
Modeling and Formal Analysis of High-Assurance
Mixed-Reality Systems

Isaac Amundson, Junaid Babar, Heber Herencia-Zapana,
Simone Fulvio Rollini, Ben Brussee

Collins Aerospace

Peggy Wu, Timothy E. Wang
RTX Technology Research Center

Amanda K. Newendorp, Adam R. Kohl, Stephen J. Fieffer, Shayama S. Khan, Mohammadamin Sanaei,
Mieszko Muscala, Stephen B. Gilbert, Eliot Winer, Michael C. Dorneich, James Lathrop

Iowa State University

David Musliner, Robert P. Goldman,
Jeremy Gottlieb

Smart Information Flow Technologies

Parth Ganeriwala, Candice Chambers,
Siddhartha Bhattacharyya

Florida Institute of Technology

Abstract—Mixed-reality (MR) systems are seeing increased de-
ployment in high-assurance aerospace applications, necessitating
rigorous analyses of the complex interactions with their human
operators and the surrounding environment. Traditional verifi-
cation methods often neglect operator behavior or assume overly
simplistic interactions, leaving MR systems vulnerable to attacks
involving human cognition. This paper introduces the Modeling
and Analysis Toolkit for Realizable Intrinsic Cognitive Security
(MATRICS), aimed at formally assuring MR systems against
cognitive adversarial threats. MATRICS integrates cognitive, en-
vironmental, and device modeling techniques to comprehensively
address four categories of cognitive attacks: physiological, per-
ceptual, attentional, and status-based. Our preliminary models
and verification efforts validate the feasibility of our approach to
provide essential cognitive security assurance, thereby enhancing
operational effectiveness in adversarial contexts.
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I. INTRODUCTION

The past decade has witnessed the rapid advancement of
immersive system technologies, including the use of mixed-
reality (MR) systems1 in high-assurance aerospace applica-
tions (e.g., the F-35 helmet-mounted display [2]). To keep
pace, we must explore novel methods for verifying that these
systems—and their users—are protected from adversarial ex-
ploitation. Traditionally, design-time analysis of avionics sys-
tems either leaves out the user or makes assumptions regarding
user behavior (e.g., expecting users to always respond to events
following pre-defined procedures). This approach may be
inadequate for mixed-reality systems because the user, system,
and environment are so entwined that they must be modeled
and analyzed together. Failure to do so leaves the human-
machine system vulnerable to a variety of failure modes and

1Although this work primarily focuses on augmented-reality (AR) systems,
in which the real world is overlayed with digital information, we use the more
general term mixed-reality following the taxonomy described in [1] because
our methodology is not just limited to AR.

threats. More sophisticated analyses require accurate models
of human cognitive behavior, new formal analysis methods,
and tools that provide the rigorous assurance needed for the
safe and secure deployment of MR systems.

The US Department of Defense has recognized the need
for advanced analysis techniques for mixed-reality system
designs through the DARPA Intrinsic Cognitive Security (ICS)
program, which studies the feasibility of applying formal
methods to verify that users of tactical mixed-reality systems
will be protected from adversarial cognitive attacks. This
emerging class of attack exploits the intimate connection
between users and mixed-reality devices. Such attacks are
generally unimpeded by traditional security safeguards (such
as those implemented in [3]) because rather than exploit-
ing vulnerabilities in the MR device hardware/software or
supply chain, these attacks directly manipulate the human
operator. For ICS, our team is developing the Modeling and
Analysis Toolkit for Realizable Intrinsic Cognitive Security
(MATRICS), which facilitates the development of provably
secure mixed-reality systems.

In this paper, we provide an overview of MATRICS
and present initial models and formal analysis methods that
demonstrate our approach. MATRICS methods and tools sup-
port an extensive combination of cognitive, environment, and
device modeling formalisms that encompass a broad area of
the cognitive attack space. We illustrate our approach with
models of MR human-machine designs that include aspects of
cognitive processes and system functions. We developed the
models in the context of an ICS-relevant mission and analyzed
them to prove guarantees covering four distinct categories of
cognitive attack:

1) Physiology -– in which an adversary applies stimuli to
cause harm to the MR operator (e.g., nausea, headaches,
etc.)

2) Perception -– in which an adversary causes the MR



operator to misapprehend either real-world or virtual
information (e.g., using bright light to wash out infor-
mation on a digital display)

3) Attention -– in which an adversary distracts the MR
operator (e.g., flooding an observation zone with decoys
to increase visual search demand)

4) Status — in which an adversary gains unauthorized
access to confidential operator data captured by the MR
system (e.g., tracking blink rate to determine when the
user is bored or fatigued)

For the design of MR aerospace applications, we envision
MATRICS tools and methods supporting the workflow illus-
trated in Fig.1.

Fig. 1. Formal assurance workflow for mixed-reality systems.

Within the workflow, a preliminary cognitive cybersecurity
assessment is conducted by iterating over a list of known vul-
nerabilities and attacks and producing new cyber requirements
to address them when applicable. These, along with other
system-level requirements, drive the refinement of a system
model that includes aspects of the MR device hardware, soft-
ware, and the mission environment. The model also includes
relevant operator cognitive behavior from the cognitive science
literature. Formal analysis is then performed on the model to
provide assurance that the MR system design is protected from
the cognitive attacks identified during the cyber assessment. It
may be the case that the existing cognitive data used to inform
the model is approximate (e.g., collected in virtual reality
environments rather than augmented reality) or insufficient
to prove cognitive guarantees. In this case, targeted human
subjects research will be required to collect data that can
produce a high-fidelity cognitive model conducive to formal
reasoning.

Efforts to build system models that include human oper-
ator behavior and formally verify safety properties go back
decades. Formal models of human operators have been devel-
oped using general languages such as process algebra, Petri-

Nets, and more domain-specific ones such as task analytic and
cognitive modeling languages. A detailed survey of models for
the verification of human-machine systems can be found in [4]
and a comprehensive handbook of formal methods for human-
computer interaction can be found in [5]. Although MATRICS
has some foundational similarities with these previous efforts,
formal verification of cognitive attack protection in MR sys-
tems is a new domain requiring novel approaches, such as
those described in the remainder of this paper. In Section II,
we present our cognitive attack pattern knowledgebase for
eliciting cognitive guarantees and corresponding design miti-
gations. We then introduce an example MR mission scenario in
Section III and use it to illustrate modeling and formal analysis
of multiple categories of cognitive attacks. We conclude in
Section IV by listing planned research activities that will
enable the eventual transition of MATRICS technologies into
real-world aerospace product development workflows.

II. REPOSITORY OF COGNITIVE ATTACK PATTERNS

Effective protection against cognitive attacks in mixed-
reality systems requires an understanding of how an adver-
sary may exploit cognitive vulnerabilities. Currently, there
is no public resource that captures and classifies this in-
formation. We are therefore building a publicly-accessible
Repository of Cognitive Attack Patterns (ReCAP), similar to
MITRE’s Common Attack Pattern Enumeration and Classi-
fication (CAPEC) [6], but specific to the cognitive security
domain. Online publication2 of the knowledgebase will pro-
vide a valuable tool to future mixed-reality aerospace system
developers, independent of the formal rigor they use to develop
and analyze their systems.

A central challenge for ReCAP is designing a platform
capable of effectively categorizing, storing, and presenting
cognitive attack data to support cognitive security analysis
and community collaboration. To address this challenge, we
have adopted a structured two-step approach. The first step
involves identifying and defining the key entities relevant to
MR system security, including attacks, vulnerabilities, and
defense mechanisms. The second step focuses on mapping
these entities to a relational database schema and designing the
corresponding web interface and infrastructure to display and
manage this information. The following subsections provide
an explanation of these two steps.

A. Attacks, Vulnerabilities and Defenses

A high-level view of our cognitive attack taxonomy is
illustrated in Fig. 2. A cognitive attack occurs when an
attacker manipulates or disrupts a MR system and/or its human
operator, resulting in interference with the system, its users,
or the tasks they are performing. This manipulation is made
possible by exploiting vulnerabilities within the MR system
or its operators. Vulnerabilities are weaknesses in the MR
components, user interactions with these components, or user
behaviors that can be exploited by attackers to achieve their

2https://github.com/loonwerks/ReCAP



objective. The components of the MR system targeted in the
attack due to these vulnerabilities are referred to as attacked
entities. The consequences of such an attack may include a
decline in the system’s integrity, operator performance, or the
overall user experience. A MR attack takes place within a
specific context, known as the environment, which defines
the setting in which the attack occurs. The core dynamic in
this process involves the attacker executing a series of steps,
known as an attack sequence, to exploit the vulnerabilities in
the attacked entity. These steps may include manipulating the
system’s components or influencing the user’s behavior.

Fig. 2. ReCAP taxonomy.

To address attacks and vulnerabilities, especially those
involving user cognition and interaction, cognitive defense
mechanisms are introduced. Cognitive defense refers to tar-
geted actions aimed at mitigating or eliminating the exploita-
tion of MR system features that could be leveraged to carry
out an attack. The effectiveness of these defenses is measured
by their ability to reduce or neutralize the attacker’s ability
to exploit specific vulnerabilities. Assurance objectives, when
satisfied, build confidence that a given defense mechanism will
provide adequate protection against the cognitive attack.

B. Data Base and Web Page Design

The conceptual entities defined above were mapped into
a structured relational database schema and we developed a
corresponding web-based interface for storing, managing, and
visualizing the cognitive attacks. A relational SQL database
organizes the information using a set of interrelated tables,
each representing a key entity involved in MR attacks, vulner-
abilities, or defense mechanisms. With data organized in this
structure, the web interface is presented dynamically through
database-driven views. These views reveal key connections,
such as links between specific vulnerabilities and attacks. Ro-
bust search and filtering tools allow users to explore the dataset
by MR features, vulnerability types, or defense effectiveness.

Although we are still in the process of validating the
cognitive attack classification schema and user interface, we
believe ReCAP has been designed to provide the relevant
insights needed for cognitive cyber-requirement elicitation.
Contributions to ReCAP from the broader research community

are encouraged in order to maximize utility of the knowledge-
base and build consensus on its contents.

III. FORMAL DESIGN AND ANALYSIS

In this section, we describe the modeling and analysis meth-
ods used by MATRICS. To illustrate our analytic approach, we
first describe a scenario involving a helmet-mounted display
(HMD) application to identify people carrying suspicious
packages at border crossings, airports, and other security
checkpoints. The system highlights potential malicious agents
by drawing a red bounding box around them, and the HMD
operator (e.g., a checkpoint guard in an observation tower)
must then visually check to see whether the highlighted person
is indeed a threat. If so, the guard will confirm the alert, which
may then trigger ground personnel to intercept the package
or cause the checkpoint gate to close. Otherwise, the guard
will dismiss the alert, which will remove the bounding box.
The guard can also alert to a suspicious person that was not
identified by the scanning system. The scenario is illustrated
in Fig. 3.

Fig. 3. Example mission scenario.

A cognitive security assessment, informed by the cognitive
attack patterns in ReCAP, indicates that the following cognitive
attacks could be possible:

• Physiology: The adversary overloads the HMD processor,
increasing latency and decreasing framerate of the display
until the guard feels nauseous and removes the headset.
Once the HMD is removed, the adversary sends more
contraband through.

• Perception: The adversary flashes an intense light at the
guard, causing temporary pupil constriction that results
in missed alerts.

• Attention: The adversary prepares a crowd of decoy
agents, taxing the guard’s visual search demand and
causing the guard to be fixated on one area. When the
guard’s attention is fixated (e.g., as determined from a
Status attack), the adversary sends contraband through a
different approach vector.

• Status: The adversary accesses the guard’s orientation
and eye movement data following transmission from the
HMD to a base station.



To establish confidence that our HMD design will protect
the operator and achieve mission objectives, we develop
models that combine aspects of human cognitive behavior,
HMD hardware and software, and relevant environmental
parameters3. We then apply formal analysis to prove our
design is resilient to the preceding types of attack.

A. Physiological

In this section, we model cognitive vulnerabilities associated
with physiological attacks that target the operator’s physical
well-being through device manipulation. Specifically, we focus
on pathways leading to cybersickness induced by adverse
hardware behaviors in augmented reality HMDs. To investigate
these vulnerabilities, we developed a cognitive model using the
Soar cognitive architecture [7] that represents human reactions
under conditions that could provoke cybersickness. This model
incorporates various HMD hardware and software parameters
that could be targeted by a physiological attack, each identified
in prior research as critical to inducing physical discomfort:
latency, and optic flow. This model also incorporates users’
exposure time to cybersickness. While this parameter may
not be directly manipulated by an attacker (i.e., an adversary
cannot change how long a user has been wearing an HMD),
it does still affect the onset of cybersickness and may affect
the extent to which a physiological attack is effective. For
example, a user who experiences a brief period of high latency
after using an HMD for only a few minutes is less likely to
be affected by an attack than a user who experiences a period
of high latency after wearing an HMD for several hours. With
access to personnel logs, an adversary may choose to target
HMD operators at the end of their work shift for a more
effective attack.

Latency refers to the delay between a user’s action (e.g.,
head movement) and the corresponding update in the virtual
element of the MR environment. Latency exceeding acceptable
thresholds—typically between 20–30 milliseconds, as recom-
mended by virtual reality (VR) standards—has been shown
to cause noticeable user discomfort. Thresholds above 70
milliseconds have been associated with a significant increase
in cybersickness symptoms [8]–[10]. The initial values in
the physiology model are based on these thresholds from
VR research. If needed, these thresholds will be updated in
later iterations of the model after further validation activities.
Research about latency in AR HMDs is sparse, indicating that
latency of virtual objects appearing to users is positively cor-
related with cybersickness [11] and that latency compensation
approaches decrease cybersickness [12], [13]. However, in one
AR environment, latency did not affect cybersickness [14].
Thus, the physiology model includes multiple cybersickness
parameters to account for the complexity of potential interac-
tion effects.

Optic flow describes the visual motion patterns perceived by
users as they or objects within their environment move. Exces-
sive or erratic optic flow, especially when tracking fast-moving

3Our models are open-source and publicly available at
https://github.com/loonwerks/MATRICS.

objects, has been shown to significantly exacerbate cybersick-
ness, resulting in higher SSQ scores and a greater likelihood
of users removing the headset [15]. Research in VR contexts
demonstrates that optic flow can affect cybersickness [16], but
less is known about its effect on AR. The stable imagery in an
AR image may reduce that effect [17] but there is evidence that
it is still an important parameter. Higher cybersickness scores
are reported in dynamic, moving environments (e.g., tracking
moving objects overlaid on a moving starfield) compared with
static environments (reading stationary instructions to interact
with a real, stationary object) [18], and with virtual objects
moving toward the user at higher speeds [19].

Exposure time refers to the amount of time the user has
spent wearing the AR HMD. In research involving both VR
and AR, cybersickness has been shown to increase with expo-
sure time [17], [20]. However, these effects can be mitigated by
taking breaks [17], [21]. In the first iteration of the physiology
model, exposure time is defined as short (0-20 minutes) and
long (20+ minutes) based on previous studies showing that
cybersickness symptoms often develop over the first 20-30
minutes of exposure [18], [20], [22], [23].

These factors were selected for the initial version of the
physiology model for three reasons. First, previous studies
indicated that they can contribute to cybersickness. Second,
data and thresholds can be identified from the literature to
use in the model, and third, they can reasonably be the target
of an attack (or influence the success of an attack) in the
mission scenario. Future iterations of the physiology model
may be expanded to include additional factors that contribute
to cybersickness and can be targeted in an attack, such as frame
rate [12], [24], changing properties of the virtual entities [19],
or adjusting the proportion of real to virtual objects in the
field of view (i.e., reducing the number of reference objects,
or rest frames, in the real world) [22]. However, adding these
additional factors will also require more data collection and
increase the complexity due to potential interaction effects.

The factors are represented in a state-space model with
the ranges defined above where a state exists for every
combination of factors. A transition from one state to another
is triggered when certain conditions are satisfied (e.g., low
latency for 20 minutes leads to a change in cybersickness state
from affected to incapacitated). Some factors are limited in
transition, such as exposure time, which only increases, while
others are free to transition between all levels of ranges. At any
moment a transition may only occur for one factor, rather than
multiple simultaneously. Certain states represent hazardous or
unsafe states that should be avoided.

We use Soar [7] to represent the physiological preconditions
that lead to cybersickness, and the postconditions representing
attack effects. For example, a precondition modeled in Soar
specifies the latency problem threshold as a trigger for cyber-
sickness and selects the latency-check operator if the current
system latency exceeds it. When this operator is applied, the
postcondition of the human cognitive behavior is executed,
which could be incapacitation. In our Soar model, thresholds
for these hardware attributes were incorporated based on



values reported in the literature; however, it is important to
note that these thresholds have not been formally verified for
operational deployment.

A cybersickness score is calculated to determine the user’s
level of cybersickness. The approach assumes that a user’s
cybersickness level is a combination of factors occurring over a
period of time. Therefore, we represent a user’s cybersickness
level as the following equation:

c1x1 + c2x2 + c3x3 + c4x4 ≥ [ssqlow, ssqmedium, ssqhigh]

In an iterative process, this equation determines whether the
user will be not affected, affected, or incapacitated. In order to
represent exposure time using this AR system, we model the
number of times a violation occurs. The maximum time a user
spends wearing the AR device will be 20 minutes. Hence, this
model measures a maximum of 20 violations for latency and
15 violations for the optical flow factor. Therefore, we use x1

to represent the total number of times the user is affected by
all factors; x2 represents the total number of times the system
latency surpasses the latency lower threshold, x3 represents the
total number of times the system latency surpasses the latency
upper threshold, and finally x4 represents the total number of
times the system optical flow surpasses its threshold. c1, c2, c3
and c4 represent the coefficients of each hardware factor. These
coefficients aid in placing the significance of each factor and,
in turn, aid in calculating the user’s overall cybersickness level.
Note that these weights are approximate values and require
validation through forthcoming human cognition studies.

The summation of this linear expression is then ana-
lyzed using SSQ values, where ssqlow = 10, ssqmedium =
20, ssqhigh > 20. If the summation is less than or equal to
ssqlow, the user is not affected; if the summation is greater
than ssqlow and less than ssqmedium, the user is affected.
Finally, if the summation is greater than 20, the user is
considered incapacitated. Through simulation of these cogni-
tive transitions, we demonstrate the feasibility of integrating
models of human physiological responses into formal system
analyses.

To validate the behavioral soundness of the cognitive model,
we formally verify the Soar-based cybersickness logic by
translating it into the nuXmv symbolic model checker [25].
This enables the analysis of dynamic state transitions and op-
erator responses to hardware-induced physiological violations.
For instance, one verified property ensures that incapacitating
cybersickness does not occur when the latency remains within
a safe range:

LTLSPEC G (cl != incapacitated);
where cl denotes the operator’s cybersickness level. This
property ensures that, under normal conditions (e.g., latency
between 20-30 milliseconds), the cognitive model does not
escalate to severe discomfort. To prevent vacuous proofs
and ensure operational relevance, additional properties were
verified, covering reachability, safety, liveness, and event re-
sponsiveness. These included checks that cybersickness level
transitions only occur in response to specific violations (e.g.,
latency exceeding 70 ms or rapid optic flow), and that the

operator remains in valid states and continues progressing
toward mission-critical tasks. The Soar model is embedded
in a Soar annex (see Fig. 4) of an Architecture Analysis
and Design Language (AADL) [26] model and integrated into
the Assume-Guarantee Reasoning Environment (AGREE) [27]
verification pipeline. Assume-guarantee [28] contracts [29] are
specifications for components in a system that state what
is expected from the environment in which the component
operates and what is required from the component provided
the environment meets the assumptions of the contract. Once
verified, these behavioral guarantees inform and strengthen the
system-level contracts in AGREE. For example, integrating a
verified Soar model allows AGREE to prove that the operator
will not experience cybersickness under the contract condition
that latency stays ≥ 70 milliseconds. To resolve remaining
contract mismatches, mitigation strategies (such as introducing
a latency monitor that dynamically prioritizes rendering tasks)
are encoded in the HMD device model, and subsequent
AGREE analyses confirms satisfaction of all assumptions and
guarantees. This approach demonstrates how cognitive mod-
eling, formal verification, and compositional reasoning can
be combined to safeguard human-system interaction against
physiological threats.

Fig. 4. Initializing the Soar agent for the Operator in the AADL Soar annex.

B. Perception

In this section, we present an approach to formally capture
cognitive vulnerabilities that impact the human perception pro-
cess. The effects of the perception vulnerabilities are reflected
in a task performance model consisting of an operator com-
ponent and a device component. Using an assume-guarantee
reasoning approach, the top-level component, which is the
task model derived from the mission scenario, is analyzed for
violations of mission guarantees. Specifically, we model the
effects of pupil contraction and dilation under a short period
of light stimuli in dark ambient conditions, and its impact on
the operator’s ability to recognize virtual items on the HMD
display. The guarantees are non-probabilistic, albeit with an



underlying assumption that it is valid for 95% of the human
population.

Cognitive Foundation - In the mission scenario, the task
of the operator wearing the HMD is to correctly identify
automatic target recognition (ATR) symbols (i.e., bounding
boxes). The overall mission requirement is that the human
must be able to perform identification at an acceptable level
even in the presence of known perception attacks such as
a sudden change in luminance. In healthy human subjects,
changes in brightness or luminance cause a change in pupil
size. Decreased brightness tends to increase pupil size, which
enhances light sensitivity and results in a narrower depth of
field. Conversely, increased brightness tends to decrease pupil
size, resulting in increases in the depth of field and a wider
range of clear vision. The contraction and dilation period after
a flash of light stimuli is a key parameter in the operator
component. We draw upon existing data [30] on pupillometry
to create the initial version of the operator model and plan
further human-subject experimentation for validation of the
operator component.

Cognitive Attack - For perception attacks, we assume the
adversary has not compromised the headset system (i.e., they
cannot directly manipulate what the headset displays to the
user). We assume a bright-light attack from the external
environment aimed at the operator to temporarily impair
the operator’s ability to visually perceive ATR symbols on
the HMD display. The adversary has enough control of the
external environment to introduce different sources of intense
light into the external environment from different locations.
The intense light will be targeted at the general direction of the
operator, potentially causing compromised visual capabilities.

Mitigation - The mitigation component is a filter capable
of dampening or blocking out any intense source of light
exceeding a certain threshold above ambient light conditions.
We plan to model a variety of filter configurations to illustrate
both analysis (i.e., finding cognitive vulnerabilities in the
system) and synthesis (i.e., updating the design parameters
of the filter to prevent or to reduce the impact of a cognitive
attack on task performance).

Formalization - In terms of the underlying formal methods
framework, the model is a system architecture containing a
collection of AGREE contracts. Each AGREE contract is used
to capture either a device component or an operator component
behavior. The top-level component captures the overall task of
the mission scenario. As shown in Fig. 5, the model consists
of contracts composed in a hierarchy where the top-level
component is the mission-level contract. This is decomposed
into an HMD component and an operator component. The
physical environment, mission parameters, and attack are
captured using assumptions, while operator performance and
mission success are captured using guarantees. The data on
pupil dilation and contraction periods are used in the operator
component guarantee. Specifically, they are used to compute
the amount of delay after a light attack in which the operator’s
perception capability is severely degraded in the form of
p(δ1) → q where p(δ1) is a precondition on the length of time

period δ1 (computed using pupil contraction and dilation data)
since a flash of bright light appeared on the HMD display, and
q captures the degraded performance of the human operator.
The HMD component is further decomposed into subsystems
including a mitigation component, which provides localized
filtering of any transients (i.e., any sudden increase of light
intensity). We created two variations of the model, one with

Fig. 5. Illustration of the operator-HMD mission model with assume-
guarantee contracts.

a more effective filter subsystem than the other. The less
effective filter component has a guarantee that the input light
attack is passed through unfiltered to the display. The more
effective light filter has a guarantee that it will quickly dampen
out any light transients.

Analysis - The AGREE compositional analysis provides a
variety of artifacts. For the case where there is a violation of
the mission-level contract, the tool returns a counter-example
(CEX) showing a trace that invalidates the top-level guarantee.
This CEX is returned for the model with the ineffective
mitigation component. The CEX is a collection of traces on
the inputs and outputs of the contracts of the model. In the
context of the mission scenarios, the CEX captures a light
attack on the operator. For the variation of the model with the
effective mitigation component, the AGREE analysis verifies
that the top-level mission contract is satisfied in the model, as
anticipated. In this case, there is no CEX because the top-level
mission contract is proved to be correct.

Modeling Workflow - The following workflow describes how
the perception model is developed.

1) Build AADL model of system including helmet

a) AADL model composed of components and their
interfaces/connections to other components.

b) AADL components can contain subcomponents.
c) Each AADL component has a contract (specified in

the component’s AGREE annex) that guarantees its
outputs when assumptions on its inputs are valid.

d) Contracts for AADL components that are leaf
nodes (i.e., do not contain subcomponents), will
need to be verified outside of the AADL/AGREE
verification framework.



2) Verify that the AADL contracts meet the high-level
system requirements.

a) Compositional verification of AGREE models.
b) Establish probabilistic contracts on the entire input

space vs deterministic contracts on a subset of the
input space.

3) Verify contracts (AGREE) for leaf-level AADL compo-
nents involving human interaction.

a) The verification of these contracts will depend
on satisfying proof obligations on the cognitive
models generated from the AGREE contracts.

b) These proof obligations are to be discharged based
on claims derived from cognitive studies, via
i) Claims from existing literature, or

ii) From new claims established by experiments.
We plan to refine the operator component further with more

features and complexity including different perception modes
(auditory and visual), different types of light attacks, multiple
sources of attacks, and more complex scenarios with multiple
attackers.

C. Attention

Our attention model is a task performance model, with
components for the environment, HMD device, HMD operator,
and an attacker (see Fig. 6). This model will be used to
assess how effectively a user can attend to mission tasks,
and to modify or eliminate tasks in order to preserve the
successful completion of mission goals. Unlike some of the
other models, the attention model is also a probabilistic model,
demonstrating how MATRICS can model and reason about
systems that are non-deterministic. The goal of the analysis
is to guarantee that the probability that one or more attackers
succeeds in carrying contraband through the checkpoint does
not exceed some required bound, K.

Fig. 6. Attention task performance model for single-person + ATR.

The attention model makes a number of specific assump-
tions. We assume that the attacker has no access to the headset,
but has full control of the external environment. This means
that the attacker can introduce some number of people and
objects into the environment at any location, subject to some
constraints, but the attacker cannot directly manipulate what
the headset displays to the user.

The model contains elements representing people moving
through the environment, some of whom are innocuous, some
of whom are attempting to smuggle contraband (attackers), and
some of whom are decoys. A person, pi will move towards
the checkpoint at a walking speed, and this speed will vary
between different persons. It takes person pi time TCP (i) to
reach the checkpoint, where we model TCP (i) as a normal
random variable.

For an attacker, ai, to pass through the checkpoint, the time
to reach the checkpoint, TCP (i), must be lower than the time
it takes the operator to tag them as unsafe, Ttag(i). So, for a
single attacker, the desired property is:

P [TCP (i) < Ttag(i)] < K

There are two cases for tagging an attacker, either: (1)
the automatic target recognition (ATR) system in the headset
correctly identifies the attacker, and the operator sees the
ATR indication and confirms it; or (2) the ATR system does
not identify the attacker, but the operator identifies them
unassisted. Note that if the operator never tags the attacker,
Ttag(i) = ∞.
Ttag(i) is a function of the false positive and false nega-

tive rates of the ATR system in the headset and the user’s
responses. Depending on the exact technical details of the
ATR, its false negative rate can be minimized at the expense
of increasing its false positive rate. This has the potential
to backfire by increasing the number of bounding boxes the
user must attend to, thereby putting more strain on the user’s
attention.

The user’s response is factored into two components. The
first is how long the user takes to select a potential attacker
(Tsel ), examine that person (Tex ), and then label the person
as either a threat or safe (Tlabel )4:

Ttag(i) = Tsel + Tex + Tlabel

Both the time it takes to examine a person, Tex , and the time
it takes to use the headset UI to confirm or dismiss a person,
Tlabel , are empirical parameters that will be estimated during
upcoming human experiments. For now, we conduct formal
verification of our attention models across a range of values
for each of these parameters to determine likely patterns of
responses based on these times.

The second component of the user response is the user’s
own false positive and false negative rates. The user’s false
negative rate can be manipulated by instructing them to err
on the side of tagging a person as “unsafe” if they are not
completely certain the person is “safe.” This has the potential
to restrict the flow of people through the checkpoint and anger
the local population by generating a high number of false
positive “unsafe” identifications.

A primary parameter of interest is how long it takes the
user to select the next person to examine, Tsel . The visual
search literature (e.g., [31], [32]) indicates that Tsel will be

4Again, if any of these processes fail (e.g., the operator never selects ai),
then we treat the delay as infinite (e.g., Tsel = ∞).



determined to a large extent by the saliency of the target
stimuli. In our task domain, saliency can be manipulated using
the bounding boxes indicating potential attackers. An object
with significantly greater saliency, such as a single bounding
box in the display, will be found fairly easily. However, when
there are multiple bounding boxes, how the user chooses the
next one to examine can be leveraged by an attacker.

We model salience as the relative likelihood that the user
will select one bounding box over another. Absent other
salience cues, when deciding which among a number of
possible objects to direct their attention to, such as which
person with a bounding box to examine next, people will
generally choose an object that has close spatial proximity to
where their attention is already focused (see [33]–[35]). This
can be leveraged for a misdirection cognitive attack. In this
attack, the adversary introduces people to a constrained region
of the environment, structuring these introductions to keep the
user’s attention focused on that region of the environment.
Change and inattentional blindness studies [36]–[38] indicate
that if an attacker is introduced in a region different from
where the user’s attention is being focused, there is a high
likelihood the user will not notice this new attacker, increasing
the probability they reach the checkpoint. This should appear
in our model as the new attacker’s salience never exceeding
that of the distractors already in the area the user is focused
on. Thus, mitigating such an attack is a matter of the UI
sufficiently increasing the salience of such an attacker, such
as by increasing the brightness of a particular bounding box
or providing a visual and/or auditory cue directing the user to
shift their attention to a different area.

Similarly, in a flooding attack, the adversary can introduce
a large number of people into the environment designed to
trigger false positives from the headset, meaning the user’s
display will suddenly contain a large number of bounding
boxes. If enough bounding boxes are present, the user will
be unable to examine all of them before a true attacker
reaches the checkpoint. Among the questions we are interested
in answering with our human experiments is whether TSel

increases based on the number of bounding boxes present in
the environment and, if so, whether that increase is smooth,
such as in conjunction search [31], or discontinuous, indicating
that cognitive resources have been overwhelmed. Such cases
can be mitigated by developing methods that increase TCP (i),
thus reducing the time pressure on the user.

Analysis becomes significantly more difficult in cases where
there are multiple persons, especially multiple attackers. There
are two reasons for this. The first we have discussed already:
as more persons are present, the user’s attention becomes
burdened, so that delays are extended. The second, which we
have not yet discussed, is that the guarantee is phrased in terms
of any attacker crossing the checkpoint. So we can think of
each attacker as being a “trial,” and the guarantee having to
be analyzed against the chance that all attackers fail. This is
further complicated by the fact that the attackers are not i.i.d. –
independent, identically distributed: the chance of one attacker
successfully crossing the checkpoint is heavily influenced by

the presence of other attackers, and of other travelers. As a
result, analytical solutions for determining TCP (i) < Ttag(i)
for any particular configuration of attackers and distractors
become extremely difficult to compute. Modeling the mission,
headset, attackers, and user in a probabilistic verification
system such as PRISM [39] allows us to run experiments that
accurately estimate this probability for a range of values for
TCP (i). Based on this, we can then determine ranges for the
other variables under our control that will allow our system to
satisfy the guarantee.

D. Status

Status is different from the other attack categories because
it does not include a cognitive component. Therefore, for this
category, we consider traditional cybersecurity mechanisms,
specifically focusing on protecting the confidentiality of user
biometric information. Formal analysis of our status model
uses approaches such as model checking and theorem proving
that are already established for formal verification of cyber-
resiliency properties in high-assurance systems [40].

In our mission scenario, the HMD operator is a guard in an
observation tower. Because the HMD hardware is resource-
constrained in terms of power, memory, and processor uti-
lization, collected data are periodically transmitted over an
encrypted channel to a dedicated base station for analysis and
storage. Although the base station has sufficient resources, it
also has a much larger attack surface, providing an easier target
for the adversary to hack into.

We therefore model the entire system (i.e., the HMD and
the base station) and verify that the confidential operator data
cannot be accessed by an adversary in an unauthorized manner.
For example, if the adversary had access to gaze data, they
would know when it would be safe to operate undetected in a
specific area. Our status model, consisting of the HMD, base
station, and the communication interface between the two,
was developed in AADL (see Fig. 7). Architecture models
capture a system’s components, interfaces, data flows, and
properties, but typically do not describe component behavior.
AADL was chosen because it allows engineers to describe
the important elements of distributed, real-time, embedded
systems (i.e., processors, memory, buses, processes, threads,
and data connections) with sufficiently rigorous semantics that
can support formal reasoning.

Guaranteeing the confidentiality of operator data against
status attacks requires security mechanisms to be part of the
system design. In our scenario, we assume it is unlikely that an
adversary would be able to directly hack into the HMD itself
due to its small attack surface and encrypted communication.
We therefore focus on cyber-hardening the base station and
verifying confidentiality properties there.

We do so by applying zero-trust mechanisms to the system.
Zero-trust [41] focuses on moving from a traditional perimeter-
based infrastructure, in which the goal is to prevent a breach,
to a perimeter-less design, in which a breach is assumed
to be likely and the goal is to minimize the effect. This
is accomplished by applying zero-trust tenets to the system



Fig. 7. Top-level HMD system architecture model.

design, which encourage explicit attestation prior to granting
access to resources and discourage the use of trust zones.

For this work, we use the BriefCASE framework [42] to
add zero-trust components to our system architecture model,
guaranteeing confidentiality of operator data. BriefCASE pro-
vides a development environment for (1) modeling system
architectures in AADL, (2) analyzing the models for cyber-
vulnerabilities, (3) mitigating those vulnerabilities by applying
automated model transformations, (4) formally verifying se-
curity properties in the model, (5) generating high-assurance
component code from model specifications, (6) building the
system to a secure kernel target, and finally, (7) generating
a system cyber-resiliency assurance case. The two key Brief-
CASE tools that we use to prove status guarantees are AGREE
(described above) and Resolute.

Resolute [43] is a language and tool for embedding an
assurance argument in an AADL model and evaluating the
validity of the associated evidence. Because high-assurance
products generally undergo certification at the system level,
there is a natural mapping between a system design and the
corresponding assurance argument. Resolute takes advantage
of this alignment by enabling the specification of the assurance
argument directly in the model. The assurance case is then au-
tomatically instantiated and evaluated with elements specified
in the model. This automated evaluation is possible thanks to
the Resolute language and query engine. Queries about the
structure or properties of the model can be represented in the
Resolute language, which the query engine then interprets and
returns a result by traversing the model.

In BriefCASE, Resolute was also utilized to represent
cyber requirements. The query engine would then verify the
requirements were satisfied in the model. The main benefit of
this approach is that requirements that cannot be represented
formally can still be specified semi-formally and evaluated
against a model (or other development artifacts). In the context
of our mission scenario, access to the HMD operator’s data
must be restricted, otherwise that information could be used
maliciously. Therefore, our confidentiality property is “Access
to an operator’s personal data shall be restricted”, which is
then refined by lower-level properties: “All messages shall be
encrypted prior to transmission” and “Component memory

shall be inaccessible by untrusted components”. Resolute
goals representing these properties are shown in Fig. 8. The
goals include the logical rules describing constraints on the
architecture that must hold for the guarantees to be satisfied.

Fig. 8. Resolute goals for assuring confidentiality of operator data.

IV. CONCLUSION

We are investigating the feasibility of applying formal
methods to the cognitive modeling domain to prove guarantees
that mixed-reality system operators and missions are protected
from cognitive attacks. Our initial results are promising. We
have modeled and formally verified HMD application scenar-
ios corresponding to four distinct classes of attack (physiology,
perception, attention, and status).

We have several upcoming research activities planned for
MATRICS, including:

• Increasing model complexity: Although the fidelity of
the models presented in this paper are sufficient for
formal reasoning, additional details in both the system
and cognitive model components will provide stronger
analyses by permitting more general mission scenarios
and covering more diverse operator populations.

• Prototyping and validation: In order to demonstrate the
feasibility of our approach, we will build MR prototypes
and create interactive scenarios that include real-world
hardware with embedded applications with which a user
can engage. These scenarios will be integrated into novel
testing and validation environments, which have a mis-
sion scenario at their core, but also integrate systematic
parameterization of scenario variables for research pur-
poses and detailed data logging for analysis purposes.

• Assurance: Unlike traditional system cybersecurity, there
is a lack of guidance for assuring that MR systems are
protected from cognitive attack. Formal analysis results
alone will not be sufficient. We are therefore defining
assurance patterns corresponding to the attack patterns in
ReCAP to facilitate evaluation and compliance activities.

• Real-world development: Finally, we look forward to
applying our MATRICS framework on real-world MR
system development efforts in the aerospace domain.

As mixed-reality systems continue to grow in size and com-
plexity and become more commonplace in aerospace applica-
tions, rigorous analysis methods and evaluation criteria must
be established (and matured) to provide adequate assurance of
protection against adversarial attacks. By addressing this gap



today, MATRICS and other ICS technologies will be ready
for adoption before these new attacks become widespread,
disruptive, and costly.
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