

1

Pre-print for the following paper published at INCOSE IS 2025:

Isaac Amundson, Josh Kahn, Vidya Srinivasan, Gopal N. Rai and Janet Liu. “Creating Better System Mod-

els: A Method for Using Compositional Reasoning to Validate Architectures with Assumption/Guarantee

Contracts”. INCOSE International Symposium, July 2025.

Creating Better System Models: A Method for Using
Compositional Reasoning to Validate Architectures

with Assumption/Guarantee Contracts

Isaac Amundson

Collins Aerospace

Minneapolis, Minnesota, U.S.

Isaac.Amundson@collins.com

Vidya Srinivasan

 The MathWorks Inc.

Natick, Massachusetts, U.S.

vsriniva@mathworks.com

Josh Kahn

The MathWorks Inc.

Novi, Michigan, U.S.

joshkahn@mathworks.com

Gopal Narayan Rai

Collins Aerospace

Hyderabad, Telangana, India

Gopal.Narayan.Rai@collins.com

Janet Liu

Collins Aerospace

Cedar Rapids, Iowa, U.S.

Janet.Liu@collins.com

Abstract. Formal methods have proved to be a valuable tool for identifying defects early in the develop-

ment of safety-critical systems. Despite that, several factors have impeded their adoption within the systems

engineering community. Some of these include lack of commercially available solutions, poor integration

of analysis functionality in existing model-based systems engineering (MBSE) tools, and difficulty inter-

preting the results of the formal analyses. One such analysis that is popular among pockets within the aer-

ospace community is the Assume Guarantee Reasoning Environment (AGREE), which analyzes Architec-

ture Analysis and Design Language (AADL) models. AGREE is an open-source property-proving model

checker that uses compositional reasoning to prove the system composition is valid based on assumptions

and guarantees associated with the system components. The goals of this work are to develop a method for

using AGREE in a more widely adopted commercially available tool and to take advantage of MBSE for-

malisms to better convey the analysis results, especially counterexamples. The hope is that this will increase

the use of formal methods by high-assurance systems developers.

Keywords. Compositional Reasoning, Architecture Modeling, System Composer, AADL, AGREE, As-

sume-Guarantee Reasoning, Architecture Analysis

mailto:Isaac.Amundson@collins.com
mailto:author.one@gmail.com
mailto:Gopal.Narayan.Rai@collins.com

2

Introduction

Aerospace and defense systems rely on complex collections of distributed real-time embedded software.

This software is critical to system safety and presents many challenges for the organizations that develop

it. Model-based design tools are commonly used to implement high-assurance software functions, and for-

mal analysis of behavioral models and executable code is gaining traction in some industry sectors. Unfor-

tunately, system-level design tools for specifying and verifying a system architecture, including interactions

of distributed components, resource allocation decisions, and communication mechanisms, are less mature.

This has made it challenging to apply formal analyses effectively at the system level.

There are several other factors that compound matters and impede the uptake of formal assurance technol-

ogies in general. These include unintuitive user interfaces, scalability limitations, and few options for com-

mercially licensed tools and vendor support (Davis, et al., 2013). Another reason for the slow adoption can

be inferred from research, such as McMillan et al. (2024), in which activity and state machine behaviors

were used for requirements modeling on a Systems Modeling Language (SysML) (Object Management

Group, 2024) model, organized into tables, exported in Comma Separated Value (CSV) format, converted

to another semantic language, input into another tool for analysis, and the results then stored in yet another

tool. This highlights the lack of support in existing Model-Based Systems Engineering (MBSE) tools for

natively handling analyses with one notable quote being, “The first issue is that SysML tools are not well

suited for accepting evidence about analysis. While Cameo and other MBSE tools typically allow enough

customizations to make this work, it is not a minor undertaking.” This underscores the need for more tightly

coupled analysis capabilities in modern MBSE tools.

We aim to promote a formal system modeling methodology that incorporates existing practices and artifacts

compatible with tools and processes used in industry, thereby facilitating greater adoption. The work in this

paper directly addresses this goal by using a popular modeling framework that accurately captures a system

architecture and supports formal analysis. We deeply embed formal verification into the design process to

enable correct-by-construction system development that works correctly the first time. Using an architec-

ture modeling language with a well-defined execution semantics, design patterns that provide formally

guaranteed properties, and components with formally specified contracts ensures that the system design

will meet its requirements even before implementation.

Specifically, we focus on verifying system architecture composition by annotating components with formal

assume-guarantee contracts, where “assumptions” describe a component’s expectations of the environment

and “guarantees” describe bounds on the behavior of the component when the assumptions are valid. We

then apply a model checker to prove the correctness of (1) component interfaces (i.e., the output guarantees

of each component must be strong enough to satisfy the input assumptions of downstream components),

and (2) component implementations, (i.e., the input assumptions of a system and the output guarantees of

its subcomponents must be strong enough to satisfy its output guarantees). Compositional reasoning enables

scalable formal verification by splitting a complex system analysis into a collection of verification tasks

corresponding to the architecture’s hierarchical structure. By decomposing the verification effort into proofs

about each subsystem within the architecture, the analysis can be scaled to very large system designs

(Murugesan, Whalen, Rayadurgam, & Heimdahl, 2013).

Previous efforts at developing an MBSE compositional reasoning tool resulted in the Assume Guarantee

Reasoning Environment (AGREE) (Cofer, et al., 2012), developed as an annex to the Architecture Analysis

and Design Language (AADL) (SAE International, 2022). However, due to the reasons described above,

AADL and AGREE have yet to be widely adopted in real-world product development efforts despite having

3

seen moderate use by the formal methods research community. By bringing compositional reasoning to a

more widely used end-to-end model-based design framework, we hope to increase access to this powerful

analysis method and improve the dependability of the high-assurance products that have become increas-

ingly essential in our daily lives.

The contributions of this work are as follows:

• We apply compositional reasoning, as inspired by AGREE, in a widely used MBSE framework,

Systems Composer™ (MathWorks, 2024), and demonstrate how to annotate system model compo-

nents with formal behavioral contracts that are traced to system requirements.

• We develop a MATLAB® Toolbox (MathWorks, 2024) for System Composer that enables assume-

guarantee style compositional reasoning.

• We present our approach for generating explainable counterexamples corresponding to the formal

analysis results.

• We provide case studies demonstrating compositional reasoning in System Composer and compare

our results with semantically equivalent AADL/AGREE models.

Background and Related Work

Before the introduction of standardized system modeling languages, and still common today, system defi-

nitions existed in various forms such as textual documents, Microsoft® PowerPoint® (Microsoft, 2024)

presentations, Microsoft Visio® (Microsoft, 2024) diagrams, or even as objects in relational databases such

as IBM DOORS (IBM, 2024). Standardized modeling languages were introduced to facilitate integration,

analysis, and system architecture reuse. One such language is AADL, a specialized extensible system mod-

eling language for describing real-time embedded safety-critical systems. The introduction of AADL was

shortly followed by a common standard known as the Systems Modeling Language (SysML) (Object

Management Group, 2024). SysML was first and foremost a graphical language for describing system mod-

els, providing a standardized format derived from the popular software-oriented Unified Modeling Lan-

guage (UML) (Object Management Group, 2017). The goal was to align systems engineers on an unam-

biguous design representation (da Silva, Linhares, Padilha, Roqueiro, & de Oliveira, 2006). SysML has

seen broader adoption across multiple industries compared to AADL despite being published a few years

later. In lieu of that, AADL was ahead of its time, with its elements having actual semantic meaning in the

execution domain and support for formal analyses not found in more generic languages. This allowed for a

more complete specification of hardware and software architectures for embedded systems.

The emergence of formal systems modeling languages has led to the development of numerous authoring

tools that are fundamentally model based. Among the popular tools are Cameo Systems Modeler (Dassault

Systemes, 2024), recognized for its support of SysML and integration capabilities; Enterprise Architect

(Sparx Systems, 2024), offering modeling solutions for UML, SysML, and Business Process Model and

Notation (BPMN) (Object Management Group, 2014); Safety-Critical Application Development Environ-

ment (SCADE) Suite (Ansys, 2024), frequently used in the aerospace and automotive industries; Rhapsody

(IBM, 2024), which provides an environment for collaborative systems engineering and software develop-

ment; and System Composer (MathWorks, 2024), a system and software architecture modeling tool natively

integrated with Matrix Laboratory (MATLAB) (MathWorks, 2024) and Simulink® (MathWorks, 2024).

Various types of qualitative and quantitative architecture analyses that can be performed within these tool

environments typically involve creating and testing a scenario against the model (Dobrica & Niemela,

4

2002). The most common analysis patterns are quantitative in nature, such as roll-up or network analyses.

In roll-up analyses, the top-level system parameter values are calculated as the sum of the values of the

individual parts of which it is composed. The method of conducting the analysis varies by tool [e.g., Rollup

Pattern simulation (No Magic, Inc., n.d.), Simple Roll-Up analysis using robot system with properties

(MathWorks, n.d.)] but have the same end result. For example, the cost of a car can be calculated as the

sum of the cost of its wheels, seats, bolts, chassis, engine, transmission, etc. This analysis may be used as

part of a larger trade study to aid in make/buy decisions or optimal component selection to minimize the

total cost of the system. Network analyses are usually found in software-oriented architecture tools. They

are used for various purposes such as optimizing dataflow through a system to minimize latency or, as part

of a safety and reliability study, to find a system’s resilience to the loss of data paths (McCabe, 2007).

Formal methods can be used for more rigorous analyses to prove that the model satisfies its requirements.

Simulink Design Verifier™ (MathWorks, 2024) is a formal methods-based tool that includes a powerful

property proving engine (Schürenberg, 2012) for detecting design errors in Simulink and Stateflow®

(MathWorks, 2024) behavioral models. The novel approach of this research is to apply Simulink Design

Verifier to prove compositional properties of a System Composer architecture model that does not contain

linked behavioral models. This enables analysis of an architecture model in the system design phase when

the cost of fixing defects is much lower than later in the development lifecycle (Dawson, Burrell, Rahim,

& Brewster, 2010).

Assume-Guarantee Compositional Reasoning

We would like to know whether our system is composed correctly when modeling a system architecture

during product design. Specifically, we would like to know if any two components are connected that have

no business being connected, or whether the system’s subcomponents adequately meet its requirements.

Early approaches to verifying system architectures involved flattening the architecture hierarchy prior to

formal analysis (Jahier, Halbwachs, Raymond, Nicollin, & Lesens, 2007), but they did not scale well to

real-world system models. Compositional reasoning partitions the formal analysis of a (potentially com-

plex) system architecture into smaller verification tasks aligning with the natural architecture decomposi-

tion. Components are annotated with formal assume-guarantee contracts (McMillan K. L., 1999), where

assumptions represent assertions about the environment or invariants on the component’s inputs and guar-

antees represent the component’s requirements.

The Assume Guarantee Reasoning Environment (AGREE) (Cofer, et al., 2012) is a compositional reason-

ing tool for Architectural Analysis and Design Language (AADL) models. The most common tool for au-

thoring and analyzing AADL models is the Open Source AADL Tool Environment (OSATE) (Carnegie

Mellon University, 2024), a collection of Eclipse (The Eclipse Foundation, 2024) plugins published and

maintained by the Software Engineering Institute at Carnegie-Melon University. AGREE is implemented

in OSATE as an AADL annex, a mechanism for providing domain-specific extensions to the AADL base

language. Under the hood, AGREE translates the model and annotated behavioral contracts into Lustre

(Halbwachs, Caspi, Raymond, & Pilaud, 1991), which is then run on a backend model checker, Kind2

(Champion, Mebsout, Sticksel, & Tinelli, 2016) or JKind (Gacek, Backes, Whalen, Wagner, & Ghassabani,

2018), to either prove the contracts or generate a counterexample. The analysis is performed composition-

ally, following the architecture hierarchy, so analyses at higher levels are based on the verification of com-

ponents at the next level down.

For example, Figure 1 illustrates a simple system (top_level) from the Integer_Toy model included with the

AGREE distribution (loonwerks, 2024). The system contains three subcomponents, A_sub, B_sub, and

C_sub, all of which have associated assumptions and/or guarantees. Component B_sub has an assumption

5

about its input that the value will always be less than 20. Is this a valid assumption? Is there an upstream

component (in this case, A_sub) that guarantees that data sent to B_sub will always satisfy that assumption?

Examining the contracts on A_sub, we see that the output is guaranteed always to be less than twice the

input, assuming the input is less than 20. In other words, taken in isolation, the output of A_sub must always

be less than 38. Without any other context, this invalidates the assumption on B_sub since an A_sub input

value of 12, for example, would produce an output value in the range of 20-23. In this case, however the

input to A_sub is constrained by an assumption placed on the top_level system that its input will be less

than 10. Considering this constraint, the output of A_sub will always be less than 18, which satisfies the

assumption on B_sub.

AGREE also checks that a component’s assumptions and subcomponent guarantees satisfy its guarantees.

In the same example, the top_level system’s output is always guaranteed to be less than 50, assuming the

input is less than 10. Do the subcomponent contracts support this guarantee? They do; however, if the

guarantee had stated that the top_level system output would always be less than 5, for example, the guar-

antee would be violated and AGREE would generate a counterexample specifying the values of the com-

ponent inputs and outputs (and other state variables) that caused the violation.

Figure 1. Integer_Toy Example in AADL/AGREE

Compositional Reasoning using System Composer

The novel method outlined herein adapts the AGREE-style analysis to a more generic architecture model,

leveraging MATLAB, a popular analysis and modeling tool in the engineering community. The approach

is divided into the following tasks:

• Modeling the system.

• Defining assume/guarantee contracts and associating them with the system elements.

• Transforming the system and its contracts into a solvable formal methods problem.

• Generating actionable results.

The following subsections describe how each of these pieces was addressed to perform the analysis.

Modeling the System

System Composer was selected to model the system architecture because of its native MATLAB integra-

tion, which is used as the analysis engine, and the availability of APIs for accessing the architecture model.

6

This brings an additional advantage over AADL since the models can be specified using a modern graphical

editor. Although the AADL standard also defines a graphical language, the OSATE graphical editor is far

from mature, and most users prefer to rely on the textual editor instead. The system model, shown below

in Figure 2, is semantically equivalent to the AADL Integer_Toy model described in the previous section.

It consists of hierarchically nested components with connected ports. Interfaces, which are used to define

port data types in System Composer, were not used in this model in order to more closely align with its

AADL counterpart. Parameters define internal state data, such as the system mode, which is not communi-

cated through the ports.

Figure 2. Integer_Toy Example in System Composer

Defining Assume/Guarantee Contracts and Associating them with
System Elements

Once the system model was defined, a method for specifying contracts and associating them with model

elements was needed. Profiling is a common mechanism for extending a modeling language and is found

in languages such as UML and SysML. With profiling, custom profiles, which are collections of “stereo-

types,” are created and linked to models. Stereotypes are generic type definitions for model elements that

can be given type-specific values when applied to elements. They provide a convenient method for adding

additional metadata and property fields to model elements to extend the ontology.

Therefore, we created an AGREE-based profile with a stereotype whose properties could be used to express

the assume-guarantee contracts as text strings. The result is shown below in Figure 3.

7

Figure 3. Integer_Toy Example with an Assume-Guarantee Contract Stereotype

Several issues were encountered with this method:

1. Scalability: A stereotype can only be instantiated on a component once, so additional stereotypes

would need to be created to associate more contracts with a component, which is not scalable.

2. Reuse: The contracts are more like requirements than component attributes, that is, independent of

the final implementation. Defining the contract directly on the component prevented the contracts

from being reused without copy/paste and loss of synchronization.

3. Property Inspector: Stereotype property values can be set in System Composer through direct entry

in the Property Inspector pane or through the API. However, there is a very limited area in the

Property Inspector to enter text, as shown on the right-hand side of Figure 3. Additionally, stereo-

type properties are not designed to support code-like complex expressions for values. This makes

it difficult to author anything beyond trivial contracts.

4. Syntax Highlighting and Validation: The benefits of using MATLAB include its rich semantic lan-

guage and wide selection of toolboxes. However, it is difficult to author and debug complex code

(in any language) without the features provided by a modern integrated development environment

(IDE). By entering code as plain text in the Property Inspector, we lost that capability.

5. Traceability and Verification: There was no way to link a requirement to the stereotype for tracea-

bility and verification.

To address these issues, the stereotype was switched from being applied directly to the component to being

applied to a requirement, as shown in Figure 4. We then linked the requirement to the desired component

to associate the contract(s).

8

Figure 4. Stereotyped Requirement Contract

While this solves the scalability and reuse issues, it still has the same problems related to debugging and

editability as when the contract stereotype was applied to the component. The requirements table block

from the Requirements Toolbox™ (MathWorks, 2024) was also considered, but ultimately MATLAB Clas-

ses (MathWorks, 2024) were used to address these problems. A MATLAB Class defines an object that

encapsulates data, and the operations performed on that data. Using MATLAB Classes allowed us to spec-

ify encapsulated constraints in an object-oriented fashion in the MATLAB editor, which provides syntax

highlighting and code checking, and enables associating contracts with multiple components. An abstract

class was then developed to provide a template for creating individual assume-guarantee contracts. The

stereotype was then modified to contain a single string property for specifying the name of the contract

class, as shown below in Figure 5.

9

Figure 5. Requirement with the Contract Class Name Specified as the Stereotype Value

Transforming the System and Contracts to a Solvable Formal
Methods Problem

With the system defined, we must now perform the following:

• Validate that the linked component satisfies the associated contract in terms of input and output

symbols.

• Prove that the contracts are satisfied in the system.

• Identify assumptions and guarantees that are not satisfied.

• Provide information on the path(s) of failure, if a counterexample is generated.

The tooling developed in System Composer leverages the information specified in the architecture model

and the linked AGREE contracts authored in MATLAB to validate the input and output symbols. In the

contract for System B, for example, the inputs and outputs specified in the function signature are in terms

of the expected symbols, as shown in Figure 6 (left). This is validated with the port and/or parameter names

on the component, as shown in Figure 6 (right), and the user is alerted if there is a mismatch between them.

10

Figure 6. Contract for Component B_sub – Function Signature Symbols Correspond to the Component

Port Names

We then leverage the analysis framework in System Composer to iterate over the system’s components

based on connectivity to prove that the system as composed satisfies the assume-guarantee contracts. The

iteration output is a Simulink proof model, aggregating all the contracts and their connections in a

MATLAB Function Block that can be used as an input to Simulink Design Verifier for property proving.

Simulink Design Verifier then either determines the system composition to be valid or provides one or more

counterexamples that were found to invalidate the contracts.

Generating Actionable Results

One pain point when conducting an AGREE analysis in OSATE is that it is difficult to interpret and debug

the generated counterexamples. This makes determining which model elements contribute to the contract

violation non-trivial. In this work, we alleviate that pain by creating a System Composer sequence diagram

depicting the order of events and property values from the counterexample as provided by Simulink Design

Verifier. Additionally, we created a filtered Architecture View containing an architecture model slice, only

including the components and specific ports implicated in the violation.

To demonstrate this, we changed the guarantee on the Integer_Toy model so that the system output is always

less than 5. Figure 7 shows the generated sequence diagram when this is false.

11

Figure 7. Sequence Diagram Counterexample for the Integer_Toy Model

Application–Automotive Control System

In this section, we demonstrate our approach on a more complex Car model, which is also included in the

AGREE distribution. The top-level system represented in AADL is depicted in Figure 8. We replicate the

system architecture in System Composer (see Figure 9), specify assume-guarantee contracts, formally ver-

ify the automotive control system, and compare with the AGREE results on the AADL model.

Figure 8. Car System-Level Diagram in OSATE

12

Figure 9. Car System-Level Diagram in System Composer

The top-level system specifies the component assumptions and guarantees based on safety-critical require-

ments as follows:

Assumptions:

• The target speed remains positive and under 150 mph

Guarantees:

• The actual speed does not exceed the target speed

• Acceleration is limited to 40.0 mph/s

The Car system AADL textual model is shown in Figure 10.

13

Figure 10. AADL Representation of the Car System and AGREE Contracts

The key subsystems and their respective contracts are as follows:

Steering Module: This subsystem ensures safe tire pitch control, especially at higher speeds. The following

AGREE contracts illustrate its operation:

• Assumption: None

• Guarantee: Tire pitch does not exceed 0.20 radians when the speed surpasses 45 mph

Transmission Module: This subsystem includes two critical components:

• Speed Control: Implements a Proportional-Derivative (PD) controller to minimize the error be-

tween target and actual speeds. The following AGREE contracts illustrate its operation:

o Assumption: None

o Guarantee: The PD controller will ensure that the actuator input minimizes the error and

achieves the target speed within acceptable tolerance

14

• Throttle: This subsystem simulates acceleration proportional to actuator input, reflecting real-time

speed adjustments. The following AGREE contracts illustrate its operation:

o Assumption: None

o Guarantee: The actual speed will be adjusted proportionally to the actuator input without

exceeding physical constraints

State Machine: This subsystem maintains vehicle state consistency, ensuring transitions are traceable and

output state signals align with historical system data. The following AGREE contracts illustrate its opera-

tion:

• Assumption: None

• Guarantee: The state signal output will always reflect the correct current state

The AGREE analysis conducted in OSATE produced a counterexample violating the guarantee that the

output speed should always remain under 150 mph under specific input conditions, as shown in Figure 11.

Figure 12 shows the full counterexample.

Figure 11. Summary of AGREE Verification Generated in OSATE

15

Figure 12. AGREE Counterexample Generated in OSATE

16

We then replicated the analysis using our MATLAB Toolbox, transforming the system model and contracts

into a System Composer model with MATLAB Classes representing the contracts linked to the model

through requirements. The toolbox-generated counterexample, shown in Figure 13, matches that from

AGREE/AADL, demonstrating parity between the tools.

Figure 13. Counterexample Sequence Diagram in System Composer

Conclusion

While formal methods are useful for early model defect detection, they have seen a slow adoption within

the systems engineering community for numerous reasons. This paper demonstrates a method for conduct-

ing one type of formal analysis, compositional reasoning, in System Composer, a commercially available

MBSE tool. Using System Composer, we create an architecture model, apply assume-guarantee contracts

to the components within, and then use the property-proving engine of Simulink Design Verifier to perform

the formal analysis. The analysis results were validated using equivalence testing against an AADL model

built in OSATE and analyzed with AGREE. Some customizations were required, such as creating a custom

MATLAB Class to capture the assume-guarantee contracts, a function to convert the architecture model

into an analyzable format, and one to convert the analysis results into a sequence diagram. The System

Composer analysis results matched those in OSATE. However, the generated sequence diagrams in System

Composer made them easier to understand and troubleshoot. Integrating visual tools like annotated se-

quence diagrams and architecture views simplified the analysis process for complex systems, facilitating

better understanding and resolution of failures in large-scale models. As models get larger and more com-

plex, parsing through tabular data to understand the root of the problem becomes significantly more time

consuming and difficult. Sequence diagrams that can be annotated and simulated provide a richer environ-

ment for understanding and debugging issues as they are encountered.

17

This work opens the door to future improvements, four of which are listed below:

1. Modularity: System Composer supports the concept of model referencing, where large models can

be partitioned into encapsulated subsystems. Extending this work for architecture models that in-

clude model referencing would help address scalability and reuse by dividing the large integrated

model into modular subcomponents.

2. Implementation: Since System Composer is a Simulink-based tool, it should be possible to enhance

this work by refining components and contracts with actual Simulink implementations. This would

enable the analysis to be run on a mixed contract/implemented system.

3. Verification: Since sequence diagrams were used to capture the counterexample from the analysis

(and they are executable in System Composer), using them as a verification tool after linking im-

plementation models may be possible to ensure that each individual Simulink behavior, or even the

entire implemented architecture, adheres to the contract constraints.

4. SysML v2: The SysML v2 specification includes a formalism for specifying requirements as con-

straints. MathWorks has stated publicly that System Composer will be a SysML v2-compliant tool.

There is also an effort in the Object Management Group’s Systems Modeling Community to bring

AADL to SysML v2 natively. Therefore, using our toolbox to perform compositional reasoning

with System Composer and Simulink Design Verifier on architecture models from other MBSE

tools may be possible.

The primary goal of this work was to make MBSE-based formal analysis more accessible to the systems

engineering community. Accordingly, these customizations have been implemented as a MATLAB

Toolbox that is available upon request from the authors of this paper.

References
Ansys. (2024). Ansys SCADE Suite. Retrieved 11 18, 2024, from Ansys:

https://www.ansys.com/products/embedded-software/ansys-scade-suite
Carnegie Mellon University. (2024). Retrieved 11 18, 2024, from Open Source AADL Tool Environment

(OSATE): https://osate.org/

Champion, A., Mebsout, A., Sticksel, C., & Tinelli, C. (2016). The Kind 2 Model Checker. In S.

Chaudhuri, & A. Farzan (Ed.), Computer Aided Verification. CAV 2016. Lecture Notes in

Computer Science. 9780, pp. 510-517. Springer, Cham. doi:10.1007/978-3-319-41540-6_29

Cofer, D., Gacek, A., Miller, S., Whalen, M. W., LaValley, B., & Sha, L. (2012). Compositional

Verification of Architectural Models. Goodloe, A.E., Person, S. (eds) NASA Formal Methods.

NFM 2012. Lecture Notes in Computer Science. 7226, pp. 126-140. Norfolk, Virginia: Springer,

Berlin, Heidelberg. doi:10.1007/978-3-642-28891-3_13

da Silva, A. J., Linhares, M. V., Padilha, R., Roqueiro, N., & de Oliveira, R. S. (2006). An Empirical

Study of SysML in the Modeling of Embedded Systems. 2006 IEEE International Conference on

Systems (pp. 4569-4574). Taipei, Taiwan: IEEE. doi:10.1109/ICSMC.2006.384866

Dassault Systemes. (2024). Cameo Systems Modeler. Retrieved 11 18, 2024, from Dassault Systemes:

https://www.3ds.com/products/catia/no-magic/cameo-systems-modeler

Davis, J. A., Clark, M., Cofer, D., Fifarek, A., Hinchman, J., Hoffman, J., . . . Wagner, L. (2013). Study

on the Barriers to the Industrial Adoption of Formal Methods. FMICS 2013. Lecture Notes in

Computer Science. 8187, pp. 63-67. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-41010-

9_5

Dawson, M., Burrell, D. N., Rahim, E., & Brewster, S. (2010). Integrating Software Assurance into the

Software Development Life Cycle (SDLC). Journal of Information Systems Technology and

Planning, 3, 49-53.

18

Dobrica, L., & Niemela, E. (2002). A survey on software architecture analysis methods. IEEE

Transactions on Software Engineering, 28(7), 638-653. doi:10.1109/TSE.2002.1019479

Gacek, A., Backes, J., Whalen, M., Wagner, L., & Ghassabani, E. (2018). The JKind Model Checker. In

H. Chockler, & G. Weissenbacher (Ed.), Computer Aided Verification. CAV 2018. Lecture Notes

in Computer Science. 10982, pp. 20-27. Springer, Cham. doi:10.1007/978-3-319-96142-2_3

Halbwachs, N., Caspi, P., Raymond, P., & Pilaud, D. (1991). The synchronous data flow programming

language LUSTRE. Proceedings of the IEEE. 79(9), pp. 1305-1320. IEEE. doi:10.1109/5.97300

IBM. (2024). IBM Engineering Requirements Management. Retrieved 11 18, 2024, from IBM:

https://www.ibm.com/products/requirements-management

IBM. (2024). IBM Engineering Systems Design Rhapsody. Retrieved 11 18, 2024, from IBM:

https://www.ibm.com/products/systems-design-rhapsody

Jahier, E., Halbwachs, N., Raymond, P., Nicollin, X., & Lesens, D. (2007). Virtual execution of AADL

models via a translation into synchronous programs. Proceedings of the 7th ACM & IEEE

International Conference on Embedded Software (pp. 134-143). Salzburg, Austria: Association

for Computing Machinery. doi:10.1145/1289927.1289951

loonwerks. (2024). loonwerk/AGREE. Retrieved 11 18, 2024, from Github:

https://github.com/loonwerks/AGREE/releases

MathWorks. (2024). Classes. Retrieved 11 18, 2024, from MathWorks:

https://www.mathworks.com/help/matlab/object-oriented-programming.html

MathWorks. (2024). Create and Share Toolboxes. Retrieved 11 18, 2024, from MathWorks:

https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-

toolboxes.html

MathWorks. (2024). MATLAB. Retrieved 11 18, 2024, from MathWorks:

https://www.mathworks.com/products/matlab.html

MathWorks. (2024). Requirements Toolbox. Retrieved 11 18, 2024, from MathWorks:

https://www.mathworks.com/products/requirements-toolbox.html

MathWorks. (2024). Simulink. Retrieved 11 18, 2024, from MathWorks:

https://www.mathworks.com/products/simulink.html

MathWorks. (2024). Simulink Design Verifier. Retrieved 11 18, 2024, from MathWorks:

https://www.mathworks.com/products/simulink-design-verifier.html

MathWorks. (2024). Stateflow. Retrieved 11 18, 2024, from MathWorks:

https://www.mathworks.com/products/stateflow.html

MathWorks. (2024, 11 04). System Composer. Retrieved from MathWorks:

https://www.mathworks.com/products/system-composer.html

MathWorks. (n.d.). Simple Roll-Up analysis using robot system with properties. Retrieved 11 18, 2024,

from MathWorks: https://www.mathworks.com/help/systemcomposer/ug/simple-roll-up-

analysis.html

McCabe, J. D. (2007). Network Analysis, Architecture, and Design (3rd ed.). Elsevier.

McMillan, C., Lee, L., Russell, L., Prince, D., Hasanovic, N., Durling, M., . . . Kleven, E. (2024).

Verification and Validation of Model-Based Systems Requirements and Design Leveraging

Formal Methods to Increase Development Assurance. AeroTech Conference & Exhibition. SAE

International. doi:10.4271/2024-01-1917

McMillan, K. L. (1999). Circular Compositional Reasoning about Liveness. In L. Pierre, & T. Kropf

(Ed.), Correct Hardware Design and Verification Methods. CHARME 1999. Lecture Notes in

Computer Science. 1703, pp. 342-346. Berkeley, CA, USA: Springer, Berlin, Heidelberg.

doi:10.1007/3-540-48153-2_30

Microsoft. (2024). Microsoft PowerPoint. Retrieved 11 18, 2024, from Microsoft:

https://www.microsoft.com/en-us/microsoft-365/powerpoint

Microsoft. (2024). Visio. Retrieved 11 18, 2024, from Microsoft: https://www.microsoft.com/en-

us/microsoft-365/visio/flowchart-software

19

Murugesan, A., Whalen, M. W., Rayadurgam, S., & Heimdahl, M. P. (2013). Compositional verification

of a medical device system. HILT '13: Proceedings of the 2013 ACM SIGAda annual conference

on High integrity language technology (pp. 51-64). Pittsburgh, Pennsylvania, USA: Association

for Computing Machinery. doi:10.1145/2527269.2527272

No Magic, Inc. (n.d.). Rollup Pattern simulation. Retrieved 11 18, 2024, from No Magic:

https://docs.nomagic.com/display/CST2021x/Rollup+Pattern+simulation

Object Management Group. (2014). Business Process Model and Notation (BPMN). Retrieved 11 18,

2024, from Object Management Group: https://www.omg.org/spec/BPMN

Object Management Group. (2017). About the Unified Modeling Language (UML). Retrieved 11 18,

2024, from OMG Standards Development Organization: https://www.omg.org/spec/UML/

Object Management Group. (2024). OMG System Modeling Language (SysML). Retrieved 11 18, 2024,

from Object Management Group: https://www.omg.org/spec/SysML/2.0/Beta2/About-SysML

SAE International. (2022). Architecture Analysis & Design Language (AADL) AS5506D. SAE

International. doi:10.4271/AS5506D

Schürenberg, M. (2012). Scalability Analysis of the Simulink Design Verifier on an Avionic System.

Bachelor Thesis. Hamburg, Germany: Hamburg University of Technology. Retrieved 11 18,

2024, from https://www.ifis.uni-luebeck.de/~moeller/publist-sts-pw-and-

m/source/papers/2012/schuer12.pdf

Sparx Systems. (2024). Enterprise Architect. Retrieved 11 18, 2024, from Sparx Systems:

https://sparxsystems.com/products/ea/

The Eclipse Foundation. (2024). Retrieved 11 18, 2024, from Eclipse Foundation:

https://www.eclipse.org/

20

Biography

Isaac Amundson. Isaac Amundson is a Technical Fellow at

Collins Aerospace. He has over 20 years of academic and in-

dustry experience in safety-critical cyber-physical systems re-

search and development and has first-hand knowledge of the

challenges, roadblocks, and pitfalls involved in certifying

products in heavily regulated environments. He has M.S. de-

grees in Mechanical Engineering and Computer Science, and

a Ph.D. in Computer Science from Vanderbilt University. In

his current role, he leads multiple government-sponsored

(DARPA, NASA) research programs in which he is exploring

practical methods for generating and conveying assurance

through the use of new and existing formal analysis tools.

Josh Kahn. Josh Kahn is an MBSE Solutions Specialist at

MathWorks, collaborating with business partners to solve

complex pains related to architecture modeling, systems inte-

gration, and simulation. Josh is an active participant in the

INCOSE systems engineering community and the OMG

standards development organization and has published multi-

ple papers. Josh has been with MathWorks since 2020, bring-

ing ten years of industry experience from GE and Collins, con-

tributing to and leading systems development in aerospace and

defense industries. He has an M.Eng. in Space Systems Engi-

neering from the University of Michigan and B.S. in Mechan-

ical Engineering from Florida Atlantic University.

Vidya Srinivasan. Vidya Srinivasan is a Principal Software

Engineer at MathWorks, specializing in the System Composer

product. She focuses on delivering robust architecture model-

ing tools to meet the needs of the MBSE community. Vidya

has been with MathWorks since 2003, contributing to various

products and capabilities. She has extensive experience in de-

signing and implementing scalable, robust, and high-perform-

ing software to meet customer needs. Vidya holds an M.S. in

Electrical Engineering from Northern Illinois University.

Dr. Gopal Narayan Rai. Dr. Narayan Rai is a Principal

Investigator and Aerospace Engineer with expertise in Formal

Methods. He holds a Ph.D. in Computer Science and works in

Research & Development at Collins Aerospace. His research

focuses on AI-driven automation, formal methods, and safety-

critical systems. His work aims to enhance reliability and au-

tomation in aerospace systems through advanced computa-

tional techniques.

21

Dr. Janet Liu. Dr. Liu is a Senior Research Manager at Col-

lins Aerospace. She earned her Ph.D. in Computer Science

from Iowa State University. She has been with Collins Aero-

space (previously Rockwell Collins) since 2008, with experi-

ence in Commercial Systems Flight Controls and Applied Re-

search & Technology. In her current position, she has been

promoting the application of formal methods and model-based

analysis for safe & secure system design within Collins Aero-

space.

