

Pre-print for the following paper published by the SAE:

Amundson, I., “Checking Compliance of AADL Models with Modeling Guidelines using Resolint,” SAE Technical Paper 2023-01-0995, 2023,

doi:10.4271/2023-01-0995.

Checking Compliance of AADL Models with Modeling Guidelines using Resolint

Isaac Amundson
Collins Aerospace

Abstract

Certification standards for high-assurance systems include objectives

for demonstrating compliance of process artifacts such as

requirements and code with style guidelines and other standards.

With the emergence of model-based development, similar objectives

have been specified that apply to models. Demonstration of

compliance is often achieved by employing a static analysis linter

tool. This paper describes Resolint, an open-source, lightweight

linter tool for checking compliance of Architecture Analysis and

Design Language (AADL) models with modeling guidelines. AADL

enables engineers to describe the key elements of distributed, real-

time, embedded system architectures with a sufficiently rigorous

semantics. In addition, AADL provides an annex mechanism for

extending the base language, enabling new kinds of analyses and tool

support. Resolint uses the AADL annex capability to provide a

language for specifying style guide rule sets. It is implemented as a

plugin for the Eclipse-based Open Source AADL Tool Environment

(OSATE) and includes an engine for evaluating whether an AADL

model complies with the specified rule sets. Results of the Resolint

analysis are displayed to the user and can even be automatically

incorporated as evidence in a system assurance case using the

companion Resolute tool. To illustrate the features of Resolint, we

present three use cases involving the assurance of embedded avionics

applications. We further describe how we applied Resolint in the

evaluation, synthesis, and assurance of a cyber-resilient UAV

surveillance application developed on the DARPA Cyber Assured

Systems Engineering (CASE) program.

DISTRIBUTION STATEMENT A. Approved for public release:

distribution unlimited.

Introduction

Certification standards for high-assurance systems include objectives

for demonstrating compliance of process artifacts with design

standards. For example, the RTCA DO-178C [1] guidance provides

a means of compliance with airworthiness regulations for airborne

software in commercial aircraft, and includes the following objective

for software architecture:

6.3.3.e Conformance to standards: The objective is to

ensure that the Software Design Standards were followed

during the software design process and that deviations to

the standards are justified, for example, deviations to

complexity restriction and design construct rules.

Similar objectives are specified that apply to high-level requirements

(6.3.1.e), low-level requirements (6.3.2.e), and source code (6.3.4.d).

As interest in model-based development (MBD) of critical avionics

software grew more prevalent, the RTCA DO-331 [2] guidance was

introduced as a supplement to DO-178C. DO-331 provides

clarification on the expected use of MBD technologies as well as

additional considerations for ensuring safety and integrity goals are

met. Specifically, the following objective is included:

MB.6.3.3.e Conformance to standards: When software

architecture is expressed by a model, the objective is to

ensure that the Software Model Standards were followed

during the software design process and that deviations

from the standards are justified.

Some of the requirement, design, and modeling standards referred to

by these objectives may be standardized by an industry body and

widely used across that domain (e.g., MISRA C [3] and MAB[4] in

the automotive industry). However, it is typically up to a

development organization to select or author the standard, and then

demonstrate compliance with it. Demonstration of compliance is

associated with a review such that a design artifact and the design

standards are inputs to the review (in addition to requirements,

known anomalies, etc.), with the principal output being a review

report containing stakeholder signatures of acceptance [5].

In general, design standards are comprised of a set of rules that

govern appearance, naming conventions, techniques, structure, and

other design constraints. Although demonstration of compliance with

design standards can be achieved by manual review, in which the

design is visually inspected and determined to be in compliance with

each rule, typically automated static analysis checking tools (also

referred to as linter tools) are deployed.

This paper describes Resolint, an open-source, lightweight linter tool

for checking compliance of Architecture Analysis and Design

Language (AADL) [6] models with modeling standards. Resolint is

implemented as a plug-in for the Open Source AADL Tool

Environment (OSATE), the AADL reference implementation

developed by the Software Engineering Institute at Carnegie Mellon

University.

The increasing complexity of safety-critical systems directly impacts

the certification effort. Modeling and analyzing these systems enable

early detection and removal of issues, thereby improving quality and

reducing overall development and certification cost. To manage

complexity for analysis, it is desirable to model the system

hierarchically, starting with the system architecture and refining to

increasing levels of detail.

AADL (SAE standard AS5506 [7]) enables engineers to describe the

key elements of distributed, real-time, embedded system

architectures. An AADL model includes the components in a system,

their interfaces, properties, information flows, and interconnections.

Hardware components include devices, buses, memory, and

processors, while software components include processes, threads,

data, and subprograms. AADL also provides an annex mechanism

for extending the base language, enabling new kinds of specification,

analysis, and tool support.

In previous work, we developed Resolute [8], an AADL annex

language and tool for specifying and instantiating assurance patterns

and evaluating the resulting assurance arguments. Because safety-

critical products generally undergo certification at the system level,

there is a natural mapping between a system design and the

corresponding assurance argument. Resolute takes advantage of this

alignment by enabling the specification of the assurance argument

directly in an AADL system model. The assurance case can then be

instantiated and evaluated with elements specified in the model.

For checking compliance with modeling standards, Resolint rules are

specified in the Resolute annex of AADL models. This is because

Resolint rules use the same grammar as Resolute claims. In addition,

the Resolute evaluation engine is used to determine whether the

AADL model is in compliance with Resolint rules. Otherwise,

Resolint and Resolute are two different tools with two different use

cases. Future versions of Resolint may have greater independence

from Resolute.

The remainder of this paper describes the Resolint tool and presents

three use cases involving the assurance of embedded avionics

applications. We further describe how we applied Resolint in the

evaluation, synthesis, and assurance of a cyber-resilient UAV

surveillance application developed on the DARPA Cyber Assured

Systems Engineering (CASE) program.

Related Work

Static code analysis tools have been in use since the 1970s when the

Lint tool for C programs was developed at Bell Labs by Stephen C.

Johnson [9]. The utility of these code analysis tools was not lost on

the software development community, and since then there have been

numerous such tools developed for most software languages,

compilers, and development environments [10]. One of the oldest,

PC-lint [11], was first released in 1985 by Gimpel Software (recently

acquired by Vector Informatik) and is still for sale today.

With the advent of languages and tools for model-based

development, similar types of linter utilities were made available,

typically as a feature of the modeling environment. The MathWorks

released M-Lint (whose development was also led by Johnson) for

MATLAB code, and later, Model Advisor and Simulink Check for

Simulink models [12]. Similarly, MES Model Examiner [13] is a

stand-alone static analyzer for Simulink models. Dassault Cameo

Systems Modeler [14] and Ansys SCADE [15] modeling frameworks

include linter utilities as well.

There are not many linter options for AADL. For commercially

licensed software, Ellidiss Technologies developed AADL Inspector

[16], which is a stand-alone tool that includes features for multiple

types of analyses (static, timing, safety, security, etc.) of AADL

models and several of its annexes. OSATE itself includes a syntax

validation mechanism that could be adapted as a kind of linter, but

adding or modifying rules (which are essentially hard-coded in the

validator) would be difficult to accomplish for the average user. To

the best of our knowledge, Resolint is the only open-source AADL

linter tool that is a fully integrated plugin for OSATE.

Resolint

Rules derived from sources such as development standards,

checklists, and modeling guidelines can be encoded in Resolint and

embedded in the Resolute annex of an AADL model. Because rules

in Resolint are represented using the same language as Resolute

claims, a brief overview of Resolute is provided here.

Resolute

In Resolute, users formulate claims and logical rules for satisfying

those claims, which Resolute uses to construct assurance cases. Both

the claims and rules are parameterized by variables, which are

instantiated using elements from the model. This connects the

assurance case directly to the AADL model and means that changes

to the model can result in changes to the assurance case. Resolute

can then automatically evaluate the assurance argument by extracting

supporting evidence directly from the model.

For example, the Resolute goal in Figure 1 specifies that a given

process p is protected from alterations by other processes. When this

goal is instantiated with a specific process component within an

AADL model, Resolute can determine whether the claim is

substantiated by evaluating the claim’s Boolean expression (the

nested forall statements starting on line 5 in this example).

Figure 1. Example Resolute claim.

In the example, all memory components that process p is bound to

are evaluated (line 5), and if another process q is also bound to one of

the memory components (line 6), q must have a property that

identifies it as a memory-safe process (line 7), or the claim will fail.

Here, memory_safe_process() is another user-defined claim

that includes its own logical expression to determine whether a

process is memory safe.

In addition to supporting first-order logic, the Resolute language

includes a collection of common functions for traversing and

evaluating AADL models. An abbreviated list of representative

built-in functions is shown in Figure 2. In total, more than 70 built-in

functions are defined.

Figure 2. Partial list of built-in Resolute functions.

Not only does Resolute provide language constructs for traversing

and evaluating an architecture model, but it also includes a plug-in

mechanism that enables users to run external analysis tools. Resolute

can then execute external analyses and use the analysis results to

support assurance claims. A similar mechanism enables users to

create Java function libraries that can be called from Resolute logic.

Combined, these features support evidence generation and ingestion

from artifacts both internal and external to the AADL workspace,

enabling the assembly and evaluation of a comprehensive system

assurance case.

A few external analysis plug-ins are included with Resolute. For

example, the FileAccess function library enables access to

metadata and contents of file system artifacts. The StringLib

function library provides an API to string manipulation functions,

similar to those contained in the Java String class. Access to these

types of function libraries aids in the specification of evidence

evaluation rules that would not be possible using the base Resolute

language and enables a broad collection of assurance evidence from

sources outside the model.

For example, test results can be used to support an assurance claim

that a given component implementation satisfies its requirements. In

this scenario, suppose the test results were output by an automated

test tool and reside in a file with a known format. To automatically

determine if the assurance claim is supported, the contents of the test

results file could be matched against a regular expression

representing a passing case. In Resolute, such a claim,

component_satisfies_requirements(), could be

specified as shown starting on line 7 in Figure 3.

Figure 3. Resolute claim supported by external evidence.

Upon running Resolute on the system model, the generated assurance

argument might look as shown in Figure 4. In this example, tests for

components A, B, and D passed, whereas testing for component C

had failures.

Figure 4. Assurance case generated by Resolute.

The Resolute User’s Guide describes the full syntax for specifying

claims, as well as the complete list of functions for querying

structural properties of a model. It is included with Resolute or can

be accessed at https://github.com/loonwerks/formal-methods-

workbench/tree/master/documentation/resolute.

Formalizing Rules in Resolint

A Resolint rule is similar in structure to a Resolute claim. For

example, an AADL modeling standard may contain the following

rule:

Threads should have the Dispatch_Protocol property

specified.

In Resolint this would be represented as

Similarly, the rule

Threads can only specify a Dispatch_Protocol of Periodic

or Sporadic.

would be specified as

The syntax of a rule is

<Rule> ::= <name> ‘(’ (<Param> ‘,’)* ‘)’ ‘<=’

‘**’ <rule_description> ‘**’ <Expression>

<Param> ::= <param_name> ‘:’ <Type>

where <name> is a string representing the rule name,

<rule_description> is a textual description of the rule,

<param_name> is a string representation of a parameter name,

<Type> is a valid Resolute type, and <Expression> is a valid

Resolute logical expression representing the rule.

Note that both of the above rules contain a call to lint_check().

lint_check() is a provided function that enables Resolint to

capture the specific model element that violates the rule. The

definition of lint_check() (shown in Figure 5) is specified in

Resolint.aadl, which is included with the tool as an AADL plug-in

contribution.

Figure 5. The lint_check() function for linking a rule violation with a

model element.

The function takes an AADL element and a Boolean value. The

Boolean value is the result of the rule check and becomes the result

of the claim without modification. If its value is false, Resolint

internally keeps track of the AADL element that violated the rule in

order to provide the user with a direct reference in the Eclipse

Problems pane.

Two other lint_check functions are provided:

lint_check_set() and lint_check_list(). These are

used when multiple elements are referenced in a rule. For example,
the one_process() rule shown in Figure 6 will be violated if

multiple process components exist that contain threads or thread

groups. If this is the case, the user should be presented with the set of
all such processes. In this example, lint_check_set()

evaluates the size of the set of processes containing threads, and if the

set is not empty, all processes in the set will be flagged.

Figure 6. Use of the lint_check_set() claim for linking a rule violation

with multiple model elements.

The lint_check() functions are not necessary for Resolint to

check rules and display results. However, they are currently

necessary to hyperlink Resolint analysis results with the AADL

elements that are violating the rules. Future versions of Resolint may

eliminate the need for the lint_check() functions.

Creating Rulesets

Resolint rules can be grouped into rulesets. These are useful for

organizing rules corresponding to different guidelines and standards,

such as organizational styles, customer requirements, certification

guidelines, and tool constraints. Rulesets also provide the ability to

specify the severity of the rule violation; that is, the type of message

the user should receive if the rule is found to be violated. Three

levels of severity are supported. From least to most severe, they are

info, warning, and error.

The syntax of a ruleset is

<Ruleset> ::= ‘ruleset’ <name> ‘{’ (

<Resolint_Statement>)* ‘}’

<Resolint_Statement> ::= (‘info’ | ‘warning’ |

‘error’) ‘(’ <Rule_Reference> ‘)’

where <name> is a string representing the ruleset name and

<Rule_Reference> is the function name of a Resolute claim

representing the rule.

Resolint statements are interpreted such that if the referenced rule

evaluates to false, the user will receive a message marker of the

severity indicated by the info, warning, or error keyword.

An example ruleset is depicted in Figure 7.

Figure 7. Example ruleset definition.

Checking Rules and Rulesets

In order to check that an AADL model complies with a set of rules,

Resolint needs to know which rules or rulesets to check. This is

specified using the check statement in an AADL component

implementation. For example, the check CASE_Tools statement

in the MissionComputer.Impl component in Figure 8 (line 22)

will evaluate the MissionComputer.Impl system instance

against the CASE_Tools ruleset.

Figure 8. Resolint check statement.

Similarly, individual rules that do not belong to a ruleset can also be

checked, as in the example in Figure 9 (line 22). In this example, a

single rule (one_process()) is being checked on

MissionComputer.Impl, and if violated, an error will be issued.

Figure 9. Checking and specifying severity of individual rules.

Running Resolint

Resolint is run by selecting an AADL component implementation

containing a check statement in its Resolute annex and running the

tool from the Analyses menu included with OSATE (Analyses →

Resolint → Run Resolint) as shown in Figure 10.

Figure 10. Running Resolint.

Resolint Output

When the Resolint analysis is complete a message box will inform

the user whether any rule violations were discovered, and if so, how

many of each severity type (see Figure 11).

Figure 11. Resolint result message.

In addition, the list of rule violations will appear in the standard

Eclipse Problems pane, as shown in Figure 12.

Figure 12. Rule violations appear in the Eclipse Problems pane.

Double-clicking on an individual problem will open the package

containing the AADL element violating the rule and highlight it, as

well as place a marker with the corresponding severity in the margin,

as shown in Figure 13.

Markers can be cleared by either fixing the rule violation and

rerunning Resolint, or from the menu by selecting Analyses →

Resolint → Clear Resolint markers.

Figure 13. Automatic highlighting of model element responsible for rule

violation.

Resolint Use Cases

In this section we present three use cases for Resolint and describe

how we applied Resolint in the evaluation, synthesis, and assurance

of a cyber-resilient UAV surveillance application developed on the

DARPA CASE program.

The principal objective of the DARPA CASE program was the

development of systems engineering tools that provide inherent cyber

resiliency for complex cyber-physical systems. Our team developed

the BriefCASE model-based systems engineering (MBSE)

environment [17], which integrates formal design, verification, and

code generation activities, while maintaining an assurance case

comprised of proof artifacts and other evidence of correctness

emitted by the tools. BriefCASE includes tools for:

1. Modeling cyber-physical system architectures in AADL

2. Analyzing AADL models and generating new requirements

corresponding to discovered cyber vulnerabilities

3. Mitigating vulnerabilities through automated model

transformations

4. Verifying model correctness using formal methods analysis

5. Synthesizing provably correct component and infrastructure

code

6. Building to a formally verified separation kernel

7. Generating and viewing a cybersecurity assurance case

Resolint was developed on the CASE program and integrated with

the BriefCASE environment. Through our work on the program

developing and integrating CASE tools, as well as evaluating the

resulting tool chain on real-world examples, we identified three key

use cases that highlight the utility of Resolint.

Use Case 1: Enforce Appropriate Subset of AADL

Numerous AADL analysis tools have been developed since SAE

standardization in 2004. However, not all tools are built to support

the entire AADL syntax. Ideally these tools should be able to

properly handle models containing incompatible syntax, but that is

not always the case, and it may be desirable to create a syntax

compatibility ruleset to check against the model in order to ensure

compatibility before running the tool.

Because BriefCASE was comprised of multiple research tools (i.e.,

tools with low technology readiness level (TRL)) developed by

different performers on the program, it became evident that a

collection of exemplar models would be needed for testing tool

functionality and integration. Since the tools were low TRL,

especially early in the program, most did not provide support for the

complete AADL language. By encoding the permissible (or

conversely, non-permissible) syntax in tool-specific Resolint rulesets,

it became very easy to create new exemplar models and immediately

verify compatibility with a target tool.

For example, one of the CASE requirement generation tools was

initially unable to recognize abstract features and feature groups, as

well as thread group components. These constraints were encoded in

Resolint (as shown in Figure 14) and checked on models before they

were analyzed with the requirement generation tool. Note that a

violation of the no_thread_groups() rule issues a warning

rather than an error. This is because, although the requirement

generation tool did not yet support thread group semantics, it was

able to display an alert message to the user and continue its analysis.

Figure 14. Requirements generation tool ruleset for enforcing a subset of

AADL.

Use Case 2: Ensure Appropriate Architecture Structure

Similar to enforcing acceptable AADL language elements, some

tools require a specific structure of the architecture. For example,

the SPLAT component synthesis tool [18] requires that target

components have specific property associations as well as

guarantee statements in an AGREE annex [19]. The HAMR

build tool [20] requires that each process component contains only a

single thread when building to an seL4 target [21], which is

representative of the secure microkernel’s notion of guaranteed time

and space partitioning. Figure 15 shows excerpts of the code

synthesis tools ruleset.

Figure 15. Code synthesis tool ruleset for ensuring correct structure of AADL

architectures.

Use Case 3: Check Compliance with Modeling

Guidelines

On any high-assurance product development effort, rules derived

from the above two use cases, along with additional style-based rules

developed internally or perhaps originating from the customer, will

be compiled into a collection of guidelines against which the model

must be checked for compliance.

Style-based rules govern the format of the model rather than technical

content and are in place to ensure consistency and other desirable

quality attributes when multiple engineers work on the same project.

Examples of formatting rules could include restricting model element

names from containing underscore characters or requiring an

@author tag in the comment block at the top of each file. For

example, a development organization style rule for restricting

underscore characters in component names could look as shown in

Figure 16.

Figure 16. Development organization style rule for component naming.

Here, the name of each component in the model is retrieved and the
StringLib function library is used to determine if the name

contains an underscore (line 10). If this is the case, the offending

component is flagged via the lint_check mechanism (line 11),

and a warning is displayed to the user.

A modeling standards document was developed for the BriefCASE

environment (an excerpt is shown in Figure 17) and the rules

subsequently encoded in Resolint.

Figure 17. An excerpt from the BriefCASE Modeling Guidelines.

BriefCASE includes a Resolute system cybersecurity assurance

pattern that is instantiated with evidence generated by using the tool

chain. A fragment of the assurance case in Goal Structuring Notation

(GSN) [22] is shown in Figure 18. It contains a claim (goal) that the

model has been checked against (and is in compliance with) the

BriefCASE modeling guidelines. The corresponding Resolute goal is

shown in Figure 19 (starting on line 8). When evaluating the

assurance case, Resolute automatically runs Resolint via the built-in

resolint() function (line 12) and includes the result as evidence

in the evaluated assurance case.

The referenced assurance pattern and modeling guidelines are

included with BriefCASE, which is open-source and can be

downloaded from the BriefCASE project repository at

https://github.com/loonwerks/BriefCASE.

Figure 18. GSN CASE assurance fragment. Goal G2 argues that a security

analysis was performed on a model that complies with the CASE modeling

guidelines. Solution S1 substantiates the claim using results from Resolint.

Figure 19. Resolute implementation of CASE assurance pattern.

Conclusion

This paper describes the Resolint tool for checking compliance of

AADL models with modeling standards. With the emergence of

high-assurance certification objectives targeting aspects of model-

based development, it is important to have access to the proper tools

and methods for satisfying those objectives. Resolint addresses this

need by providing a means for generating compliance evidence that

can be used to support assurance claims.

Because the result of Resolint can be used as evidence for satisfying

certification objectives, qualification of the tool will be required in

most certification domains (for example, see RTCA DO-330 [23]).

Qualification activities are typically performed on a per-product

basis. Some tools provide qualification kits to help development

organizations reduce the certification costs associated with using the

tool. Although Resolint does not include a qualification kit at

present, this could be considered for future releases.

We are currently in the process of implementing a headless version of

Resolint that can be run from a command line for incorporation into a

CI/CD process. This will enable models to automatically be checked

for compliance with modeling guidelines when they are checked into

a repository.

Looking ahead, we hope to improve Resolint by exploring GUI

enhancements, implementing a simplified mechanism for linking rule

violations with model elements, and potentially even decoupling

from Resolute entirely. We would also like to provide better support

for distinguishing between an AADL system instance and the

individual AADL packages that comprise a project. Currently, the

evaluation of Resolint rules is performed against an instantiated

AADL system model. Although built-in Resolute functions are

provided for navigating elements within an AADL package, it may

not be intuitive to the user how best to do this. Finally, we hope to

continue keeping Resolint up to date with the latest AADL and

OSATE versions as they are released.

Resolint is open-source software through a BSD-3 license. It is

currently packaged with Resolute, which can be installed in OSATE

from the Help → Install Additional OSATE Components menu or

downloaded from the Resolute project repository at

https://github.com/loonwerks/Resolute.

References

1. RTCA DO-178C, “Software considerations in airborne systems

and equipment certification,” 2011.

2. RTCA DO-331, “Model-Based Development and Verification

Supplement to DO-178C and DO-278A,” 2011.

3. MISRA Consortium, “MISRA C:2012 Guidelines for the use of

the C language in critical systems,” 2012.

4. The MathWorks Advisory Board, “MAB Guidelines,” Accessed

November 6, 2022. https://www.mathworks.com/solutions/mab-

guidelines.html

5. IEEE, “IEEE Standard 1028-2008 for Software Reviews

and Audits,” 2008.

6. Feiler, P. H. and Gluch, D. P., “Model-Based Engineering with

AADL: An Introduction to the SAE Architecture Analysis &

Design Language,” 1st ed. Addison-Wesley Professional, 2012.

7. SAE AS5506D, “Architecture Analysis and Design Language

(AADL),” April 22, 2022.

8. Gacek, A., Backes, J., Cofer, D., Slind, K., et. al. “Resolute: an

assurance case language for architecture models,” Proceedings

of the 2014 ACM SIGAda annual conference on High integrity

language technology, HILT 2014, Portland, Oregon, USA,

October 18-21, 2014, Michael Feldman and S. Tucker Taft

(Eds.). ACM, 19–28.

9. Johnson, S. C., “Lint, a C program checker,” Murray Hill: Bell

Telephone Laboratories, 1977.

10. Wikipedia. “List of tools for static code analysis”. Accessed

November 6, 2022.

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_anal

ysis

11. Vector Informatik. “PC-lint Plus”. Accessed November 6, 2022.

https://pclintplus.com/pc-lint-plus/

12. The MathWorks. “Simulink Check”. Accessed November 6,

2022. https://www.mathworks.com/products/simulink-

check.html

13. MES. “Model Examiner”. Accessed November 6, 2022.

https://model-engineers.com/en/quality-tools/mxam/

14. Dassault Systemes. “Cameo Systems Modeler”. Accessed

November 6, 2022. https://www.3ds.com/products-

services/catia/products/no-magic/cameo-systems-modeler/

15. Ansys. “SCADE”. Accessed November 6, 2022.

https://www.ansys.com/products/embedded-software/ansys-

scade-suite

16. Ellidiss Technologies. “AADL Inspector”. Accessed November

6, 2022. https://www.ellidiss.com/products/aadl-inspector/

17. Cofer, D., Amundson, I., Babar, J., Hardin, D., et. al. “Cyber

Assured Systems Engineering at Scale,” IEEE Security and

Privacy, May-June 2022.

18. Mercer, E., Slind, K., Amundson, I., Cofer, D., et. al.,

“Synthesizing verified components for cyber assured systems

engineering,” 24th International Conference on Model-Driven

Engineering Languages and Systems (MODELS 2021). October

2021.

19. Cofer, D., Gacek, A., Miller, S., Whalen, M., et. al.

“Compositional verification of architectural models”. NASA

Formal Methods, A. E. Goodloe and S. Person, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg. 2012. pp. 126–140.

20. Hatcliff, J., Belt, J., Robby, and Carpenter, T., “HAMR: An

AADL multi-platform code generation toolset,” 10th

International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation (ISoLA), ser. LNCS, vol.

13036. 2021. pp. 274–295.

21. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., et. al.

“seL4: formal verification of an OS kernel,” Proceedings of the

22nd ACM Symposium on Operating Systems Principles 2009

(SOSP 2009). Big Sky, Montana, USA., October 11-14, 2009. J.

N. Matthews and T. E. Anderson, Eds. ACM, 2009. pp. 207–

220.

22. The Assurance Case Working Group SCSC-141B. “Goal

Structuring Notation Community Standard (Version 2),” 2011.

23. RTCA DO-330, “Tool Qualification Supplement to DO-178C

and DO-278A,” 2011.

Contact Information

Isaac Amundson is a research engineer at Collins Aerospace. He can

be reached at isaac.amundson@collins.com.

Acknowledgments

We would like to thank John Shackleton (Galois) and Jason Belt

(Kansas State University) for authoring the bulk of the CASE

modeling guidelines referred to in this paper. The guidelines

provided a diverse assortment of rules covering much of the AADL

grammar, thus enabling development of a more robust tool. In

addition, we thank all the CASE performers that put Resolint through

its paces throughout the program. Finally, thanks to the reviewers for

providing constructive feedback on this paper.

This work was funded by DARPA contract HR00111890001. The

views, opinions and/or findings expressed are those of the author and

should not be interpreted as representing the official views or policies

of the Department of Defense or the U.S. Government.

