. Some of the high level requirements contained
language that included details about lower level components. These types of
requirements are hard to prove compositionally because they require details
about components that are at a low level in the hierarchy to be exposed at
a high level. Care should be taken when drafting requirements to make sure
that they are precise but still abstract enough to reasoned about composi-
tionally.

– Often when we found that a component implementation failed to meet its
requirements, the requirements were amended to be satisfied by the imple-
mentation. This scenario seemed to occur frequently because the require-
ments were not expressed formally in the first place. The examples given in
Sections 4.2 and 4.3 are illustrations of this.

– Requirements are hard to formalize without a clear description of the model’s
architecture. We started this project without descriptions of the component
interfaces. Upon receiving the interface descriptions, it was clear that many
of our original formalizations were not correct.

– Often times proof failures will expose errors in the model. For example an
incorrect connection between two components will often cause the model
checker to produce a counter example to properties that would normally
seem trivial. Formalizing and proving requirements gives some assurance
that the architectural model is correct.

6 Conclusion

Much of the effort in this work was spent trying to find reasonable formaliza-
tions for the original English language properties. The formalization process
itself identified significant problems with the requirements as they were origi-
nally stated. Even after formalization, model checking and realizability analysis
identified a number of other issues.

Future work includes modeling more of the QFCS architecture in AADL,
and formalizing other requirements in AGREE. In this project all of the com-
ponents were modeled to execute synchronously. Based on discussions with the
QFCS designers this seemed to be a fair assumption. However, many systems are
composed of components that execute on different clock domains. Support for
modeling components that execute asynchronously (or quasi-synchronously [14])
is currently being added to AGREE.

14



Acknowledgement. This work was sponsored by NASA under contract
NNA13AA21C. The authors are especially thankful to Robert Antoniewicz at
NASA Armstrong Flight Research Center for many helpful discussions about
the QFCS design.

References

1. Crum, V., Buffington, J., Tallant, G., Krogh, B., Plaisted, C., Prasanth, R., Bose,
P., Johnson, T.: Validation verification of intelligent and adaptive control systems.
In: Aerospace Conference, 2004. Proceedings. 2004 IEEE. (2004)

2. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. 1st edn. Addison-Wesley
Professional (2012)

3. The Software Engineering Instittue: OSATE: Plug-ins for front-end processing of
AADL models (2013)

4. Cofer, D.D., Gacek, A., Miller, S.P., Whalen, M.W., LaValley, B., Sha, L.: Com-
positional verification of architectural models. In Goodloe, A.E., Person, S., eds.:
Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012). Volume
7226., Berlin, Heidelberg, Springer-Verlag (2012) 126–140

5. Gacek, A., Backes, J., Whalen, M.W., Cofer, D.: AGREE Users Guide. Available
at: http://github.com/smaccm/smaccm (2014)

6. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language LUSTRE. In: Proceedings of the IEEE. (1991) 1305–1320

7. University of Iowa: Kind2: a multi-engine smt-based automatic model checker for
safety properties of lustre programs (2014)

8. JKind: A Java implementation of the KIND model checker. Available at:
https://github.com/agacek/jkind (2013)

9. Hueschen, R.M.: Development of the transport class model (TCM) aircraft simula-
tion from a sub-scale generic transport model (GTM) simulation. NASA Technical
Report (2011)

10. Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., Howar, F., Kahsai, T.:
Verifying the saftety of a flight-critical system. under review (2014)

11. Cooper, G., Harper, R.: The use of pilot rating in the evaluation of aircraft handling
qualities. NASA Technical Report (1969)

12. Dutertre, B., de Moura, L.: The Yices SMT solver. SRI International Tech Report
(2006)

13. Gacek, A., Katis, A., Whalen, M., Backes, J., Cofer, D.: Towards realizability
checking for contracts using theories. In: Submitted to NASA Formal Methods
Symposium. (2015)

14. Caspi, P., mazuet, C., Paligot, N.R.: About the design of distributed control
systems, the quasi-synchronous approach. (2001)

15


	Requirements Analysis of a Quad-Redundant Flight Control System

