

April 2014

NASA/CR–2014-218244

Formal Methods Case Studies for DO-333

Darren Cofer and Steven P. Miller
Rockwell Collins, Inc., Cedar Rapids, Iowa

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.

English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 443-757-5803

• Phone the NASA STI Information Desk at

443-757-5802

• Write to:

 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL06AA04B

April 2014

NASA/CR–2014-218244

Formal Methods Case Studies for DO-333

Darren Cofer and Steven P. Miller
Rockwell Collins, Inc., Cedar Rapids, Iowa

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

1

Table of Contents

Acknowledgements ... 11	

Abstract ... 12	

1	
 Introduction ... 13	

2	
 Example: Dual-Channel Flight Guidance System .. 17	

3	
 Case Study: Theorem Proving .. 21	

3.1	
 Overview of FGS System ... 21	

3.2	
 Software Verification Plan .. 23	

3.2.1	
 Formal Specification and Verification Tools .. 23	

3.2.2	
 Life Cycle Data Items ... 23	

3.2.3	
 Objectives to Be Satisfied ... 24	

3.2.4	
 Tool Qualification Issues .. 28	

3.3	
 The Synchronous Pilot Flying Example ... 31	

3.3.1	
 High-Level Requirements for the Synchronous Bus .. 31	

3.3.2	
 Low-Level Requirements for the Synchronous Bus ... 35	

3.3.3	
 High-level Requirements for the Synchronous FGS Side .. 37	

3.3.4	
 Low-level Requirements for the Synchronous FGS Side ... 41	

3.3.5	
 PVS Specification of the Synchronous Pilot Flying System .. 45	

3.3.6	
 Formal Verification of the Synchronous Pilot Flying Example 48	

3.4	
 The Asynchronous Pilot Flying Example ... 58	

3.4.1	
 Specification of the Asynchronous Bus Messages ... 59	

3.4.2	
 High-Level Requirements for the Asynchronous Bus .. 59	

3.4.3	
 Low-Level Requirements for the Asynchronous Bus ... 60	

3.4.4	
 High-Level Requirements for the Asynchronous FGS Side ... 62	

2

3.4.5	
 Low-Level Requirements for the Asynchronous FGS Side ... 67	

3.4.6	
 PVS Specification of the Asynchronous Pilot Flying Example 70	

3.4.7	
 Formal Verification of the Asynchronous Pilot Flying Example 73	

3.5	
 The Synchronous Pilot Flying Example in HOL .. 84	

3.5.1	
 Specification in HOL4 using a Next-State Approach ... 84	

3.5.2	
 Formal Verification of the Next-State Approach in HOL4 .. 87	

3.5.3	
 Specification in HOL4 using a Streams Approach ... 90	

3.5.4	
 Formal Verification of the Streams Approach in HOL4 .. 93	

4	
 Case Study: Model Checking .. 95	

4.1	
 Mode Logic Overview .. 95	

4.2	
 Software Verification Plan .. 98	

4.2.1	
 Formal Specification and Verification Tools .. 98	

4.2.2	
 Life Cycle Data Items ... 99	

4.2.3	
 Objectives to Be Satisfied ... 99	

4.2.4	
 Tool Qualification Issues .. 103	

4.3	
 Specification of the Mode Logic ... 104	

4.3.1	
 Flight Modes ... 106	

4.3.2	
 Event Processing ... 132	

4.4	
 Formal Verification of the Mode Logic .. 136	

4.4.1	
 Heuristics for Writing Formal Properties ... 136	

4.4.2	
 Verification of the Mode Logic Using the Kind Model Checker 138	

4.4.3	
 Verification of the Mode Logic Using MATLAB Design Verifier 153	

5	
 Case Study: Abstract Interpretation .. 158	

5.1	
 Overview of the Heading Control Model ... 158	

3

5.1.1	
 Heading Control Model and Code .. 158	

5.1.2	
 Properties to Be Checked .. 161	

5.2	
 Software Verification Plan .. 162	

5.2.1	
 Life Cycle Data Items ... 164	

5.2.2	
 Objectives to Be Satisfied ... 164	

5.2.3	
 Tool Qualification Issues .. 167	

5.3	
 Analysis of the Heading Control Law Source Code with Astrée 167	

5.4	
 Analysis of the Heading Control Law Source Code with Polyspace 169	

6	
 Conclusion .. 172	

7	
 References ... 173	

Appendix A	
 Acronyms .. 175	

Appendix B	
 Mode Logic Properties .. 177	

Appendix C	
 Mode Logic Error Log .. 198	

4

Figures

Figure 1 – Relationship of Elements of the Dual-channel FGS Example 14	

Figure 2 – Relationship of Case Studies to DO-178C Objectives .. 15	

Figure 3 – Overview of the Flight Guidance System ... 17	

Figure 4 – Flight Control Panel .. 18	

Figure 5 – Primary Flight Display .. 19	

Figure 6 – FGS System Function .. 21	

Figure 7 – Synchronous Pilot Flying System ... 31	

Figure 8 – High-Level Requirements for the Synchronous Bus ... 32	

Figure 9 – Low-Level Requirements for the Synchronous Bus ... 35	

Figure 10 – Theory Interpretation for Synchronous Bus .. 36	

Figure 11 – TCCs Generated from Theory Interpretation for the Synchronous Bus 37	

Figure 12 – Synchronous Pilot Flying Side Logic .. 38	

Figure 13 – High-Level Requirements for the Synchronous Side (Part 1) 39	

Figure 14 – High-Level Requirements for the Synchronous Side (Part 2) 40	

Figure 15 – Low-Level Requirements for the Synchronous Side (Part 1) 42	

Figure 16 – Low-Level Requirements for the Synchronous Side (Part 2) 43	

Figure 17 – Theory Interpretation for the Synchronous Side ... 44	

Figure 18 – PVS Specification of the Synchronous Pilot Flying System (Part 1) 45	

Figure 19 – PVS Specification of the Synchronous Pilot Flying System (Part 2) 46	

Figure 20 – Incorrect Statement of Synchronous Requirement R1 in PVS 48	

Figure 21 – Synchronous Pilot Flying System Requirements (Part 1) ... 49	

Figure 22 – Correct Statement of Requirement R1 in PVS .. 50	

Figure 23 – PVS Proof of Synchronous Reachable States Valid Theorem 51	

Figure 24 – Inductive Sequent for Reachable States .. 51	

Figure 25 – Synchronous Pilot Flying System Requirements (Part 2) ... 52	

Figure 26 – PVS Proof of Requirement R1 for Synchronous Pilot Flying System 53	

Figure 27 – PVS Specification of the Pilot Flying System Requirements (Part 3) 54	

Figure 28 – PVS Proof of Requirement R3a/b for Synchronous Pilot Flying System 55	

Figure 29 – Pilot Flying System Requirements 2 ... 56	

Figure 30 – PVS Proof of Switching Transient .. 57	

5

Figure 31 – Asynchronous Pilot Flying System ... 58	

Figure 32 – PVS Specification of a Bus Message .. 59	

Figure 33 – High-Level Requirements for the Asynchronous Bus ... 60	

Figure 34 – Low-Level Requirements for the Asynchronous Bus ... 61	

Figure 35 – Theory Interpretation for Asynchronous Bus .. 62	

Figure 36 – Asynchronous Pilot Flying Side Logic.. 63	

Figure 37 – High-Level Requirements for the Asynchronous Side (Part 1) 64	

Figure 38 – High-Level Requirements for the Asynchronous Side (Part 2) 65	

Figure 39 – High-Level Requirements for the Asynchronous Side (Part 3) 66	

Figure 40 – High-Level Requirements for the Asynchronous Side (Part 4) 67	

Figure 41 – Low-Level Requirements for the Asynchronous Side (Part 1) 68	

Figure 42 – Low-Level Requirements for the Asynchronous Side (Part 2) 69	

Figure 43 – Theory Interpretation for the Asynchronous Side ... 70	

Figure 44 – PVS Specification of the Asynchronous Pilot Flying Example – Part 1 71	

Figure 45 – PVS Specification of the Asynchronous Pilot Flying Example – Part 2 72	

Figure 46 – Asynchronous Pilot Flying System Requirements (Part 1) 74	

Figure 47 – Asynchronous Pilot Flying System Requirements (Part 2) 75	

Figure 48 – Asynchronous Pilot Flying System Requirements (Part 3) 76	

Figure 49 – Lemmas Added to Side_HLR to Support Theorem Proving 78	

Figure 50 – Grind-use-grind PVS Proof Strategy ... 79	

Figure 51 – PVS Proof of Asynchronous Reachable States Valid Theorem 79	

Figure 52 – Asynchronous Pilot Flying System Requirements (Part 4) 80	

Figure 53 – Incorrect Statement of Asynchronous Requirement R3 .. 80	

Figure 54 – Asynchronous Pilot Flying System Requirements (Part 5) 81	

Figure 55 – Incorrect Statement of Asynchronous Requirement R5 .. 82	

Figure 56 – Asynchronous Pilot Flying System Requirements (Part 6) 83	

Figure 57 – Rise and Data Type Definitions .. 85	

Figure 58 – Initial State Definitions .. 86	

Figure 59 – Next State Definitions ... 87	

Figure 60 – Valid State Definition .. 88	

Figure 61 – Custom Simplification Set sys_ss .. 89	

6

Figure 62 – HOL4 Proof that all Reachable States are Valid ... 89	

Figure 63 – HOL4 Proof that All Valid States Satisfy R1 .. 90	

Figure 64 – HOL4 Proof that All Valid States Satisfy R1 .. 90	

Figure 65 – Bus Specification with Streams Approach .. 90	

Figure 66 – Two-Delay Bus Specification with Streams Approach ... 91	

Figure 67 – ‘Rise’ Definition with Streams Approach ... 91	

Figure 68 – Alternate ‘Rise’ Definition with Streams Approach ... 91	

Figure 69 – System Specification with Streams Approach .. 92	

Figure 70 – Side Specification with Streams Approach ... 92	

Figure 71 – Final Bus Specification for Streams Approach ... 93	

Figure 72 – Statement of R4 Property .. 93	

Figure 73 – Statement of R1 Property .. 93	

Figure 74 – Proof of R4 Property for Streams Approach ... 94	

Figure 75 – Proof of R1 Property for Streams Approach ... 94	

Figure 76 – A Non-Arming Mode .. 96	

Figure 77 – An Arming Mode .. 96	

Figure 78 – A Capture/Track Mode .. 97	

Figure 79 – Mode Logic Top Level .. 105	

Figure 80 – Flight Modes Subsystem ... 106	

Figure 81 – FD Mode Logic ... 107	

Figure 82 – ANNUNCIATIONS Mode Logic ... 109	

Figure 83 – LATERAL Modes ... 110	

Figure 84 – Heading Select (HDG) Mode .. 112	

Figure 85 – Lateral Navigation (NAV) Mode .. 113	

Figure 86 – Lateral Approach (LAPPR) Mode ... 115	

Figure 87 – Lateral Go Around (LGA) Mode .. 117	

Figure 88 – Roll Hold (ROLL) ... 118	

Figure 89 – VERTICAL Modes ... 120	

Figure 90 – Vertical Speed (VS) Mode .. 121	

Figure 91 – Flight Level Change (FLC) Mode ... 123	

Figure 92 – Altitude Hold (ALT) Mode ... 125	

7

Figure 93 – Altitude Select (ALTSEL) Mode .. 126	

Figure 94 – Vertical Approach (VAPPR) Mode ... 128	

Figure 95 – Vertical Go Around (VGA) Mode .. 130	

Figure 96 – Pitch Hold (PITCH) Mode .. 132	

Figure 97 – Event Processing ... 133	

Figure 98 – Seen Logic ... 134	

Figure 99 – At Least One Lateral Mode Active (Lustre) .. 138	

Figure 100 – Weaker Version of at Least One Lateral Mode Active (Lustre) 139	

Figure 101 – At Most One Lateral Mode Active (Lustre) .. 140	

Figure 102 – VAPPR Active Only If LAPPR Active (Lustre) ... 141	

Figure 103 – LGA Active If and Only If VGA Active (Lustre) ... 141	

Figure 104 – Overspeed Implies FLC, ALT, ALTSEL, or PITCH Active (Lustre) 142	

Figure 105 – Overspeed and PITCH Transitory (Lustre) ... 142	

Figure 106 – HDG Switch Pressed Selects HDG (Lustre) ... 143	

Figure 107 – Definition of RISING (Lustre) .. 143	

Figure 108 – HDG Switch Pressed Selects HDG Using Internal Variables (Lustre) 144	

Figure 109 – No Higher Event Than HDG Switch Pressed (Lustre) .. 145	

Figure 110 – Functional Requirements for Clearing HDG Mode (Lustre) 145	

Figure 111 – Initial Functional Requirements for Activating NAV Mode (Lustre) 146	

Figure 112 – Correct Functional Requirements for Activating NAV Mode (Lustre) 146	

Figure 113 – VGA Clear Error ... 147	

Figure 114 –Counterexample for Clearing VGA Error .. 148	

Figure 115 – Counterexample for FLC Select Error .. 150	

Figure 116 – ALTSEL Select Error (Lustre) .. 151	

Figure 117 – Counterexample for ALTSEL Select Error ... 152	

Figure 118 – At Least One Lateral Mode Active (Design Verifier) ... 153	

Figure 119 – NAV Active When Capture Cond Met (Design Verifier) 154	

Figure 120 – At Least One Vertical Mode Active (Design Verifier) ... 154	

Figure 121 – Properties Subsystem (Design Verifier) .. 155	

Figure 122 – Top-Most Model (Design Verifier) ... 157	

Figure 123 – Heading Control Law Model ... 159	

8

Figure 124 – Fragment of Autogenerated C Code for Heading Control Model 160	

Figure 125 – Astrée Analysis Results ... 168	

Figure 126 – Astrée Directives to Define Partitions ... 169	

Figure 127 – Anti-Windup Logic ... 170	

9

Tables

Table 1 – Summary of Objectives Satisfied by Theorem Proving ... 25	

Table 2 – Summary of Objectives Satisfied by Model Checking ... 101	

Table 3 – Turn FD On ... 107	

Table 4 – Lateral Mode Manually Selected .. 108	

Table 5 – Vertical Mode Manually Selected .. 108	

Table 6 – Turn FD Off .. 108	

Table 7 – Turn Annunciations On .. 109	

Table 8 – Turn Annunciations Off .. 109	

Table 9 – New Lateral Mode Activated .. 111	

Table 10 – HDG Select ... 112	

Table 11 – HDG Clear .. 113	

Table 12 – HDG Will Be Activated .. 113	

Table 13 – NAV Select ... 114	

Table 14 – NAV Capture .. 114	

Table 15 – NAV Clear .. 114	

Table 16 – NAV Will Be Activated .. 115	

Table 17 – LAPPR Select ... 115	

Table 18 – LAPPR Capture .. 116	

Table 19 – LAPPR Clear .. 116	

Table 20 – LAPPR Will Be Activated .. 116	

Table 21 – LGA Select ... 117	

Table 22 – LGA Clear ... 118	

Table 23 – LGA Will Be Activated .. 118	

Table 24 – Lateral Mode Active ... 119	

Table 25 – New Vertical Mode Activated .. 121	

Table 26 – VS Select ... 122	

Table 27 – VS Clear .. 122	

Table 28 – VS Will Be Activated ... 122	

Table 29 – FLC Select .. 123	

Table 30 – FLC Clear ... 124	

10

Table 31 – FLC Will Be Activated ... 124	

Table 32 – ALT Select .. 125	

Table 33 – ALT Clear ... 126	

Table 34 – ALT Will Be Activated ... 126	

Table 35 – ALTSEL Select ... 127	

Table 36 – ALTSEL Capture .. 127	

Table 37 – ALTSEL Track ... 127	

Table 38 – ALTSEL Clear .. 128	

Table 39 – ALTSEL Will Be Activated ... 128	

Table 40 – VAPPR Select ... 129	

Table 41 – VAPPR Capture .. 129	

Table 42 – VAPPR Clear .. 129	

Table 43 – VAPPR Will Be Activated ... 130	

Table 44 – VGA Select ... 131	

Table 45 – VGA Clear .. 131	

Table 46 – LGA Will Be Activated .. 131	

Table 47 – Vertical Mode Active .. 132	

Table 48 – FLC Select Error ... 149	

Table 49 – Summary of Objectives Satisfied by Abstract Interpretation 165	

Table 50 – Initial Polyspace Analysis Results .. 169	

Table 51 – Unproven Runtime Checks ... 171	

Table 52 – Coding Rules Analysis .. 171	

11

Acknowledgements
Several individuals contributed to the case studies described in this report. Darren Cofer of

Rockwell Collins provided general oversight and developed the sections on meeting DO-333

objectives and tool qualification. Steven P. Miller and Jennifer Davis of Rockwell Collins

developed the Pilot Flying theorem proving case study based on PVS with assistance from

Konrad Slind, also of Rockwell Collins. Jennifer Davis and Konrad Slind provided the HOL4

version of the Pilot Flying case study. Cesar Munoz of the NASA Langley Research Center

provided valuable input regarding tool qualification and soundness for the PVS theorem prover.

Sam Owre of SRI International and Mike Whalen of the University of Minnesota provided

assistance on the use of PVS.

Steven P. Miller developed the Mode Logic model checking case study based on MATLAB

Simulink/Stateflow® and the Kind and MATLAB Design Verifier™ model checkers with

assistance from Andrew Gacek and Daren Cofer of Rockwell Collins. Cesare Tinelli of the

University of Iowa provided valuable input regarding tool qualification and soundness for the

Kind model checker.

Michael Dierkes of Rockwell Collins France developed the Heading Control abstract

interpretation case study based on Astrée. Sidhartha Battacharyya of Rockwell Collins developed

the Polyspace® version of the same case study. Gary Balas of the University of Minnesota

provided the Heading Control flight control law.

12

Abstract
RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A provides guidance for

software developers wishing to use formal methods in the certification of airborne systems and

air traffic management systems. The supplement identifies the modifications and additions to

DO-178C and DO-278A objectives, activities, and software life cycle data that should be

addressed when formal methods are used as part of the software development process. This

report presents three case studies describing the use of different classes of formal methods to

satisfy certification objectives for a common avionics example – a dual-channel Flight Guidance

System. The three case studies illustrate the use of theorem proving, model checking, and

abstract interpretation. The material presented is not intended to represent a complete

certification effort. Rather, the purpose is to illustrate how formal methods can be used in a

realistic avionics software development project, with a focus on the evidence produced that could

be used to satisfy the verification objectives found in Section 6 of DO-178C.

13

1 Introduction
RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A [35] provides guidance

for software developers wishing to use formal methods in the certification of airborne systems

and air traffic management systems. The supplement identifies the modifications and additions

to DO-178C [33] objectives, activities, and software life cycle data that should be addressed

when formal methods are used as part of the software development process. This includes

artifacts that would be expressed using some formal notation and the verification evidence that

could be derived from them.

This report presents three case studies describing the use of different classes of formal methods

to satisfy DO-178C certification objectives. The material presented is not intended to represent a

complete certification effort. Rather, the purpose is to illustrate how formal methods can be used

in a realistic avionics software development project, with a focus on the evidence produced that

could be used to satisfy the verification objectives found in Section 6 of DO-178C.

The case studies examine different aspects of a common avionics example – a dual-channel

Flight Guidance System (FGS) shown in Figure 1. While not intended as a complete example, it

is representative of the issues encountered in actual avionics development projects and includes

design artifacts specified using PVS, MATLAB Simulink/Stateflow®, and C source code. These

files are available for download and use without restriction from the same site where this report

is posted. A description of this example is provided in Section 2.

The three case studies illustrate the use of theorem proving, model checking, and abstract

interpretation. Each of these techniques has strengths and weaknesses, and each could be applied

to different life cycle data items and different objectives than those described here. The purpose

here is to illustrate a reasonable application of each of these techniques for satisfying

certification objectives.

DO-333 provides general guidance that is applicable to the overall verification process when

formal methods are used. This includes requirements for the use of formal notations with

unambiguous, mathematically defined syntax and semantics, soundness of the formal analysis

methods used, and justification of all assumptions used in each formal analysis. Specific

guidance is provided to describe how formal methods can be applied within each of the

verification activities and objectives defined in DO-178C. This is illustrated in Figure 2 for

14

Level A software, the highest criticality level defined in DO-178C. These include compliance

with requirements, accuracy and consistency of requirements, compatibility with the target

computer, verifiability of requirements, conformance to standards, traceability between life cycle

data items, and algorithmic correctness. Some of the objectives do not need to be satisfied for

the less critical Level C or Level D software.

1
control_cmd

[V_s]

[V_cmd]

[theta_cmd]

[psi_cmd]

[phi]

[theta]

[psi]

[r]

[phi_cmd]

[h_cmd]

[p]

[h]

[q]

0

flaps

theta_cmd [rad]

theta [rad]

q [rad/sec]

r [rad/sec]

phi_cmd [rad]

phi [rad]

p [rad/sec]

elevator [rad]

rudder [rad]

aileron [rad]

baseline control

V_cmd [m/s]

V_s [m/s]
Throttle

Velocity Tracker

psi_cmd [rad]

psi [rad]
phi_cmd [rad]

Psi Tracker-1

[V_cmd]

[V_s]

[r]
[psi_cmd]

[psi]
[phi]

[h_cmd]

[q]

[theta]

[p]

[h]

h_cmd [m/s]

h [m]
theta_cmd [rad]

Altitude Tracker

2
ref_cmds

1
feedback

Flight	
 Guidance	
 System

Pilot	
 Flying
Theorem	
 Proving

Mode	
 Logic
Model	
 Checking

Heading	
 Control
Abstract	
 Interpretation

Figure 1 – Relationship of Elements of the Dual-channel FGS Example

15

As shown in Figure 2, theorem proving was applied to the verification of the High-Level

Requirements, model-checking was applied to verification of the Low-Level Requirements and

Software Architecture, and abstract interpretation was applied to verification of the Source Code.

Design

System
Requirements

High-­‐Level
Requirements

Low-­‐Level
Requirements

Software
Architecture

Source
Code

Executable
Object	
 Code

Accuracy	
 and	
 Consistency
Compatibility	
 with	
 the	
 Target	
 Computer

Verifiability
Conformance	
 to	
 Standards

Algorithm	
 Accuracy

Compliance
Traceability

Compliance
Traceability

Compatibility

Compliance

Verifiability
Conformance	
 to	
 Standards
Accuracy	
 and	
 Consistency

Accuracy	
 and	
 Consistency
Compatibility	
 with	

the	
 Target	
 Computer
Verifiability
Conformance	
 to	
 Standards
Algorithm	
 Accuracy

Compliance
Traceability

Traceability

Compliance
Robustness

Compliance
Robustness

Completeness
And	
 Correctness

Compatibility	
 with	
 the	

Target	
 Computer

Consistency
Compatibility	
 with	
 the	

Target	
 Computer
Verifiability

Conformance	
 to	
 Standards
Partitioning	
 Integrity

Development	
 Activity

Review/Analysis	
 Activity

Test	
 Activity

Note:	
 Requirements	
 include	
 Derived	
 Requirements

Case	
 Study:
Theorem	
 Proving

Case	
 Study:
Model	
 Checking

Case	
 Study:
Abstract	
 Interpretation

Diagram	
 adapted	
 from	
 DO-­‐333	
 Formal	
 Methods	

Supplement	
 to	
 DO-­‐178C	
 and	
 DO-­‐278A

Figure 2 – Relationship of Case Studies to DO-178C Objectives

Theorem proving was applied to the verification of the High-Level Requirements for the

synchronization of the two channels of the FGS, focusing on the objectives of DO-333 Table

FM.A-3. Theorem proving is generally considered the most powerful and versatile class of

formal methods, but it is also the least automated, and usually requires the significant expertise

and user training. This case study is described in Section 3.

16

Model checking was applied to the verification of the Low-Level Requirements for the mode

logic of a single FGS channel, focusing on the objectives of DO-333 Table FM.A-4. Current

model checking tools are very powerful and provide much more automation than theorem

provers. In general, less user expertise is required, but the user must be able to specify

requirements to be analyzed in a formal language. These tools are relatively mature and (in our

opinion) the benefits of using formal methods are greatest at this level. This case study is

described in Section 4.

Abstract interpretation was applied to the Source Code implementing one of the control laws of

the FGS, focusing on the objectives of DO-333 Table FM.A-5. Abstract interpretation is the

most automated of the three techniques, at least as used in currently available commercial tools,

and typically require the least expertise from users. Part of this is due to the use of abstract

interpretation to check non-functional requirements, eliminating the need to formally specify

requirements. We should note, however, that more powerful versions of abstract interpretation

tools exist which require much more expertise to specify and check user-defined abstract

domains. This case study is described in Section 5.

Each case study includes:

• A general description of the portion of the example system to be verified

• A description of the verification approach used, including the life cycle data items

produced and the tools used, roughly corresponding to some of the information that

should be included in a Software Verification Plan

• The objectives to be satisfied and the evidence produced

• Tool qualification issues relevant for the formal methods tools used

• A detailed description of the verification effort that was performed

As a result of the tools and objectives we have chosen for these case studies, there are some parts

of DO-333 that are not covered. In particular, we do not address the verification of Executable

Object Code (Table FM.A-6 objectives), nor do we address the replacement of coverage testing

by formal analysis (Table FM.A-7 objectives).

17

2 Example: Dual-Channel Flight Guidance System
We will illustrate the use of formal methods to satisfy DO-178C objectives with three case

studies built around a common avionics example, a dual-channel Flight Guidance System (FGS).

In this chapter, we provide a high level description of the FGS and how it interacts with the other

avionics systems and with the flight crew.

An FGS is a component of the overall Flight Control System (FCS). It compares the measured

state of an aircraft (position, speed, and attitude) to the desired state and generates pitch and roll

guidance commands to minimize the difference between the measured and desired state. An

overview of an FCS that emphasizes the role of the FGS is shown in Figure 3.

FGS

FMS 1

Air Data L

Nav Radio 1

AHRSL

FMS 2

Air Data R

Nav Radio 2

AHRSRFGSL

Mode
Logic

Control
Laws

FGSR

Mode
Logic

Control
Laws

FCP

YokesThrottles

PFDL PFDRDCPL DCPR

Autopilot

Control
Surfaces

Figure 3 – Overview of the Flight Guidance System

As shown in Figure 3 the FGS subsystem accepts input about the aircraft's state from the

Attitude Heading Reference System (AHRS), the Air Data System (ADS), the Flight

Management System (FMS), and the Navigation Radios. Using this information, it computes

pitch and roll guidance commands that are provided to the autopilot (AP). When engaged, the

18

AP translates these commands into movement of the aircraft's control surfaces necessary to

achieve the commanded changes about the lateral and vertical axes.

The flight crew interacts with the FGS primarily through the Flight Control Panel (FCP), shown

in Figure 4. The FCP includes switches for turning the Flight Director (FD) on and off, switches

for selecting the different flight modes such as vertical speed (VS), lateral navigation (NAV),

heading select (HDG), altitude hold (ALT), and approach (APPR), the Vertical Speed/Pitch

Wheel, and the AP disconnect bar. The FCP also supplies feedback to the crew, indicating

selected modes by lighting lamps on either side of a selected mode's button.

	
 FD VS FLC NAV HDG APPR AP ENG FD

ALT AP DISC

ALT

HDGSPEEDCRS1 CRS2

DOWN

UP

VNAV

Figure 4 – Flight Control Panel

A few key controls, such as the Go Around button, the AP Disengage switch, and the SYNC

switch are provided on the control yokes and throttles and routed through the FCP to the FGS.

Navigation sources are selected through the Display Control Panel (DCP), with the selected

navigation source routed through the PFD to the FGS.

As shown in Figure 3, the FGS has two physical sides, or channels, one on the left side and one

on the right side of the aircraft. These provide redundant implementations that communicate with

each other over a cross-channel bus. Each channel of the FGS can be further broken down into

the mode logic and the flight control laws. The flight control laws accept information about the

aircraft's current and desired state and compute the pitch and roll guidance commands. A flight

control law is active if its guidance commands are being used to control the aircraft or to provide

visual cues to the flight crew. A flight control law that is operational but that is not yet active is

armed. The mode logic determines which lateral and vertical modes of operation are active (e.g.

controlling the aircraft or providing visual guidance cues to the flight crew) and armed (e.g.

operational but not yet active) at any given time. These in turn determine which flight control

laws are active and armed. These are annunciated, or displayed, on the Primary Flight Displays

(PFD) along with a graphical depiction of the flight guidance commands generated by the FGS.

19

A simplified image of a Primary Flight Display (PFD) is shown in Figure 5. The PFDs display

essential information about the aircraft, such as airspeed, vertical speed, attitude, the horizon, and

heading. The active lateral and vertical modes are displayed (annunciated) at the top of the

display. The annunciations in Figure 5 indicate that the current active lateral mode is Roll Hold

(ROLL), the active vertical mode is Pitch Hold (PITCH), and that the Altitude Select (ALTSEL)

mode is armed.

	
 Vertical Mode
Annunciations

Flight
Director (FD)

Lateral Mode
Annunciations

AP Engagement
Indicator

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

3 6N

E33

1230

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

AP Pilot Flying
Indicator

Vertical Mode
Annunciations

Flight
Director (FD)

Lateral Mode
Annunciations

AP Engagement
Indicator

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

3 6N

E33

1230

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

2 200

2 000

1 400

1 800

1 600

2 400

130

160

140

120

100

80

60

115

M 0.535

ROLL PTCH
ALTS

2 300

1 950

29.92 IN.

10

20

10

20

10

20

10

20

10

20

10

20

3 6N

E33

1230

3 6N

E33

1230

3 6N

E33

1230

3 6N

E33

1230

030
CRS 095
ADF 06
HDG 30
TCN 352
WIND 020/40

0 0.0
.5

.5

1

1

AP Pilot Flying
Indicator

Figure 5 – Primary Flight Display

The large sphere in the center of the PFD is the attitude indicator. The horizontal line across its

middle is the artificial horizon. The current pitch and roll of the aircraft is indicated by a white

wedge representing the aircraft in the middle of the attitude indicator. Figure 5 depicts an

aircraft in level flight with zero degrees of roll and zero degrees of pitch.

The graphical presentation of the pitch and roll guidance commands on the PFD are referred to

as the Flight Director (FD)1. The pitch and roll guidance commands are shown as a grey wedge

in the sky/ground ball. When the AP is not engaged, these are interpreted as guidance to the

pilot. When the AP is engaged, these indicate the direction the aircraft is being steered by the

1 The term Flight Director is also commonly used to refer to the logic that computes the pitch and roll guidance
commands.

20

AP. Engagement of the AP is indicated by the letters AP displayed directly under the mode

annunciations. Figure 5 depicts an aircraft in which the AP is engaged and the FD is

commanding the pilot to pitch up 7.5 degrees.

In most flight modes, the FGS operates in dependent mode where only one FGS channel is active

and provides guidance to the FD and the AP. The other side serves as a hot spare and sets its

modes to match those of the active side. This is indicated by the Pilot Flying indicator displayed

directly below the mode annunciations which points to the pilot flying (active) side. In some of

the more critical modes such as Approach, Takeoff, and Go Around, the FGS operates in

independent mode where both channels are active and independently computing guidance

commands that must agree for the AP to be engaged.

21

3 Case Study: Theorem Proving
This section illustrates the use of theorem proving to verify important system properties of the

dual-channel FGS. We demonstrate the use of two different interactive theorem proving tools:

PVS and HOL4. The majority of the case study is carried out using PVS, and then repeated (on

a part of the example) using HOL4 to illustrate the differences in the approaches.

The rest of this section is organized as follows. Section 3.1 provides an overview of the FGS

system and the functionality that we will be verifying in this case study. Section 3.2 describes

the software verification plan, identifying the life-cycle data items to be produced, the DO-178C

objectives to be satisfied, and tool qualification issues. Section 3.3 describes the synchronous

example, including how the components are specified in PVS, how the entire system is

composed from the components, and how the system requirements are verified. Section 3.4

extends the synchronous example to the asynchronous case by introducing independent clocks

for each component and repeats the verification. Finally, Section 3.5 presents an alternative

specification and verification of the synchronous example using HOL4.

3.1 Overview of FGS System

The overall FGS system has two physical sides, or channels, one on the left side and one on the

right side of the aircraft. These provide redundant implementations that communicate with each

other over a cross-channel bus as shown in Figure 6.

Left
FGS

Right
FGSCross	
 Channel	
 Bus

Transfer
Switch

Figure 6 – FGS System Function

Most of the time, the FGS operates in dependent mode where only one FGS channel is active and

provides guidance to the FD and the AP. In this mode, the flight crew can choose whether the

left or the right FGS is the active or pilot flying side by pressing the Transfer Switch located

22

above the FCP. The other side serves as a hot spare and sets its modes to agree with those of the

active side. In some of the more critical modes such as Approach, Takeoff, and Go Around, the

FGS operates in independent mode where both channels are active and independently compute

guidance commands that must agree for the AP to be engaged, regardless of which side is the

current pilot flying side.

In this example, there are five system level requirements related to the synchronization of the

pilot flying side. Stated informally, these are:

R1. At least one side shall be the pilot flying side.

R2. At most one side shall be the pilot flying side.

R3. Pressing the Transfer Switch shall always change the pilot flying side.

R4. The system shall start with the Primary Side as the pilot flying side.

R5. The system shall not change the pilot flying side unless the Transfer Switch is pressed.

Note that these requirements are system-level requirements that encompass the two sides of the

FGS and the cross-channel bus between them.

The overview of Figure 6 provides no indication whether the two FGS execute synchronously or

asynchronously. In some designs, such as in a Time-Triggered Architecture (TTA), all

components are driven off of a single master clock and execute synchronously. In other

architectures, such as Avionics Full-Duplex Switched Ethernet (AFDX), each component is

driven by its own local clock and the components execute asynchronously relative to each other.

In this case study we first develop a synchronous design in which all components are driven from

single master clock. We develop a set of high-level requirements for each FGS side and the

cross-channel bus that are completely free of design detail. Using theorem proving, we show that

these high-level requirements are consistent (i.e. do not contradict each other) by proving that

there is at least one concrete implementation that satisfies the high-level component

requirements. We then show that the system architecture and the high-level requirements of the

components comply with the system requirements by proving that the system requirements are

satisfied by the synchronous design instantiated with any components that satisfy the high-level

component requirements. We then extend this example to the more complex asynchronous case

by introducing independent clocks for each component.

23

3.2 Software Verification Plan

In this case study, we will use theorem proving to verify the outputs of the software requirements

process (DO-178C Section 5.1) focusing on the objectives of Table A-3 in DO-178C and Table

FM.A-3 in DO-333. The purpose of these verification activities is to detect any errors that may

have been introduced during the software requirements process. Specifically, this case study will

verify the high-level software requirements for the synchronization of the pilot flying side of the

FGS and show that the system architecture, the high-level software requirements, and the high-

level hardware requirements comply with the system requirements.

3.2.1 Formal Specification and Verification Tools

The PVS formal specification language will be used to specify the system architecture, system

requirements, high-level software and hardware requirements of the system components, and

candidate low-level software and hardware requirements of the system components. Verification

of all formal properties will be performed using the PVS theorem proving system.

3.2.2 Life Cycle Data Items

Life cycle data items are provided for both the synchronous and asynchronous examples using

the PVS formal specification language. To facilitate comparison of the two examples, the same

names are used for comparable data items in each example.

System Architecture The system architecture is captured in the PVS theory Pilot_Flying_System.

This theory describes how the system components interact in the overall system.

System Requirements The system requirements are stated formally as theorems in the PVS

theory Pilot_Flying_System_Requirements. Machine checked proofs are developed in

PVS to prove that these requirements are satisfied by the system architecture and the

high-level requirements for the system components.

High-Level Software Requirements The high-level software requirements are specified for each

FGS side in the Side_HLR theory. This theory uses axioms and uninterpreted types,

constants, and functions to eliminate design detail from the requirements. The axioms are

proven consistent by demonstrating that at least one concrete implementation exists that

satisfies the axioms.

24

Low-Level Software Requirements Candidate low-level requirements are specified for an FGS

side in the Side_LLR theory. This theory uses interpreted types, constants, and functions

to define a specification that is consistent-by-construction. The Side_Interpretation

theory is used to prove that the low-level requirements comply with (i.e. implement) the

high-level requirements, proving that the high-level requirements are consistent.

High-Level Hardware Requirements The high-level hardware requirements are specified for the

cross-channel bus in the Bus_HLR theory. This theory uses axioms and uninterpreted

types, constants, and functions to eliminate all design detail from the requirements. The

axioms are proven consistent by demonstrating that at least one concrete implementation

exists that satisfies the axioms.

Low-Level Hardware Requirements Candidate low-level requirements are specified for the cross-

channel bus in the Bus_LLR theory. This theory uses interpreted types, constants, and

functions to define a specification that is consistent-by-construction. The

Bus_Interpretation theory is used to prove that the low-level requirements comply with

(i.e. implement) the high-level requirements, proving that the high-level requirements are

consistent.

The low-level requirements for each FGS side and the cross-channel bus exist primarily to prove

that the high-level requirements are consistent. While they could be used as the actual low-level

requirements for a development, a more likely scenario is that more detailed low-level

requirements would be developed and proven to comply with (i.e. implement) the high-level

requirements. So long as the more detailed requirements maintain the same interface and are

proven to satisfy the high-level requirements, they can be substituted for the low-level

requirements without invalidating the verification of the system requirements.

3.2.3 Objectives to Be Satisfied

The DO-178C and DO-333 objectives to be satisfied through theorem proving are summarized in

Table 1. Columns A through D in the table indicate for each DO-178C software level whether

that objective must be satisfied, and if the objective has been fully or partially satisfied in the

case study using formal methods. A more detailed discussion of how each objective is satisfied

25

is provided in this section. The discussion here is focused on the PVS version of the

specification.

Table 1 – Summary of Objectives Satisfied by Theorem Proving

Objective Description A B C D Notes

A-3.1 High-level requirements
comply with system
requirements.

■ ■ ■ ■ Established by proof the system requirements are
implemented by the high-level requirements and the
system architecture.

A-3.2 High-level requirements are
accurate and consistent.

■ ■ ■ ■ Accuracy is established by formalization of the high-
level requirements. Consistency is established by
proving the absence of logical conflicts.

A-3.3 High-level requirements are
compatible with target
computer.

 Not addressed

A-3.4 High-level requirements are
verifiable.

■ ■ ■ Established by formalizing the requirements and
completion of the proof.

A-3.5 High-level requirements
conform to standards.

□ □ □ Partially established by specifying the high-level
requirements as formal properties.

A-3.6 High-level requirements are
traceable to system
requirements.

■ ■ ■ ■ Established by verification of the system requirements,
and by demonstrating the necessity of each high-level
requirement for satisfying some system requirement.

A-3.7 Algorithms are accurate. ■ ■ ■ Correctness of the pilot flying selection logic is
established by proof.

FM.A-3.8 Formal analysis cases and
procedures are correct.

■ ■ ■ Established by review.

FM.A-3.9 Formal analysis results are
correct and discrepancies
explained.

■ ■ ■ Established by review.

FM.A-3.10 Requirements formalization
is correct.

■ ■ ■ Established by review.

FM.A-3.11 Formal method is correctly
defined, justified, and
appropriate.

■ ■ ■ ■ Established by review.

■ Full credit claimed □ Partial credit claimed Satisfaction of objective is at applicant’s discretion

Objective A-3.1 – High-level requirements comply with system requirements. This objective is

demonstrated by proving with the PVS theorem prover that the system level requirements

specified as theorems in theory Pilot_Flying_System_Requirements are implemented by the

system architecture defined in theory Pilot_Flying_System, the high-level software requirements

specified as axioms in theory Side_HLR and the high-level hardware requirements specified as

axioms in theory Bus_HLR.

Objective A-3.2 High-level requirements are accurate and consistent. Accuracy is demonstrated by

formalizing the high-level software requirements as axioms in the PVS theory Side_HLR.

26

Consistency is demonstrated by proving that the concrete implementation defined in Side_LLR

implements the axioms of Side_HLR. This is done by mapping in theory Side_Interpretation

each uninterpreted type, constant, and function in Side_HLR to its interpreted counterpart in

Side_LLR and proving that the axioms of Side_HLR are implemented by Side_LLR.

Objective A-3.4 High-level requirements are verifiable. This objective is demonstrated by

formalizing the high-level software requirements as axioms in the PVS theory Side_HLR and

proving that axioms are satisfied by the concrete implementation defined in Side_LLR.

Objective A-3.5 High-level requirements conform to standards. This objective is partially

demonstrated by formalizing the high-level software requirements as axioms in the PVS theory

Side_HLR, establishing that the requirements conform to the PVS specification language.

Additional standards, such as naming standards or the presence of comments providing rationale

for the requirement, are verified by review.

Objective A-3.6 High-level requirements are traceable to system requirements. This objective is

demonstrated by the proof that the high-level requirements comply with the system requirements

(objective A-3.1) and by commenting out the high-level requirements one at a time and showing

that the proof of the system requirements fail without each high-level requirement.

Objective A-3.7 Algorithms are accurate. This objective is demonstrated by proving that the

system-level requirements specified in theory Pilot_Flying_System_Requirements are

implemented by the system architecture specified in the theory Pilot_Flying_System when

instantiated with the high-level requirements specified in theory Side_HLR and Bus_HLR.

Objective FM.A-3.8 Formal analysis cases and procedures are correct. This objective is met

through review to ensure that the analyses and procedures satisfy the objectives A-3.1 through

A-3.7 for which credit is claimed. The soundness of the proofs is ensured by the PVS verification

system once the consistency of all axioms is verified and all types are shown to be non-empty.

The remaining reviews consist of validating any assumptions. This includes:

• Confirming that the resolution of cyclic dependencies in the theory Pilot_Flying_System

is correct and can be implemented.

• Confirming that the addition of asynchronous clocks conservatively models the behavior

of the asynchronous system.

27

• Confirming that assumption that the Transfer Switch is observed by both sides in the

same step is acceptable.

Objective FM.A-3.9 Formal analysis results are correct and discrepancies explained. This objective

is met through review to ensure that all theorems or lemmas are proven. The PVS verification

system will identify any proofs that cannot be completed or that depend on a proof that cannot be

completed. Many of the properties had to be revised before they could be proved. Typically,

these were due to omissions in the original requirements or oversights introduced by the

informality of textual requirements. For example, the requirement R2 “At most one side shall be

the pilot flying side” had to be changed to “At most one side shall be the pilot flying side except

while the system is switching sides.” Each such discrepancy was explained and fed back into the

safety assessment process for review.

Objective FM.A-3.10 Requirements formalization is correct. This objective is met through review to

ensure that the formal statement of a requirement is a conservative representation of the informal

requirement.

Objective FM.A-3.11 Formal method is correctly defined, justified, and appropriate. This objective

is met through a review to ensure:

a. All notations used for formal analysis are verified to have precise, unambiguous,

mathematically defined syntax and semantics. Only the PVS language was used which

provides a formal syntax and semantics.

b. The soundness of each formal analysis method is normally demonstrated by citing

research papers that discuss the soundness of the method(s) implemented in a given tool.

In the case of PVS, it may be necessary to restrict the use of certain proof strategies for

which evidence of soundness is not available. At a minimum, it must be shown that all

axioms are consistent and all types are non-empty. Soundness of both PVS and HOL4 is

discussed further in the next section in the context of tool qualification.

c. Assumptions related to each formal analysis are described and justified. The one

assumption described above that both sides observe the Transfer Switch in the same step

is shown to be acceptable since only the pilot not flying side listens for the Transfer

Switch. Since this example contains only Boolean and enumerated types and no other

28

relationships are assumed about its inputs, no assumptions related to the formal analysis

(e.g., approximating floating-point numbers as reals) were necessary.

3.2.4 Tool Qualification Issues

Tool qualification is the process necessary to obtain certification credit for the use of a software

tool within the context of a specific airborne system. It is likely that any formal methods tool

used for verification as described in DO-333 will require qualification.

According to DO-178C, qualification of a tool is needed when:

1. DO-178C processes are eliminated, reduced, or automated through the use of the tool,

and

2. The output of the tool is used without being verified.

The purpose of qualification is to ensure that the tool provides confidence at least equivalent to

that of the process which is eliminated, reduced, or automated.

DO-178C specifies that tool qualification should be performed in accordance with DO-330,

Software Tool Qualification Considerations [34]. DO-330 specifies five different Tool

Qualification Levels (TQLs) that define what activities must be performed to qualify a particular

software tool. DO-178C, in turn defines three criteria to determine to determine which TQL

should apply to a particular tool in a given context.

Criteria 1: A tool whose output is part of the airborne software and thus could insert an error.

Criteria 2: A tool that automates verification processes and thus could fail to detect an error, and

whose output is used to justify the elimination or reduction of either verification processes other

than those automated by the tool, or development processes that could have an impact on the

airborne software.

Criteria 3: A tool that, within the scope of its intended use, could fail to detect an error (in other

words, a tool that automates verification processes).

Once the criteria are applied, DO-178C provides a table in section 12.2.2 to map software level

and qualification criteria to the required TQL. For the certification objectives and tool use that

we are considering in this case study, Criteria 3 applies. This means that for all airborne

29

software levels the theorem provers would need to be qualified to TQL-5 (if their results are not

independently checked).

Depending on the tool, qualification of a theorem prover may be a difficult task. Even at the

lowest qualification level (TQL-5) there are a number of development artifacts that must be

produced as part of the qualification process. The largest part of the effort is focused on defining

operational requirements for the tool (what the tool claims to do – the processes eliminated,

reduced, or automated), and then developing a comprehensive test suite to show that those

requirements are satisfied over an appropriate range of tool inputs.

An alternative approach is to avoid the need to qualify the theorem prover itself by providing an

independent check of the proof it produces. This may be more or less feasible depending on the

nature of the proof artifacts generated by a particular theorem prover.

The PVS proof engine is built from a small set of primitive inference steps. Most of the inference

steps are small, but a few involve deep combinations of decision procedures and rewriting.

Larger proof strategies can be defined using the primitive ones. Several external proof tools for

Binary Decision Diagram (BDD)-based simplification and model checking, monadic second-

order reasoning, nonlinear arithmetic, and predicate abstraction have been added to PVS.

PVS is based on a classical strongly-typed higher-order logic and the theorem prover itself is a

based on a sequent calculus for this logic. Standard references for the PVS language are [29],

[30], [31] and [32]. However, not all aspects of the language are described. For example, the

formal semantics of recursive functions and their termination is not described. This would likely

present some challenges to qualification and the requirement to demonstrate soundness of the

analysis method.

Unlike Isabelle/HOL or Coq, PVS does not normally emit a proof that could be checked by a

separate (qualified) proof checking tool, though this option is available. We have expanded one

of our proofs down to the primitive proof rules to demonstrate that this is feasible. Depending

upon the nature of the proof rules used, this expansion could in principle be independently

checked by a separate tool. However, we are not aware of this having been done in practice and

development of an appropriate independent checker for PVS is still a research topic.

30

Extant implementations of HOL follow the so-called “LCF approach” to designing theorem

provers. This methodology implements the logic by a small trusted kernel, which encapsulates

just the primitive inference rules, axioms, and definition mechanisms of the logic. The logic

kernel is an abstract data type, having the property that the only way a theorem can be obtained

is ultimately by making primitive inference steps, which are very close in granularity to those in

the mathematical definition of the logic. For example, the introduction and elimination rules for

the logical connectives constitute the bulk of the implementation of the HOL4 kernel, and these

are very simple to implement. In contrast, basic inference steps in systems like PVS tend to be

much larger, amounting to invocation of complex combinations of simplifiers and powerful

decision procedures.

 As a consequence, it is straightforward to instrument HOL kernels so that they produce formal

proofs. This has been done in a variety of research projects [28], [15]. Programs that check the

correctness of such proofs are small and relatively easy to verify.

Another approach to theorem prover correctness is to verify the kernel once and for all. This has

been done for the implementations of the primitive inferences of HOL Light, with respect to an

abstract, set-theoretic specification of the logic.

A more extensive overview of the issues for PVS and HOL4, as well as other popular theorem

proving environments, can be found in the summary document for the “Trusted Extensions of

Interactive Theorem Provers” workshop [36].

31

3.3 The Synchronous Pilot Flying Example

The synchronous Pilot Flying example consists of four main components, the Left_Side FGS, the

Right_Side FGS, an LR_Bus and an RL_Bus connecting the two sides as shown in Figure 7.

Left_Side

FGS

Right_Side

FGS

LR_Bus

RL_Bus

Left_Pilot_Flying_Side

Right_Pilot_Flying_Side

Transfer_Switch Transfer_Switch

C1 C2

C3C4

TRUE

Primary_Side

FALSE
Primary_Side

Figure 7 – Synchronous Pilot Flying System

All four components are assumed to be driven by the same master clock and to execute

synchronously. Each FGS produces a Pilot_Flying_Side Boolean output indicating if it believes

itself to be the current pilot flying side. The two buses pass the value produced by one side to the

other side, introducing a one-step delay in the process. Each FGS accepts as inputs a Boolean

value representing the current value of the Transfer_Switch2 and the Pilot_Flying_Side value

passed across the bus from the other side. Each FGS also accepts a single Boolean constant

indicating if it is the Primary_Side that is to be the initial pilot flying side. The constant for the

Left_Side is set to true to make it the initial pilot flying side while the input to the Right_Side is

set to false. The intermediate connections C1, C2, C3, and C4 are also labeled on the diagram to

facilitate discussion of the formal specification and the proofs.

3.3.1 High-Level Requirements for the Synchronous Bus

Each bus in the synchronous Pilot Flying example transfers its input to its output with a one-step

delay. The PVS theory specifying this behavior is shown in Figure 8.

2 Note that there is an implied assumption in this model that the Transfer Switch arrives at both sides on the same
step. The subsequent discussion shows that this assumption can be safely made since only the pilot not flying side
listens for the Transfer Switch and no more than one side is ever the pilot not flying side.

32

Bus_HLR[Init: bool]: THEORY
BEGIN

 %———–
 % State defined as an uninterpreted, non-empty type
 %———–
 State: TYPE+

 Initial_State: State

 %———–
 % Next state defined as an uninterpreted function
 %———–
 next_state: [State, bool -> State]

 %———–
 % Output of the bus
 %———–
 output: [State -> bool]

 %———–
 % High level requirements
 %———–
 HLR1: AXIOM
 output(Initial_State) = Init

 HLR2: AXIOM
 forall (s: State, i: bool) :
 output(next_state(s, i)) = i

 END Bus_HLR

Figure 8 – High-Level Requirements for the Synchronous Bus

Since the bus introduces a one-step delay in conveying its inputs to its outputs, the initial output

value of the bus must be specified. This is done by parameterizing the theory with the Init

Boolean value. To be able to compose all the components of the Pilot Flying System in a

consistent fashion, we adopt the convention of defining a State type for each component

representing its internal state. Since we want the high-level requirements to be as free of design

decisions as possible, we define the type State for the synchronous bus to be an uninterpreted

type that provides no information about how the state is implemented. Since an empty type can

lead to an unsound proof system, we do specify that the type must have at least one value by

defining it to PVS as a TYPE+. We also define an uninterpreted constant Initial_State to be an

element of this type. As its name implies, Initial_State will represent the initial state of the bus at

start-up.

33

While the type of the internal state of a component can be defined in PVS, PVS does not provide

a mechanism for persisting state as might be done in an object-oriented system. Instead, the

current state is passed in as an argument of each function that manipulates it. We adopt the

convention of defining for each component a next_state function that compute the component’s

next state from its current state and its inputs and an output function that returns the outputs of

the component from its current state. For the synchronous bus, the next_state function takes a

state s of the bus and a Boolean input, and returns the next internal state of the bus. The output

function takes a state s and returns a Boolean value.

The high-level requirements for the synchronous bus are specified as two PVS axioms. The first

requirement, HLR1, simply states that the output of the Initial_State is the Boolean value Init

specified as the theory parameter. The second requirement, HLR2, states that the output of the

next_state of any state s and any input i is i.

These axioms were defined through use of a well-known heuristic for writing axiomatic, or

declarative, specifications. We first identify all constructors that generate new values of the type

State and all extractors that extract values from elements of the type State. For the synchronous

bus, the constructors are Initial_State and next_state and the only extractor is output. We then

write one or more axioms that describe the result of applying each extractor to each constructor.

For the synchronous bus, this results in the two axioms shown in Figure 8.

Writing requirements as axioms allows us to specify the required behavior of a component

without committing to a specific design or implementation. Note that these axioms only specify

the functionality of a component. In particular, we have not stated whether they are system,

software, or hardware requirements. They could be viewed as the high-level functional system

requirements for the bus. If the bus is to be implemented primarily in software, they could also

be used as the high-level functional software requirements. If the bus is to be implemented

primarily in hardware, they could be used as the high-level functional hardware requirements.

Such axiomatic or declarative specifications are formal versions of the informal “shall”

statements typically written in requirements documents. In fact, they share two common

concerns with such requirements, completeness and consistency.

Completeness refers to whether the axioms (requirements) fully specify what needs to be built.

We address this issue in two ways. First, we used the heuristic described earlier to define the

34

effect of each extractor on each constructor, giving us a systematic way of developing the

axioms. More importantly, we prove in Section 3.3.6 that the requirements for the overall Pilot

Flying system will be satisfied using any bus that satisfies these axioms, showing that the axioms

are sufficiently complete to ensure the required system behavior.

Consistency refers to whether the axioms contradict each other. In an informal development

process, inconsistent requirements are typically discovered during development when it becomes

apparent that the specified system cannot be built. In the same way, inconsistent axioms cannot

be implemented. Even worse, inconsistent axioms introduce unsoundness into a proof system

allowing false theorems to be proven. For this reason, whenever axioms are used in a

specification, it is important to prove that they are consistent. The standard way of doing this is

to demonstrate that an implementation exists that satisfies all the axioms. In the next section, we

define a set of low-level requirements for the bus that are consistent by construction and prove

that the implementation satisfies the high-level axioms.

35

3.3.2 Low-Level Requirements for the Synchronous Bus

A PVS theory for an implementation of the synchronous bus is shown in Figure 9.

Bus_LLR[Init:bool]: THEORY
BEGIN

 %———–
 % Define the bus state and initial state
 %———–
 State: TYPE = bool

 Initial_State: State = Init

 %———–
 % Next state function
 %———–
 next_state(s: State, i: bool): State = i

 %———–
 % Output of the bus
 %———–
 output(s: State): bool = s

 END Bus_LLR

Figure 9 – Low-Level Requirements for the Synchronous Bus

As with the high-level requirements, the theory is parameterized with the initial output value of

the bus. We also introduce a type State and a constant Initial_State of that type. However, this

time we give each of these a concrete interpretation. We define the State of the bus to be of type

Boolean and we assign the theory parameter Init to be the value of Initial_State. We also provide

a concrete interpretation for each function. We define the next_state function to return the value

of its input i and we define the output of the bus to be its current state s.

Note that this specification does not include any axioms. It is constructed using only the base

types of PVS and functions. The PVS type system will ensure that such a constructive

specification is consistent by generating type-correctness conditions (TCCs) that must be proven

using the PVS theorem prover.

This specification is notable in that is actually shorter than the high-level bus requirements.

However, it is also more concrete in that it makes the design decision to represent the state of the

channel as a single Boolean variable. We could have also chosen to implement the bus using an

integer rather than a Boolean or using a queue of size one providing the constructor and extractor

36

functions were defined appropriately. So long as an implementation provides the same types,

constants, and functions and satisfies the two axioms of the high-level requirements of Figure 8,

it would be an acceptable implementation of the synchronous bus.

To prove that the low-level bus requirements of Figure 9 implement, or comply with, the high-

level bus requirements of Figure 8, we use the theory interpretation capability of PVS. This is

shown in Figure 10. The Bus_Interpretation theory first imports the Bus_LLR theory using the

same Boolean theory parameter, Init. It then imports the Bus_HLR theory, but provides an

interpretation for each uninterpreted type, constant, and function based on the Bus_LLR

specification. For example, it defines the State type of the Bus_HLR theory to be the State type

of the Bus_LLR theory. In fact, it defines each uninterpreted type, constant and function in

Bus_HLR to be the corresponding type, constant, or function in Bus_LLR. When this theory is

typechecked using PVS, it generates the two TCCs shown in Figure 11.

Bus_Interpretation[Init : bool] : THEORY

BEGIN

 %———–
 % Import low-level requirements (LLR) for a bus
 %———–
 IMPORTING Bus_LLR[Init]

 %———–
 % Import high-level (HLR) requirements for a bus and
 % define the LLR as an interpretation of the HLR
 %———–
 IMPORTING Bus_HLR[Init] {{
 State := Bus_LLR.State,
 Initial_State := Bus_LLR.Initial_State,
 next_state := Bus_LLR.next_state,
 output := Bus_LLR.output
 }}

 END Bus_Interpretation

Figure 10 – Theory Interpretation for Synchronous Bus

A careful examination of these TCCs reveals that they are the axioms of the Bus_HLR theory

instantiated with the types, constants, and functions defined in the Bus_LLR theory. These TCCs

can easily be proved using the typecheck-prove (M-x tcp) command of PVS, proving that the

Bus_LLR theory implements the axioms of the Bus_HLR theory.

37

% Mapped-axiom TCC generated (at line 14, column 12) for
 % Bus_HLR[Init]
 % {{ State := Bus_LLR.State,
 % Initial_State := Bus_LLR.Initial_State,
 % next_state := Bus_LLR.next_state,
 % output := Bus_LLR.output }}
 % proved - complete
IMP_Bus_HLR_HLR1_TCC1: OBLIGATION
 Bus_LLR[Init].output(Bus_LLR[Init].Initial_State) = Init;

% Mapped-axiom TCC generated (at line 14, column 12) for
 % Bus_HLR[Init]
 % {{ State := Bus_LLR.State,
 % Initial_State := Bus_LLR.Initial_State,
 % next_state := Bus_LLR.next_state,
 % output := Bus_LLR.output }}
 % proved - complete
IMP_Bus_HLR_HLR2_TCC1: OBLIGATION
 FORALL (s: State[Init], i: bool):
 Bus_LLR[Init].output(Bus_LLR[Init].next_state(s, i)) = i;

Figure 11 – TCCs Generated from Theory Interpretation for the Synchronous Bus

In this way, we have shown that at least one concrete implementation of the Bus_HLR theory

exists and that the axioms of the Bus_HLR are consistent, allowing us to safely use it as the high-

level functional requirements for the synchronous bus. The Bus_LLR theory can be used as the

low-level requirements for the bus or a more detailed set of low-level requirements can be

developed and proven to implement the high-level requirements.

3.3.3 High-level Requirements for the Synchronous FGS Side

In this section we develop the high-level requirements for the synchronous FGS side just as we

did for the synchronous bus. For the synchronous system, each side executes the simple state

machine shown in Figure 12 to determine which side is the current pilot flying side.

38

Pilot_Flying Not_Pilot_Flying

[rise(Other_Side_Pilot_Flying)]

[rise(Transfer_Switch)]

[Primary_Side] [NOT	
 Primary_Side]

Figure 12 – Synchronous Pilot Flying Side Logic

If a side believes itself to be the Not_Pilot_Flying side, it will become the Pilot_Flying side

when it sees the Transfer_Switch pressed (i.e. a rising edge). If a side is the Pilot_Flying side, it

will become the Not_Pilot_Flying side when it sees the other side become the pilot flying side.

Thus, it is always the Not_Pilot_Flying side that responds to the Transfer Switch, and the current

Pilot_Flying side always yields when it sees the other side become the Pilot_Flying side. The

PVS specification of the high-level requirements for a synchronous FGS side is shown in Figure

13 and Figure 14.

The theory is parameterized with whether this side is the Primary_Side. Just as with the bus, we

introduce an uninterpreted State type, an uninterpreted Initial_State constant and an

uninterpreted next_state function. Since each side needs to be able to observe a rising edge of the

Transfer_Switch and of the other side’s Pilot_Flying value, each side saves the previous value of

the Transfer_Switch and the other side’s Pilot_Flying value passed across the bus.

39

Side_HLR[Primary_Side : bool] : THEORY

BEGIN

 %———–
 % State defined as an uninterpreted, non-empty type
 %———–
 State: TYPE+

 Initial_State: State

 %———–
 % Next state defined as an uninterpreted function
 %———–
 next_state: [State, bool, bool -> State]

 %———–
 % Extractor functions for this side
 %———–
 pre_TS : [State -> bool]
 pre_OSPF : [State -> bool]

 %———–
 % Pilot flying output for this side
 %———–
 pilot_flying : [State -> bool]

 %———–
 % Auxiliary definitions for stating axioms
 %———–
 rise_ospf(s:State, ospf:bool) : bool = NOT pre_OSPF(s) AND ospf
 rise_ts (s:State, ts :bool) : bool = NOT pre_TS (s) AND ts

Figure 13 – High-Level Requirements for the Synchronous Side (Part 1)

We specify uninterpreted extractor functions pre_TS and pre_OSPF that extract these values

from the side’s state. We also define an extractor pilot_flying for the single output of the side. To

provide a convenient shorthand for writing axioms, we also define (interpreted) auxiliary

functions rise_ospf and rise_ts as shown. The completion of the theory is shown in Figure 14

where the axioms specifying the side’s required behavior are given.

40

 %———–
 % High level requirements
 %———–
 HLR1: AXIOM
 pilot_flying(Initial_State) = Primary_Side

 HLR2: AXIOM
 pre_TS(Initial_State)

 HLR3: AXIOM
 pre_OSPF(Initial_State) = NOT Primary_Side

 HLR4: AXIOM
 forall (s:State, ts, ospf: bool) :
 pilot_flying(s) AND rise_ospf(s, ospf) =>
 NOT pilot_flying(next_state(s, ts, ospf))

 HLR5: AXIOM
 forall (s:State, ts, ospf: bool) :
 pilot_flying(s) AND NOT rise_ospf(s, ospf) =>
 pilot_flying(next_state(s, ts, ospf))

 HLR6: AXIOM
 forall (s:State, ts, ospf: bool) :
 NOT pilot_flying(s) AND rise_ts(s, ts) =>
 pilot_flying(next_state(s, ts, ospf))

 HLR7: AXIOM
 forall (s:State, ts, ospf: bool) :
 NOT pilot_flying(s) AND NOT rise_ts(s, ts) =>
 NOT pilot_flying(next_state(s, ts, ospf))

 HLR8: AXIOM
 forall (s:State, ts, ospf: bool) :
 pre_TS(next_state(s, ts, ospf)) = ts

 HLR9: AXIOM
 forall (s:State, ts, ospf: bool) :
 pre_OSPF(next_state(s, ts, ospf)) = ospf

END Side_HLR

Figure 14 – High-Level Requirements for the Synchronous Side (Part 2)

Axioms HLR1 through HLR3 define the result of applying each of the three extractors to the

Initial_State constructor. HLR4 through HLR7 define the result of applying the pilot_flying

extractor to the next_state constructor. HLR4 defines the case when this side is the pilot flying

side and the other side is observed to become the pilot flying side.3 HLR5 defines the case where

3 The “=>” operator is the implication operator (read “A implies B”), where A => B states that if A is true, B must
also be true. It is logically equivalent to not A or B.

41

this side is the pilot flying side and the other side is not observed to become the pilot flying side.

HLR 6 and HLR7 define the two cases when this side is not the pilot flying side. Note that

axioms HLR4 through HLR7 are disjoint in that only one of their antecedents can be true at a

time. Finally, HLR8 and HLR9 define the effect of applying the pre_TS and pre_OSPF

extractors to the next_state constructor.

3.3.4 Low-level Requirements for the Synchronous FGS Side

In this section, we show that the axioms of Section 3.3.3 are consistent by developing a

constructive implementation of the synchronous FGS side and proving that it satisfies these

axioms. The PVS theory Side_LLR shown in Figure 15 and Figure 16 defines a constructive

implementation of a synchronous Side by providing a concrete interpretation for each type,

constant, and function.

Just as for the high-level requirements, the theory is parameterized with whether it is the

Primary_Side. The two possible values of the state machine of Figure 12, Pilot_Flying and

Not_Pilot_Flying, are specified as the PVS enumeration type Pilot_Flying_Side. The

Initial_Pilot_Flying_Side is a constant whose value is determined by the Primary_Side theory

parameter

The State of a side is stored in a PVS record structure consisting of three fields – the current

value of the Pilot_Flying_Side state machine (st), the previous value of Transfer_Switch (pre_ts),

and the previous value of Other_Side_Pilot_Flying input (pre_ospf). The last two values are used

in the next state function to determine whether a rising edge of the Transfer Switch or the other

side’s pilot flying output has occurred. The initial value of pre_ts is set to true to ensure that a

rising edge of the Transfer Switch is not detected in the initial state. The initial value of pre_ospf

is set to match the initial value of the pilot flying output from the other side.

42

Side_LLR[Primary_Side : bool] : THEORY

BEGIN

 %———–
 % Pilot flying state machine values
 %———–
 Pilot_Flying_Side : TYPE = {PilotFlying, NotPilotFlying}

 Initial_Pilot_Flying_Side : Pilot_Flying_Side =
 IF Primary_Side THEN PilotFlying
 ELSE NotPilotFlying ENDIF

 %———–
 % Definition of state and initial state for this side
 %———–
 State :TYPE+ = [# st : Pilot_Flying_Side,
 pre_ts : bool,
 pre_ospf : bool #]

 Initial_State: State = (# st := Initial_Pilot_Flying_Side,
 pre_ts := TRUE,
 pre_ospf := NOT Primary_Side #)

 %———–
 % Extractor functions for this side
 %———–
 pre_TS (s: State) : bool = pre_ts(s)
 pre_OSPF(s: State) : bool = pre_ospf(s)

 %———–
 % Auxiliary functions for defining next state function
 %———–
 rise_ts (s:State, ts : bool) : bool = NOT pre_ts (s) AND ts
 rise_ospf(s:State, ospf: bool) : bool = NOT pre_ospf(s) AND ospf

Figure 15 – Low-Level Requirements for the Synchronous Side (Part 1)

To maintain consistency with the high-level requirements, extractor functions pre_TS and

pre_OSPF are defined that simply extract the relevant fields from the state record. Auxiliary

functions rise_ts and rise_ospf are also defined to simplify defining the next_state function. The

next_state function (shown in Figure 16) computes the next state of a side given its current state

and inputs.

The next state is computed by first computing the next Pilot_Flying_Side value next_pfs. For

example, transition 1 is taken if the Pilot_Flying_Side of the current state, st(s), is Pilot_Flying

and the other side is observed to become the pilot flying side, setting next_pfs to

Not_Pilot_Flying. In similar fashion, if the Transfer_Switch is pressed while this side is the

43

Not_Pilot_Flying side, transition 2 is taken setting next_pfs to Pilot_Flying. If neither transition

is taken, next_pfs is left unchanged as st(s). The next state is then composed from the computed

value of next_pfs and current input values of the Transfer_Switch and Other_Side_Pilot_Flying.

 %———–
 % Next state function
 %———–
 next_state(s: State, ts:bool, ospf:bool) : State =
 LET
 next_pfs =
 %——–
 % Transition 1 - Other side becomes the pilot flying side
 %——–
 IF PilotFlying?(st(s)) AND rise_ospf(s, ospf)
 THEN NotPilotFlying
 %——–
 % Transition 2 - Transfer switch is pressed
 %——–
 ELSIF NotPilotFlying?(st(s)) AND rise_ts(s,ts)
 THEN PilotFlying
 %——–
 % No transition taken
 %——–
 ELSE
 st(s)
 ENDIF
 IN (# st:= next_pfs, pre_ts := ts, pre_ospf := ospf #)

 %———–
 % Pilot flying output
 %———–
 pilot_flying(s: State):bool = PilotFlying?(st(s))

 END Side_LLR

Figure 16 – Low-Level Requirements for the Synchronous Side (Part 2)

Finally, the output function extracts a Boolean value from the current state indicating if this side

believes it is the pilot flying side.

Just as for the synchronous bus, we prove that the low-level requirements of Figure 15 and

Figure 16 implement the high-level requirements of Figure 13 and Figure 14 by defining a theory

interpretation of the high-level requirements based on the low-level requirements. This is shown

in Figure 17.

44

Side_Interpretation[Primary_Side : bool] : THEORY

BEGIN

 %———–
 % Import low-level requirements (LLR) for a side
 %———–
 IMPORTING Side_LLR[Primary_Side]

 %———–
 % Import high-level (HLR) requirements for a side and
 % define the LLR as an interpretation of the HLR
 %———–
 IMPORTING Side_HLR[Primary_Side] {{
 State := Side_LLR.State,
 Initial_State := Side_LLR.Initial_State,
 next_state := Side_LLR.next_state,
 pre_TS := Side_LLR.pre_TS,
 pre_OSPF := Side_LLR.pre_OSPF,
 pilot_flying := Side_LLR.pilot_flying
 }}

 END Side_Interpretation

Figure 17 – Theory Interpretation for the Synchronous Side

When this theory is typechecked using PVS, it generates nine TCCs, one for each axiom

specified in the high-level requirements shown in Figure 14. These TCCS are easily proven

using the typecheck-prove (M-x tcp) command of PVS, proving that the Side_LLR requirements

are an implementation of the Side_HLR requirements and that the axioms of the Side_HLR

requirements are consistent. Just as for the synchronous bus, the Side_LLR theory can be used as

the low-level requirements for the side or a more detailed set of low-level requirements can be

developed and proven to satisfy the Side_HLR requirements.

45

3.3.5 PVS Specification of the Synchronous Pilot Flying System

The PVS specification for the entire synchronous Pilot_Flying_System of Figure 7 is shown in

Figure 18 and Figure 19.

Pilot_Flying_System : THEORY
BEGIN

 %———–
 % Importing the sytem componenets
 %———–
 IMPORTING Side_HLR [TRUE] AS Left_Side;
 IMPORTING Bus_HLR [TRUE] AS LR_Bus;
 IMPORTING Side_HLR [FALSE] AS Right_Side;
 IMPORTING Bus_HLR [FALSE] AS RL_Bus;

 %———–
 % Defining the system state
 %———–
 State : Type = [# Left_Side : Left_Side.State,
 LR_Bus : LR_Bus.State,
 Right_Side : Right_Side.State,
 RL_Bus : RL_Bus.State,
 pre_TS : bool #]

 %———–
 % Defining the initial system state
 %———–
 Initial_State: State = (# Left_Side := Left_Side.Initial_State,
 LR_Bus := LR_Bus.Initial_State,
 Right_Side := Right_Side.Initial_State,
 RL_Bus := RL_Bus.Initial_State,
 pre_TS := TRUE #)

Figure 18 – PVS Specification of the Synchronous Pilot Flying System (Part 1)

The theory begins by importing the four components instantiated with the appropriate

parameters. The Left_Side is instantiated with the Primary_Side parameter set to true and the

Right_Side set to false. The LR_Bus is initiated with its initial output set to true to match the

initial output of the Left_Side and the RL_Bus is instantiated with its output set to false to match

the initial output Right_Side. The internal State of the system is defined to be a record structure

containing the internal state of each of its four components and the previous value of the Transfer

Switch. The Initial_State of the system is simply a record containing the initial state of each

component with the previous value of the Transfer Switch initialized to true.

The next_state function for the system shown in Figure 19 merits careful examination. As shown

in Figure 7, the Left_Side provides an input to the LR_Bus which provides an input to the

46

Right_Side which provides an input to the RL_Bus which provides an input to Left_Side. This

circular dependency (also known as an algebraic loop) is only possible if some component

depends only on the previous value of its predecessor. Like an Escher print (e.g. Relativity) [4], a

circular dependency in which every component depends on the current value of its predecessor is

an illusion that cannot be implemented.

 %———–
 % Next state function
 %———–
 next_state(s: State, TS: bool): State =
 LET
 %——
 % Compute next state of LR Bus and Right Side
 %——
 C1 = Left_Side.Pilot_flying(Left_Side(s)),
 next_LR = LR_Bus.next_state(LR_Bus(s), C1),
 C2 = LR_Bus.output(next_LR),
 next_RS = Right_Side.next_state(Right_Side(s), TS, C2),

 %——
 % Compute next state of RL Bus and Left Side
 %——
 C3 = Right_Side. Pilot_flying(Right_Side(s)),
 next_RL = RL_Bus.next_state(RL_Bus(s), C3),
 C4 = RL_Bus.output(next_RL),
 next_LS = Left_Side.next_state(Left_Side(s), TS, C4)
 IN
 (# Left_Side := next_LS,
 LR_Bus := next_LR,
 Right_Side := next_RS,
 RL_Bus := next_RL,
 pre_TS := TS #)

 %———–
 % Outputs of the system
 %———–
 Left_Pilot_Flying_Side(s: State) : bool = pilot_flying(Left_Side(s))

 Right_Pilot_Flying_Side(s: State): bool = pilot_flying(Right_Side(s))

 END Pilot_Flying_System

Figure 19 – PVS Specification of the Synchronous Pilot Flying System (Part 2)

We choose to resolve this cyclic dependency by having each bus read the current value of its

input (i.e. the previous value form the side inputting to the bus) and have each side read the new

value computed by its inputting bus. The next_state function of Figure 19 defines this precisely.

It states that output of the Left_Side in the current state (C1) is used as an input in computing the

47

next state of the LR_Bus. The output of the LR_Bus after its state is updated (C2) is then used in

computing the next state of the Left_Side. In similar fashion, the output of the Right_Side in the

current state (C3) is used as an input in computing the next state of the RL_Bus. The output of

the RL_Bus after its state is updated (C4) is then used in computing the next state of the

Right_Side. The next state of the entire system is composed from the new state computed for

each component and by updating the previous value of the Transfer Switch.

Finally, the theory defines the two outputs of the Pilot Flying system, the Boolean functions

Left_Pilot_Flying_Side and Right_Pilot_Flying_Side indicating whether each side believes it is

the pilot flying side.

48

3.3.6 Formal Verification of the Synchronous Pilot Flying Example

This section shows that the system architecture and high-level component requirements comply

with the system requirements by proving that the five system requirements are satisfied by the

system design and high-level requirements for each component. Stated informally, the five

system requirements are:

R1. At least one side shall be the pilot flying side.

R2. At most one side shall be the pilot flying side.

R3. Pressing the Transfer Switch shall always change the pilot flying side.

R4. The system shall start with the Primary Side as the pilot flying side.

R5. The system shall not change the pilot flying side unless the Transfer Switch is pressed.

The first requirement R1 can be stated formally in PVS as shown in Figure 20.

s: VAR Pilot_Flying_System.State

R1: THEOREM
 Left_Pilot_Flying_Side(s) or Right_Pilot_Flying_Side(s)

Figure 20 – Incorrect Statement of Synchronous Requirement R1 in PVS

Unfortunately, this property cannot be proven. This is because the type State does not explicitly

exclude system states where neither side is the pilot flying side. However, for our system the

only states of interest are those that can be reached in some number of steps from the Initial

State. The step in proving requirement R1 is restating it so that it only applies to reachable states.

The first part of the Pilot_Flying_System_Requirements theory shown in Figure 21 defines what

it means for a state to be reachable.

49

Pilot_Flying_System_Requirements: THEORY

 BEGIN

 IMPORTING Pilot_Flying_System

 s: VAR Pilot_Flying_System.State
 ts: VAR bool

 %———–
 % Definition of a reachable state
 %———–
 Reachable_State(s): INDUCTIVE bool =
 s = Initial_State OR
 (EXISTS (r: Pilot_Flying_System.State, t: bool) :
 Reachable_State(r) AND s = next_state(r,t))

 %———–
 % Definition of a valid state
 %———–
 Pre_TS_Consistency(s): bool =
 pre_TS(Left_Side(s)) = pre_TS(s) and
 pre_TS(Right_Side(s)) = pre_TS(s)

 Pre_OSPF_Consistency(s): bool =
 pre_OSPF(Right_Side(s)) = LR_Bus.output(LR_Bus(s)) and
 pre_OSPF(Left_Side(s)) = RL_Bus.output(RL_Bus(s))

 At_Least_One_Side_Flying(s): bool =
 Left_Pilot_Flying_Side(s) OR Right_Pilot_Flying_Side(s)

 Buses_Differ_When_Sides_Same(s): bool =
 pilot_flying(Left_Side(s)) = pilot_flying(Right_Side(s)) =>
 LR_Bus.output(LR_Bus(s)) /= RL_Bus.output(RL_Bus(s))

 Valid_State(s): bool =
 At_Least_One_Side_Flying(s) AND
 Pre_TS_Consistency(s) AND
 Pre_OSPF_Consistency(s) AND
 Buses_Differ_When_Sides_Same(s)

 %———–
 % Proof that every reachable state is a valid state
 %———–
 Reachable_States_Valid: THEOREM
 Reachable_State(s) => Valid_State(s)

Figure 21 – Synchronous Pilot Flying System Requirements (Part 1)

The predicate Reachable_States in Figure 21 inductively defines a reachable state to be either the

Initial_State or any state that can be reached through application of the next_state function from

a reachable state. With this definition, we can restate the theorem for requirement R1 as shown in

Figure 22.

50

 R1: THEOREM
 Reachable_State(s) =>
 Left_Pilot_Flying_Side(s) or Right_Pilot_Flying_Side(s)

Figure 22 – Correct Statement of Requirement R1 in PVS

This theorem can be proven, but the proof is complicated and it needs to be repeated in proving

the other requirements. To keep our proofs manageable, we first shall define a set of predicates

describing the relationships between the system components that the system will maintain during

its execution and then prove that those predicates are true of every reachable state.

The Pre_TS_Consistency predicate of Figure 21 states that the previous value of the Transfer

Switch stored in the left and right sides must be the same as that stored in the system state. The

Pre_OSPF_Consistency predicate states that the previous value of the other side’s pilot flying

indication stored in each side (pre_OSPF) agrees with the output of the bus that passed it that

value. The At_Least_One_Side_Flying predicate states that at least one side is the pilot flying

side. The Buses_Differ_When_Both_Sides_Flying predicate states that when both sides are the

pilot flying side, the buses must contain different Boolean values. These predicates are collected

together as a single conjunction in the Valid_State predicate shown in Figure 21.

Since Valid_State contains many of the relationships between system components necessary to

prove the system requirements and since it is not defined recursively, it is much easier to use in

the proofs than Reachable_States. Unfortunately, development of the Valid_State predicate is not

always obvious. Some of the constraints, such as At_Least_One_Side_Flying and

Pre_TS_Consistency are intuitive. The others were developed by trying to prove the system

requirements and carefully studying the proof obligations produced by PVS. For example, the

Buses_Differ_When_Both_Sides_Flying predicate is not obvious and was added in the process of

proving requirements R1 through R5. However, in retrospect it is clear that if it were not true, the

system would either deadlock with both sides as the pilot flying side or immediately transition to

a state where neither side is the pilot flying side.

The next step is to prove that every reachable state is also a valid state. The

Reachable_States_Valid theorem is stated at the bottom of Figure 21 and its proof is shown in

Figure 23.

51

;;; Proof Reachable_States_Valid-2 for formula
Pilot_Flying_System_Requirements.Reachable_States_Valid
;;; developed with shostak decision procedures
(""
 (auto-rewrite-theories "Left_Side" "LR_Bus" "Right_Side" "RL_Bus")
 (rule-induct "Reachable_State")
 (skosimp)
 (case "s!2 = Initial_State")
 (("1" (grind))
 ("2"
 (assert)
 (hide 1)
 (grind)
 (("1"
 (case "Right_Side.pilot_flying(Right_Side(r!1))")
 (("1" (grind)) ("2" (grind))))
 ("2"
 (case "Right_Side.pilot_flying(Right_Side(r!1))")
 (("1" (grind)) ("2" (grind))))
 ("3"
 (case "Left_Side.pilot_flying(Left_Side(r!1))")
 (("1" (grind)) ("2" (grind))))
 ("4"
 (case "Left_Side.pilot_flying(Left_Side(r!1))")
 (("1" (grind)) ("2" (grind))))))))

Figure 23 – PVS Proof of Synchronous Reachable States Valid Theorem

The auto-rewrite-theories command installs the axioms stated in the high-level requirements for

each side and each bus as automatic rewrite rules. The rule-induct command adds the inductive

definition of Reachable_States to the proof tree as the rule shown in Figure 24.

FORALL (s):
 (s = Initial_State OR
 (EXISTS (r: Pilot_Flying_System.State, t: bool):
 Valid_State(r) AND s = next_state(r, t)))
 IMPLIES Valid_State(s)

Figure 24 – Inductive Sequent for Reachable States

The skosimp command replaces the universal quantification over s with an unspecified constant

s!2 and simplifies the proof obligation. The case command splits the proof into two sub-goals.

The first sub-goal, in which s!2 is the Initial_State, is easily discharged with the PVS grind

command. The second sub-goal, in which s!2 is any state other than the Initial_State, is reduced

through application of the assert, hide, and grind commands to four sub-goals. Each of these can

be discharged by case splitting on the value of the Pilot_Flying output of either the left or right

52

side of state r!1 (introduced by the grind command to instantiate the existential quantification

over r) followed by application of grind to each of the two resulting sub-goals.

With the proof that every reachable state is a valid state, the proof of requirements R1 through

R5 is straightforward. The formal statement of requirements R1 and R2 are shown in Figure 25.

To make the requirements more readable, we define two predicates over the system state. The

predicate switching_sides identifies the system states in which the system is in the process of

changing the pilot flying side, i.e. where one side has become the pilot flying side but that

change has not reached the other side. The predicate pressed provides a convenient way of

identifying a rising edge of the Transfer Switch.

 %―――
 % The Transfer Switch is pressed in state s when its value rises.
 %―――
 pressed(ts, s) : bool = not pre_TS(s) and ts

 %―――
 % The system is switching sides when either side has become the
 % pilot flying side and that change has not reached the other side
 %―――
 switching_sides(s) : bool =
 pilot_flying(Left_Side(s)) AND NOT output(LR_Bus(s)) OR
 pilot_flying(Right_Side(s)) AND NOT output(RL_Bus(s))

 %―――
 % R1. At least one side shall be the pilot flying side.
 %―――
 R1: THEOREM
 Reachable_State(s) =>
 Left_Pilot_Flying_Side(s) or Right_Pilot_Flying_Side(s)

 %―――
 % R2. At most one side shall be the pilot flying side
 % except while the system is switching sides.
 %―――
 R2: THEOREM
 Reachable_State(s) AND NOT switching_sides(s) =>
 Left_Pilot_Flying_Side(s) /= Right_Pilot_Flying_Side(s)

Figure 25 – Synchronous Pilot Flying System Requirements (Part 2)

The proof of requirement R1 is shown in Figure 26.

53

;;; Proof R1-1 for formula Pilot_Flying_System_Requirements.R1
;;; developed with shostak decision procedures
("" (use "Reachable_States_Valid") (grind))

Figure 26 – PVS Proof of Requirement R1 for Synchronous Pilot Flying System

The proof of R1 is immediate since all of the real work was done in proving that every reachable

state is a valid state. The proof invokes the Reachable_States_Valid theorem with the PVS use

command followed by a PVS grind command.

Trying to prove requirement R2 (at most one side shall be the pilot flying side) reveals that this

requirement cannot hold for all reachable states. In particular, in a state in which one side has

just become the pilot flying side but this information has not been transmitted to the other side,

both sides will be the pilot flying side for one step. However, a safety analysis shows that it is

acceptable to have both sides be the pilot flying side for a single step and we modify R2 to be

required for only reachable states while the system is not switching sides. Requirement R2 can

be proven with the same proof shown in Figure 26 used to prove requirement R1.

54

 %―――
 % R3. Pressing the Transfer Switch shall always change pilot
 % pilot flying side.
 %―――
 R3a: THEOREM
 Reachable_State(s) =>
 (not Left_Pilot_Flying_Side(s) and pressed(ts,s) =>
 Left_Pilot_Flying_Side(next_state(s,ts)))

 R3b: THEOREM
 Reachable_State(s) =>
 (not Right_Pilot_Flying_Side(s) and pressed(ts,s) =>
 Right_Pilot_Flying_Side(next_state(s,ts)))

 %―――
 % R4. The system shall start with the Primary Side as the pilot
 % flying side.
 %―――
 R4: THEOREM
 Left_Pilot_Flying_Side(Initial_State)

 %―――
 % R5. The system shall not change the pilot flying side if it is
 % not switching sides and the Transfer Switch is not pressed.
 %―――
 R5a: THEOREM
 Reachable_State(s) AND
 NOT switching_sides(s) AND NOT pressed(ts, s) =>
 (Left_Pilot_Flying_Side(next_state(s, ts)) =
 Left_Pilot_Flying_Side(s))

 R5b: THEOREM
 Reachable_State(s) AND
 NOT switching_sides(s) AND NOT pressed(ts, s) =>
 (Right_Pilot_Flying_Side(next_state(s, ts)) =
 Right_Pilot_Flying_Side(s))

 END Pilot_Flying_System_Requirements

Figure 27 – PVS Specification of the Pilot Flying System Requirements (Part 3)

Requirement R3 (pressing the Transfer Switch shall always change the pilot flying side) is

broken down into two smaller requirements. R3a states that for a reachable system state, if the

left side is not the pilot flying side and the Transfer Switch is pressed, then the left side will

become the pilot flying side in the next state. R3b states the same property for the right side.

Both of these requirements can be proven with the proof shown in Figure 28.

55

;;; Proof R3a-1 for formula Pilot_Flying_System_Requirements.R3a
;;; developed with shostak decision procedures
(""
 (use "Reachable_States_Valid")
 (auto-rewrite-theories "Left_Side" "LR_Bus" "Right_Side" "RL_Bus")
 (grind))

Figure 28 – PVS Proof of Requirement R3a/b for Synchronous Pilot Flying System

This proof first invokes the Reachable_States_Valid theorem with the PVS use command, then

installs the axioms stated in the high-level requirements for each side and each bus as automatic

rewrite rules using the PVS auto-rewrite-theories command, and finally completes the proof

with a PVS grind command.

The proof of requirement R4 (the system shall start with the Primary Side as the pilot flying side)

is equally straightforward. It is discharged by using the auto-rewrite-theories command to install

the axioms for the high-level requirements as automatic rewrite rules followed by a grind

command.

Finally, the proof of requirement R5 (the system shall not change the pilot flying side unless the

Transfer Switch is pressed) requires a slight modification. First, it is broken down into two

smaller requirements, R5a and R5b, as was done for requirement R3. Trying to prove these

reveal that they only hold if the system is not already in the process of switching sides. We revise

the original requirement to include this caveat as shown in Figure 27. Both requirements can then

be proven using the same proof used to prove requirements R3a and R3b (Figure 28).

While this completes the proof of the original five requirements, the current definition of

Valid_State may not be sufficient to prove additional useful properties about the Pilot Flying

system. This is because while we proved that every reachable state is a valid state, we have not

proven that every valid state is reachable. In other words, there may be states that are valid but

that cannot be reached. In fact this is exactly the situation. The definition of Valid_State does not

include all the relationships between system components that the system will maintain, ensuring

that there are valid states that are not reachable. This is demonstrated in the theory

Pilot_Flying_System_Requirements2 shown in Figure 29.

56

Pilot_Flying_System_Requirements2: THEORY

 BEGIN

 IMPORTING Pilot_Flying_System_Requirements

 s: VAR Pilot_Flying_System.State
 ts: VAR bool

 %―――
 % Enhanced definition of a valid state
 %―――
 At_Least_One_Bus_High(s): bool =
 output(LR_Bus(s)) OR output(RL_Bus(s))

 Quiescent(s): bool =
 (output(LR_Bus(s)) /= output(RL_Bus(s)) AND
 pilot_flying(Left_Side(s)) /= pilot_flying(Right_Side(s))) =>
 (output(LR_Bus(s)) = pilot_flying(Left_Side(s)) AND
 output(RL_Bus(s)) = pilot_flying(Right_Side(s)))

 Valid_State2(s) : bool =
 Valid_State(s) AND
 At_Least_One_Bus_High(s) AND
 Quiescent(s)

 %―――
 % Every reachable state is a valid (2) state
 %―――
 Reachable_States_Valid2: THEOREM
 Reachable_State(s) => Valid_State2(s)

 %―――
 % The system only switches sides for one step
 %―――
 Switching_Transient: THEOREM
 Reachable_State(s) AND switching_sides(s) =>
 NOT switching_sides(next_state(s, ts))

 END Pilot_Flying_System_Requirements2

Figure 29 – Pilot Flying System Requirements 2

This theory imports the Pilot_Flying_System_Requirements theory so that it contains the current

definition of Valid_State. It also includes the Switching_Transient theorem which states that if

the system is switching sides in one state, it is not switching sides in the next state. This theorem

cannot be easily proven using the definition of Valid_State, but it can be proven using the

definition Valid_State2 that adds two additional constraints to Valid_State. The first,

At_Least_One_Bus_High, states that the output of at least one of the two buses is always true.

The second, Quiescent, states that in a quiescent state where the output of both sides and both

57

buses differ, the output of the left bus will be equal to the output of the left side and the output of

the right bus will be equal to the output of the right side.

It is easily proven that all reachable states are Valid_State2 states using a proof similar to that of

Figure 23. The Switching_Transient theorem is then easily proven using the proof of Figure 30

which invokes Reachable_States_Valid2 rather than Reachable_States_Valid.

;;; Proof Switching_Transient-2 for formula
Pilot_Flying_System_Requirements2.Switching_Transient
;;; developed with shostak decision procedures
(""
 (auto-rewrite-theories "Left_Side" "LR_Bus" "Right_Side" "RL_Bus")
 (use "Reachable_States_Valid2")
 (grind))

Figure 30 – PVS Proof of Switching Transient

58

3.4 The Asynchronous Pilot Flying Example

Designing and verifying the Pilot Flying System is considerably more difficult in the

asynchronous case when the components are not driven by a single master clock. Values may be

missed entirely by a component if they arrive while it is not executing, leading to race and

deadlock conditions. If no assumptions are made about the individual component clocks, the

Pilot Flying System can be implemented correctly only through the use of a hand-shaking

protocol. This section describes how the fully asynchronous case can be specified and verified in

PVS.

To model asynchrony, we introduce for each component a single Boolean valued clock signal.

When its clock is true, a component will take a step just as in the synchronous case. When its

clock is false, the component makes no change to its internal state or outputs. While this model

assumes an underlying discrete model of time where each component clock can tick only when

the global clock ticks, we make no other assumptions about the clocks. The global clock may

tick at any rate and the component clocks may tick or not tick at any time the global clock ticks.

This model of time is sufficient to generate the conditions we are interested in verifying. The top

level diagram for the asynchronous Pilot Flying example is shown in Figure 31.

Left_Side

FGS

Right_Side

FGS

LR_Bus

RL_Bus

Left_Pilot_Flying_Side

Right_Pilot_Flying_Side

Transfer_Switch Transfer_Switch

C1 C2

C3C4

TRUE

Initial_Pilot_Flying_Side

FALSE
Initial_Pilot_Flying_Side

CLK1

CLK2

CLK4

CLK3

Figure 31 – Asynchronous Pilot Flying System

The asynchronous system diagram differs from the synchronous diagram only in the addition of

the four clocks, CLK1 through CLK4. However, there are several other changes needed to the

underlying components to produce a correct implementation. These are described in the

following sections.

59

3.4.1 Specification of the Asynchronous Bus Messages

To implement the hand-shaking protocol necessary in the asynchronous case, each FGS will

generate both its pilot flying status and a Boolean acknowledgement. Since these will be

produced and conveyed across the bus together we define a single Message type as shown Figure

32. A bus Message is a record type with two fields, pfs for the pilot flying status and ack for the

acknowledgement. We also define a Msg constructor function which constructs a new message

from values for pfs and ack.

Message: THEORY
BEGIN

 %―――
 % A bus message consists of the Pilot Flying Status and an Ack
 %―――
 Message: TYPE = [# pfs: bool, ack :bool #]

 %―――
 % Message constructor
 %―――
 Msg(pfs, ack : bool) : Message = (# pfs := pfs, ack := ack #)

 END Message

Figure 32 – PVS Specification of a Bus Message

3.4.2 High-Level Requirements for the Asynchronous Bus

The PVS theory for the high-level requirements for the asynchronous bus is shown in Figure 33.

60

Bus_HLR[INIT_PFS: bool, INIT_ACK: bool]: THEORY
BEGIN

 Importing Message

 %―――
 % Define the state and initial state
 %―――
 State: TYPE+

 Initial_State: State

 %―――
 % Next state function
 %―――
 next_state: [State, bool, Message -> State]

 %―――
 % Output of the bus
 %―――
 output: [State -> Message]

 %―――
 % High level requirements
 %―――
 HLR1: AXIOM
 output(Initial_State) = Msg(INIT_PFS, INIT_ACK)

 HLR2: AXIOM
 forall (s: State, clk: bool, input: Message) :
 output(next_state(s, clk, input)) =
 IF NOT clk THEN output(s) ELSE input ENDIF

 END Bus_HLR

Figure 33 – High-Level Requirements for the Asynchronous Bus

The theory is parameterized with the INIT_PFS and INIT_ACK values specifying the initial

output values of the bus. Just as with the high-level requirements for the synchronous bus,

uninterpreted values are provided for the type State, the Initial_State, and the next_state and

output functions. Two axioms, HR1 and HR2, specify the high level requirements of the bus.

The other major change from the synchronous case is that HR2 specifies that the output of the

bus changes only when its clock value is true.

3.4.3 Low-Level Requirements for the Asynchronous Bus

The low-level requirements for the asynchronous bus are shown in Figure 34.

61

Bus_LLR[INIT_PFS: bool, INIT_ACK: bool]: THEORY
BEGIN

 Importing Message

 %―――
 % Define the state and initial state
 %―――
 State: TYPE+ = Message

 Initial_State: State = Msg(INIT_PFS, INIT_ACK)

 %―――
 % Next state function
 %―――
 next_state(s: State, clk: bool, input: Message): State =
 IF NOT clk THEN s ELSE input ENDIF

 %―――
 % Output of the bus
 %―――
 output(s: State): Message = s

 END Bus_LLR

Figure 34 – Low-Level Requirements for the Asynchronous Bus

In the low-level requirements, a concrete interpretation has been assigned to each uninterpreted

type, constant, and function of the high-level requirements. The type State has been defined to be

a record structure of the type Message. The Initial_State is a message constructed from the

theory parameters. The next_state function is defined to return the current state when its clock is

false and its input message when its clock is true. The output function returns the current state of

the bus.

Just as with the synchronous bus, we demonstrate that the axioms of the high-level bus

requirements are consistent with a theory interpretation as shown in Figure 35.

62

Bus_Interpretation[INIT_PFS: bool, INIT_ACK: bool]: THEORY

BEGIN

 %―――
 % Import low-level requirements (LLR) for a bus
 %―――
 IMPORTING Bus_LLR[INIT_PFS, INIT_ACK]

 %―――
 % Import the high-level (HLR) requirements for a bus and
 % define the LLR as an interpretation of the HLR
 %―――
 IMPORTING Bus_HLR[INIT_PFS, INIT_ACK] {{
 State := Bus_LLR.State,
 Initial_State := Bus_LLR.Initial_State,
 next_state := Bus_LLR.next_state,
 output := Bus_LLR.output
 }}

 END Bus_Interpretation

Figure 35 – Theory Interpretation for Asynchronous Bus

Type checking this theory generates two TCCs, both of which are easily proven using the

typecheck-prove (M-x tcp) command of PVS, proving that the Bus_LLR requirements are an

implementation of the Bus_HLR requirements and that the axioms of the Bus_HLR theory are

consistent.

3.4.4 High-Level Requirements for the Asynchronous FGS Side

The PVS specification for an FGS Side also needs to be changed to input and output values of

type Message rather than just a simple Boolean. Since we make no assumptions about the

component clocks, a correct implementation of the synchronization logic requires a hand-shaking

protocol as illustrated in Figure 36.

63

Confirmed
(Ack	
 =	
 True)

Pilot_Flying

Waiting
(Ack	
 =	
 False)

[fall_Other_Side_Ack]

Inhibited
(Ack	
 =	
 False)

Not_Pilot_Flying

Listening
(Ack	
 =	
 True)

[Other_Side_Ack]

[rise_Other_Side_Pilot_Flying]

[rise_Transfer_Switch]

[Primary_Side] [not	
 Primary_Side]

Figure 36 – Asynchronous Pilot Flying Side Logic

The Ack value is used to communicate to the other side when a side has reached a stable state.

The Primary_Side starts in the Confirmed sub-state of the Pilot_Flying state with its Ack set to

true. The other side starts in the Listening sub-state of the Not_Pilot_Flying state with its Ack

also set to true. When the Primary_Side sees the other side become the pilot flying side, it

transitions to the Inhibited sub-state of the Not_Pilot_Flying state and sets its Ack to false. While

in the Inhibited state, a side does not respond to the flight crew pressing the Transfer Switch.4

The Not_Pilot_Flying_Side resumes listening for the Transfer Switch when it receives an Ack

from the other side indicating that the other side has reached the Confirmed state. When the

Transfer Switch is pressed, the Not_Pilot_Flying side transitions to the Waiting sub-state of the

Pilot_Flying state and remains in this sub-state until it sees the other side’s Ack fall, indicating

that the other side has yielded control. The PVS specification for the high-level requirements for

an asynchronous FGS side is shown in Figure 37, Figure 44, and Figure 45.

4 In an actual system, it could be remedied by ensuring the Transfer Switch remains high longer than the time
needed for the Ack to be received from the new pilot flying side.

64

Side_HLR[Primary_Side : bool] : THEORY

BEGIN

 IMPORTING Message

 %―――
 % State defined an an uninterpreted, non-empty type
 %―――
 State: TYPE+

 Initial_State: State

 %―――
 % Next state defined as an uninterpreted function
 %―――
 next_state: [State, bool, bool, Message-> State]

 %―――
 % Extractor functions for this side
 %―――
 pre_TS : [State -> bool]
 pre_MSG: [State -> Message]

 %―――
 % Output is a message containing the pilot flying status and ack
 %―――
 output : [State -> Message]

 %―――
 % Auxiliary functions for stating properties
 %―――
 rise_ts (s: State, ts:bool): bool = NOT pre_TS(s) AND ts
 rise_ospf(s: State, m:Message): bool = NOT pfs(pre_MSG(s)) AND pfs(m)
 fall_ack (s: State, m:Message): bool = ack(pre_MSG(s)) AND NOT ack(m)

 confirmed(s: State): bool = pfs(output(s)) AND ack(output(s))
 inhibited(s: State): bool = NOT pfs(output(s)) AND NOT ack(output(s))
 listening(s: State): bool = NOT pfs(output(s)) AND ack(output(s))
 waiting (s: State): bool = pfs(output(s)) and NOT ack(output(s))

Figure 37 – High-Level Requirements for the Asynchronous Side (Part 1)

The Side_HLR theory is parameterized with whether this side is the Primary Side. Uninterpreted

values are provided for the type Side, the constant Initial_State, the next_state function, and

extractor functions for the previous value of the Transfer Switch (pre_TS), the previous value of

the other side’s message, (pre_MSG), and the output of this side. We also specify several

convenient auxiliary functions. The functions rise_ts, rise_ospf, and fall_ack define precisely

how a rising edge of the Transfer Switch, a rising edge of the other side’s pilot flying value, and

65

a falling edge of the other side’s ack are to be identified. The functions confirmed, inhibited,

listening, and waiting provide a convenient way identifying the sub-state of a side.

 %―――
 % High level requirements
 %―――
 HLR1: AXIOM
 output(Initial_State) = Msg(Primary_Side, TRUE)

 HLR2: AXIOM
 pre_TS(Initial_State)

 HLR3: AXIOM
 pre_MSG(Initial_State) = Msg(NOT Primary_Side, TRUE)

Figure 38 – High-Level Requirements for the Asynchronous Side (Part 2)

Axioms HLR1 through HLR3 in Figure 38 define the result of applying each of the three

extractors to the Initial_State constructor. The output of the Initial_State is set to either

confirmed or listening depending on the Primary_Side theory parameter. The stored value of the

Transfer Switch is initialized to true so that it cannot be pressed in the initial step. The stored

value of the other side’s message is initialized to agree with the initial output of the bus from the

other side

66

 HLR4: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m:Message) :
 NOT clk => output(next_state(s, clk, ts, m)) = output(s)

 HLR5: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m: Message) :
 clk AND confirmed(s) AND rise_ospf(s, m) =>
 inhibited(next_state(s, clk, ts, m))

 HLR6: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m: Message) :
 clk AND confirmed(s) AND NOT rise_ospf(s, m) =>
 confirmed(next_state(s, clk, ts, m))

 HLR7: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m: Message) :
 clk AND inhibited(s) AND ack(m) =>
 listening(next_state(s, clk, ts, m))

 HLR8: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m: Message) :
 clk AND inhibited(s) AND NOT ack(m) =>
 inhibited(next_state(s, clk, ts, m))

 HLR9: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m: Message) :
 clk AND listening(s) AND rise_ts(s, ts) =>
 waiting(next_state(s, clk, ts, m))

 HLR10: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m: Message) :
 clk AND listening(s) AND NOT rise_ts(s, ts) =>
 listening(next_state(s, clk, ts, m))

 HLR11: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m: Message) :
 clk AND waiting(s) AND fall_ack(s, m) =>
 confirmed(next_state(s, clk, ts, m))

 HLR12: AXIOM
 FORALL (s:State, clk:bool, ts:bool, m: Message) :
 clk AND waiting(s) AND NOT fall_ack(s, m) =>
 waiting(next_state(s, clk, ts, m))

Figure 39 – High-Level Requirements for the Asynchronous Side (Part 3)

HLR4 through HLR12 in Figure 39 define the result of applying the output extractor to the

next_state constructor in accordance with the protocol of Figure 36 (recall that confirmed,

inhibited, listening, and waiting are defined in terms of the output extractor). Note that HLR4

asserts that if the clock for a side is false, no change occurs in the output of the side.

67

 HLR13: AXIOM
 FORALL (s:State, clk:bool, ts: bool, m: Message) :
 NOT clk => pre_TS(next_state(s, clk, ts, m)) = pre_TS(s)

 HLR14: AXIOM
 FORALL (s:State, clk:bool, ts: bool, m: Message) :
 clk => pre_TS(next_state(s, clk, ts, m)) = ts

 HLR15: AXIOM
 FORALL (s:State, clk:bool, ts: bool, m: Message) :
 NOT clk => pre_MSG(next_state(s, clk, ts, m)) = pre_MSG(s)

 HLR16: AXIOM
 forall (s:State, clk:bool, ts: bool, m: Message) :
 clk => pre_MSG(next_state(s, clk, ts, m)) = m

END Side_HLR

Figure 40 – High-Level Requirements for the Asynchronous Side (Part 4)

Finally, HLR13 through HLR16 define the result of applying the extractors pre_TS and

pre_MSG to the constructor next_state. Again, if the clock for the side if false, the value

returned by each extractors is not changed by the next_state function.

3.4.5 Low-Level Requirements for the Asynchronous FGS Side

The PVS theory Side_LLR shown in Figure 41 and Figure 42 defines a constructive

implementation of a synchronous Side by providing a concrete interpretation for each type,

constant, and function. The four possible values of the state machine of Figure 36, Confirmed,

Inhibited, Listening, and Waiting, are defined as the PVS enumeration type Pilot_Flying_Side.

The initial value of the state machine is defined to be either Confirmed or Listening depending on

the Primary_Side theory parameter.

The State of a side is defined as a PVS record structure consisting of the three fields – the current

value of the Pilot_Flying_Side state machine (st), the previous value of the Transfer Switch

(pre_ts), and the previous value of the bus message from the other side (pre_msg). The

Initial_State constant consists of a record in which the st component is set the

Initial_Pilot_Flying_Side, the pre_ts component is initialized to true to ensure the Transfer

Switch cannot be pressed in the initial state, and the pre_msg component is set to agree with the

message provided by the bus from the other side.

68

Side_LLR[Primary_Side : bool] : THEORY
BEGIN

 IMPORTING Message

 %―――
 % Pilot flying state machine values
 %―――
 Pilot_Flying_Side: TYPE = {Confirmed, Inhibited, Listening, Waiting}

 Initial_Pilot_Flying_Side : Pilot_Flying_Side =
 IF Primary_Side THEN Confirmed ELSE Listening ENDIF

 %―――
 % Definition of state and initial state for this side
 %―――
 State: TYPE = [# st : Pilot_Flying_Side,
 pre_ts : bool,
 pre_msg : Message #]

 Initial_State: State = (# st := Initial_Pilot_Flying_Side,
 pre_ts := TRUE,
 pre_msg := Msg(NOT Primary_Side, TRUE) #)

 %―――
 % Extractor functions for this side
 %―――
 pre_TS (s: State): bool = pre_ts(s)
 pre_MSG(s: State): Message = pre_msg(s)

 %―――
 % Auxiliary functions for defining next state function
 %―――
 rise_ospf(s:State, m:Message): bool = NOT pfs(pre_MSG(s)) AND pfs(m)
 rise_ts (s:State, ts:bool): bool = NOT pre_TS(s) AND ts
 fall_ack (s:State, m:Message): bool = ack(pre_MSG(s)) AND NOT ack(m)

Figure 41 – Low-Level Requirements for the Asynchronous Side (Part 1)

To maintain consistency with the high-level requirements, extractor functions pre_TS and

pre_MSG are defined. Auxiliary functions are also defined to simplify specification of the

next_state function.

69

 %―――
 % Next state function
 %―――
 next_state(s: State, clk: bool, ts: bool, m: Message): State =
 %―――
 % No change when clock is false
 %―――
 IF (NOT clk) THEN
 s
 ELSE LET
 next_st =
 %――
 % Transition 1 - Rise of Other Side Pilot Flying
 %――
 IF (Confirmed?(st(s)) AND rise_ospf(s, m))
 THEN Inhibited
 %――
 % Transition 2 - Rise of Other Side Pilot Flying
 %――
 ELSIF (Inhibited?(st(s)) AND ack(m))
 THEN Listening
 %――
 % Transition 3 - Rise of Transfer Switch
 %――
 ELSIF (Listening?(st(s)) AND rise_ts(s, ts))
 THEN Waiting
 %――
 % Transition 4 - Fall of Other Side Ack
 %――
 ELSIF (Waiting?(st(s)) AND fall_ack(s, m))
 THEN Confirmed
 %――
 % No transition taken
 %――
 ELSE
 st(s)
 ENDIF
 IN
 (# st := next_st, pre_ts := ts, pre_msg := m #)
 ENDIF

 %―――
 % Output is a message containing the pilot flying status and the ack
 %―――
 output(s:State) : Message =
 (# pfs := Confirmed?(st(s)) OR Waiting?(st(s)),
 ack := Confirmed?(st(s)) OR Listening?(st(s)) #)

 END Side_LLR

Figure 42 – Low-Level Requirements for the Asynchronous Side (Part 2)

The next_state function (Figure 42) computes each of the three components of the next system

state from the current state and inputs, where the inputs consist of the side’s clock, the Transfer

70

Switch, and the bus message from the other side. If the side’s clock is false, no change occurs in

the side’s state. Otherwise, the next sub-state is computed in accordance with the logic of Figure

36 and composed with the current value of the Transfer Switch and the message from the other

side.

To show that the low-level requirements of Figure 41 and Figure 42 implement the high-level

requirements of Figure 37 through Figure 40, we define a theory interpretation as shown in

Figure 43.

Side_Interpretation[Primary_Side: bool]: THEORY

BEGIN

 %―――
 % Import the low-level requirements (LLR) for a side
 %―――
 IMPORTING Side_LLR[Primary_Side]

 %―――
 % Import the high-level (HLR) requirements for a side and
 % define the LLR as an interpretation of the HLR
 %―――
 IMPORTING Side_HLR[Primary_Side] {{
 State := Side_LLR.State,
 Initial_State := Side_LLR.Initial_State,
 next_state := Side_LLR.next_state,
 pre_TS := Side_LLR.pre_TS,
 pre_MSG := Side_LLR.pre_MSG,
 output := Side_LLR.output
 }}

 END Side_Interpretation

Figure 43 – Theory Interpretation for the Asynchronous Side

Type checking this theory with PVS generates 16 TCCs, one for each axiom specified in the

high-level requirements of Figure 37 through Figure 40. These TCCS are easily proven using the

typecheck-prove (M-x tcp) command of PVS, proving that the Side_LLR requirements are an

implementation of the Side_HLR requirements and that the axioms of the Side_HLR

requirements are consistent.

3.4.6 PVS Specification of the Asynchronous Pilot Flying Example

The PVS specification for the entire asynchronous Pilot_Flying_System depicted in Figure 31 is

shown in Figure 44 and Figure 45.

71

Pilot_Flying_System: THEORY
BEGIN

 %―――
 % Import the system components
 %―――
 IMPORTING Side_HLR[TRUE] AS Left_Side;
 IMPORTING Bus_HLR [TRUE, TRUE] AS LR_Bus;
 IMPORTING Side_HLR[FALSE] AS Right_Side;
 IMPORTING Bus_HLR [FALSE, TRUE] AS RL_Bus;

 %―――
 % Define the system state
 %―――
 State: Type = [# Left_Side : Left_Side.State,
 LR_Bus : LR_Bus.State,
 Right_Side : Right_Side.State,
 RL_Bus : RL_Bus.State,
 pre_TS : bool #]

 %―――
 % Define the initial system state
 %―――
 Initial_State: State = (# Left_Side := Left_Side.Initial_State,
 LR_Bus := LR_Bus.Initial_State,
 Right_Side := Right_Side.Initial_State,
 RL_Bus := RL_Bus.Initial_State,
 pre_TS := TRUE #)

Figure 44 – PVS Specification of the Asynchronous Pilot Flying Example – Part 1

The specification of the asynchronous system is very similar to the synchronous specification

given in Figure 18 and Figure 19. The main difference is that the next_state function takes each

of the four clocks as inputs and passes the appropriate clock value to each component.

72

 %―――
 % Next state function
 %―――
 next_state(s: State, CLK1, CLK2, CLK3, CLK4, TS: bool): State =
 LET
 %――
 % Compute the next state of LR Bus and the Right Side
 %――
 C1 = Left_Side.output(Left_Side(s)),
 next_LR = LR_Bus.next_state(LR_Bus(s), CLK2, C1),
 C2 = LR_Bus.output(next_LR),
 next_RS = Right_Side.next_state(Right_Side(s), CLK3, TS, C2),

 %――
 % Compute the next state of the RL Bus and the Left Side
 %――
 C3 = Right_Side.output(Right_Side(s)),
 next_RL = RL_Bus.next_state(RL_Bus(s), CLK4, C3),
 C4 = RL_Bus.output(next_RL),
 next_LS = Left_Side.next_state(Left_Side(s), CLK1, TS, C4)
 IN
 (# Left_Side := next_LS,
 LR_Bus := next_LR,
 Right_Side := next_RS,
 RL_Bus := next_RL,
 pre_TS := TS #)

 %―――
 % Outputs
 %―――
 Left_Pilot_Flying_Side(s: State) : bool = pfs(output(Left_Side(s)))

 Right_Pilot_Flying_Side(s: State): bool = pfs(output(Right_Side(s)))

END Pilot_Flying_System

Figure 45 – PVS Specification of the Asynchronous Pilot Flying Example – Part 2

73

3.4.7 Formal Verification of the Asynchronous Pilot Flying Example

Formal verification of the asynchronous Pilot Flying system proceeds in much the same was as

for verification of the synchronous example. The informal requirements for the asynchronous

system are identical to those for the synchronous system:

R1. At least one side shall be the pilot flying side.

R2. At most one side shall be the pilot flying side.

R3. Pressing the Transfer Switch shall always change the pilot flying side.

R4. The system shall start with the Primary Side as the pilot flying side.

R5. The system shall not change the pilot flying side unless the Transfer Switch is pressed.

The formal specification of these requirements is shown in Figure 46 through Figure 56.

The definition of a Reachable_State is similar to that given for the synchronous example except

that the next_state function now depends on the clock of each component. Since each component

only takes a step if its clock is true, this means that there are more reachable states than for the

synchronous system. This is to be expected since it is the varying execution rates of the

components that are the source of potential race conditions and deadlocks.

To simplify the formal specification of the requirements, we define a stable_state to be one in

which the ack of each side is true. This corresponds to the states where one side is in the

Confirmed sub-state and the other side is in the Listening sub-state (see Figure 36). Of course, it

also includes states where both sides are in the Confirmed or Listening sub-state, but these will

be excluded in the formal specification of the requirements as unreachable states.

Since the two sides may now execute on different steps, it is no longer true that if one side sees

the Transfer Switch pressed, the other side will also see the Transfer Switch pressed on the same

step. To more precisely specify requirements involving the Transfer Switch, we introduce three

definitions for when the Transfer Switch is pressed. The predicates pressed_seen_left and

pressed_seen_right are true when the Transfer Switch is observed to be pressed by the left or

right side respectively, i.e. when the Transfer Switch has risen from the previous value observed

by that side. The predicate pressed is true when the Transfer Switch has risen from its previous

value regardless of the value of each side’s clock.

74

Pilot_Flying_System_Requirements: THEORY
 BEGIN

 IMPORTING Pilot_Flying_System

 s: VAR Pilot_Flying_System.State
 m1, m2, m3: VAR Message
 ts, clk1, clk2, clk3, clk4: VAR bool

 %―――
 % Definition of a reachable state
 %―――
 Reachable_State(s): INDUCTIVE bool =
 s = Initial_State OR
 (EXISTS (r: Pilot_Flying_System.State, c1, c2, c3, c4, t: bool):
 Reachable_State(r) AND
 s = next_state(r, c1, c2, c3, c4, t))

 %―――
 % The system is stable when both side's acks are true
 %―――
 stable_state(s): bool =
 (ack(output(Left_Side(s))) and ack(output(Right_Side(s))))

 %―――
 % Definitions for Transfer Switch pressed
 %―――
 pressed(ts, s) : bool = NOT pre_TS(s) AND ts
 pressed_seen_left(ts, s) : bool = not pre_TS(Left_Side(s)) and ts
 pressed_seen_right(ts, s): bool = not pre_TS(Right_Side(s)) and ts;

Figure 46 – Asynchronous Pilot Flying System Requirements (Part 1)

Verification of the system properties is based on definition of a Valid_State predicate just as was

done for the synchronous example. However, definition of the Valid_State predicate is more

complex in the asynchronous system and makes use of several auxiliary definitions shown in

Figure 47.

75

 %―――
 % Predicates used to define Valid State
 %―――
 Confirmed(m1) : bool = pfs(m1) AND ack(m1);
 Inhibited(m1) : bool = NOT pfs(m1) AND NOT ack(m1);
 Listening(m1) : bool = NOT pfs(m1) AND ack(m1);
 Waiting (m1) : bool = pfs(m1) AND NOT ack(m1);

 %―――
 % Equality of messages
 %―――
 == : [Message, Message -> bool] =
 LAMBDA (m1, m2) : pfs(m1) = pfs(m2) AND ack(m1) = ack(m2);

 %―――
 % Ordering of messages
 %―――
 >> : [Message, Message -> bool] = LAMBDA (m1, m2) :
 Inhibited(m1) AND Confirmed(m2) OR
 Listening(m1) AND Inhibited(m2) OR
 Waiting(m1) AND Listening(m2) OR
 Confirmed(m1) AND Waiting(m2);

Figure 47 – Asynchronous Pilot Flying System Requirements (Part 2)

Since each side generates an output message consisting of a pilot flying indication (pfs) and an

acknowledgement (ack), it is convenient to name each of the four possible messages to match the

sub-state of the side from which it is generated. This is done by defining predicates Confirmed,

Inhibited, Listening and Waiting over the type Message as shown in Figure 47. We also define

equality over Messages and an ordering of Messages. The intuition behind the ordering relation

is that a message m1 follows a message m2 (m1 >> m2) if m1 is the next state after m2 in the

state transition diagram of Figure 36, i.e. Inhibited >> Confirmed, Listening >> Inhibited and so

forth.

76

 %―――
 % Valid state constraints over component states
 %―――
 Side_Bus_Side_Consistency(m1, m2, m3) : bool =
 m1 == m2 and m2 == m3 OR
 m1 >> m2 and m2 == m3 OR
 m1 == m2 and m2 >> m3 OR
 Waiting(m1) AND Inhibited(m2) AND Inhibited(m3) OR
 Waiting(m1) AND Listening(m2) AND Inhibited(m3) OR
 Waiting(m1) AND Waiting (m2) AND Inhibited(m3)

 %―――
 % Valid state constraints on side components
 %―――
 Side_Consistency(m1, m2) : bool =
 Listening(m1) AND Confirmed(m2) OR
 Waiting (m1) AND Inhibited(m2) OR
 Confirmed(m1) AND Listening(m2) OR
 Confirmed(m1) AND Waiting (m2) OR
 Inhibited(m1) AND Confirmed(m2)

 %―――
 % Full definition of a valid state
 %―――
 Valid_State: [Pilot_Flying_System.State -> bool] =
 {s | LET
 LS = output(Left_Side(s)),
 LR = LR_Bus.output(LR_Bus(s)),
 RP = pre_MSG(Right_Side(s)),
 RS = output(Right_Side(s)),
 RL = RL_Bus.output(RL_Bus(s)),
 LP = pre_MSG(Left_Side(s))
 IN
 Side_Bus_Side_Consistency(LS, LR, RP) AND
 Side_Bus_Side_Consistency(RS, RL, LP) AND
 Side_Consistency(LP, LS) AND
 Side_Consistency(RP, RS)
 }

 %―――
 % Proof that every reachable state is a valid state
 %―――
 Reachable_States_Valid: THEOREM
 Reachable_State(s) => Valid_State(s)

Figure 48 – Asynchronous Pilot Flying System Requirements (Part 3)

There are two types of consistency defined in Figure 48 that we wish to enforce in the definition

of Valid_State. Side_Bus_Side_Consistency captures the constraint that if a change in sub-state

occurs in a side, it will transfer across the bus and eventually be stored in the other side as the

previous value of the first side’s message. To illustrate, consider the case where m1 is the output

77

message of the Left_Side, m2 is the output message of the LR_Bus, and m3 is the pre_MSG of the

Right_Side (an analogous situation holds for the Right_Side, RL_Bus, and Left_Side). One

possibility is that the sub-state of the Left_Side has been transmitted to the Right_Side and m1,

m2 and m3 are identical (m1 == m2 and m2 == m3). Another possibility is that the Left_Side has

just changed to a following sub-state, but the LR_Bus and the Right_Side have not yet seen the

change (m1 >> m2 and m2 == m3). Another possibility is that the LR_Bus has been updated but

the change has not yet reached the Right_Side (m1 == m2 and m2 >> m3).

There are three other possible relationships that are explicitly enumerated in

Side_Bus_Side_Consistency. Let m1, m2, and m3 be as just described. Consider the situation

where the Left_Side has just entered the Listening sub-state, but that information has not yet been

communicated to the LR_Bus so that the system is in the state Listening(m1), Inhibited(m2) and

Inhibited(m3). The first case occurs when the Transfer Switch is pressed and the system enters

the state Waiting(m1), Inhibited(m2) and Inhibited(m3). The second case occurs when the

Transfer Switch is pressed while in the state Listening(m1), Listening(m2) and Inhibited(m3),

putting the system into the state Waiting(m1) and Listening(m2) and Inhibited(m3). The third

case evolves directly from the second case when the LR_Bus is updated with the Left_Side’s

output, putting the system into the Waiting(m1) and Waiting(m2) and Inhibited(m3) state.

Analogous situations exist for the Right_Side, RL_Bus, and the Left_Side.

The Side_Consistency predicate identifies relationships that must be maintained between the sub-

state of a side and its copy of the previous message from the other side. For example, if a side is

in the Confirmed sub-state, then the previous message from the other side must be either

Listening or Inhibited.

All of these constraints on the valid system states are collected in the definition of Valid_State in

Figure 48. The Reachable_States_Valid theorem states that all reachable states are also valid

states for the asynchronous Pilot Flying system. The proof of this theorem is similar to the proof

for the synchronous example shown in Figure 23, but due to the larger number of reachable

states, more work is needed to keep the proof tractable. For example, simply applying the PVS

grind command to the inductive branch of the proof as was done in the synchronous case

generates 544 sub-goals. While each of these can be easily dispatched with a few PVS

commands, the proof can be almost fully automated with two additional steps.

78

When proving the 544 sub-goals, the PVS theorem prover often requires human assistance to

case split a sub-goal in order to determine which of the Side_HLR axioms should be invoked. It

is actually easier for the theorem prover to use a constructive definition more like that found in

the Side_LLR theory. However, we prefer to maintain the declarative style using axioms found in

Side_HLR since this is closer to the traditional “shall” statements software engineers expect to

receive as requirements. To do this while still facilitating theorem proving, we add to the

Side_HLR theory the two lemmas as shown in Figure 49.

 %―――
 % Lemmas used to simplify system level proofs
 %―――
 L1: LEMMA
 FORALL (s: State, clk: bool, ts:bool, m: Message) :
 output(next_state(s, clk, ts, m)) =
 IF (NOT clk) THEN
 output(s)
 ELSIF (confirmed(s) AND rise_ospf(s, m)) THEN
 (# pfs := FALSE, ack := FALSE #)
 ELSIF (inhibited(s) AND ack(m)) THEN
 (# pfs := FALSE, ack := TRUE #)
 ELSIF (listening(s) AND rise_ts(s, ts)) THEN
 (# pfs := TRUE, ack := FALSE #)
 ELSIF (waiting(s) AND fall_ack(s, m)) THEN
 (# pfs := TRUE, ack := TRUE #)
 ELSE
 output(s)
 ENDIF

 L2: LEMMA
 forall (s: State, clk: bool, ts:bool, m: Message) :
 pre_MSG(next_state(s, clk, ts, m)) =
 IF (NOT clk) THEN pre_MSG(s) ELSE m ENDIF

Figure 49 – Lemmas Added to Side_HLR to Support Theorem Proving

These lemmas define the effect of applying the output and pre_MSG extractors to the next_state

constructor in a constructive style that defines the result for all possible conditions. These

lemmas can easily be proven using the axioms of Side_HLR and the PVS theorem prover can be

instructed to invoke these lemmas as automatic rewrite rules using the PVS use command. This

eliminates the need for manual intervention to case split a sub-goal.

The second step for proof automation is to define a custom PVS strategy. PVS strategies can be

thought of as user-defined proof commands constructed from the basic proof commands of PVS.

The strategy needed here is shown in Figure 50.

79

(defstep grind-use-grind (&rest lemmas)
 (let ((uselems (cons 'use* lemmas)))
 (then
 (grind) uselems (grind)
))
 "Applies grind, then uses lemmas followed by grind on on each subgoal."
 "Applying grind - use - grind."
)

Figure 50 – Grind-use-grind PVS Proof Strategy

This strategy defines a PVS proof command called grind-use-grind that accepts a sequence of

lemma names as an argument. Its effect is to apply the PVS grind command to the current sub-

goal, possibly generating one or more new sub-goals. It then invokes the named lemmas on each

new sub-goal with the PVS use command, and finally applies the grind command to that sub-

goal. An illustration of its use is shown in the last step of the proof for the asynchronous

Reachable_States_Valid theorem shown in Figure 51.

;;; Proof Reachable_States_Valid-1 for formula
Pilot_Flying_System_Requirements.Reachable_States_Valid
;;; developed with shostak decision procedures
(""
 (rule-induct "Reachable_State")
 (skosimp)
 (case "s!2 = Initial_State")
 (("1"
 (auto-rewrite-theories "Message" "Left_Side" "LR_Bus" "Right_Side"
 "RL_Bus")
 (grind))
 ("2"
 (assert)
 (hide 1)
 (grind-use-grind "LR_Bus.HLR2" "RL_Bus.HLR2" "Left_Side.L1"
 "Left_Side.L2" "Right_Side.L1" "Right_Side.L2"))))

Figure 51 – PVS Proof of Asynchronous Reachable States Valid Theorem

Successful completion of the proof of Figure 51 establishes that every reachable state of the

asynchronous Pilot_Flying_System is also a valid state. The Reachable_States_Valid theorem

can then be used to prove requirements R1 and R2 shown in Figure 52, both of which can be

discharged with a PVS (use “Reachable_States_Valid) command followed by a grind command.

80

 %―――
 % R1. At least one side shall always be the pilot flying side.
 %―――
 R1: THEOREM
 Reachable_State(s) =>
 Left_Pilot_Flying_Side(s) OR Right_Pilot_Flying_Side(s)

 %―――
 % R2. Both sides shall agree on the pilot flying side
 % except while the system is switching sides.
 %―――
 R2: THEOREM
 Reachable_State(s) AND stable_state(s) =>
 (Left_Pilot_Flying_Side(s) = NOT Right_Pilot_Flying_Side(s))

 Figure 52 – Asynchronous Pilot Flying System Requirements (Part 4)

However, the proof of requirement R3 (pressing the Transfer Switch shall always change the

pilot flying side) reveals a problem. To formalize R3, we break it into two smaller requirements

R3a and R3b as shown in Figure 53.

 %―――
 % R3. Pressing the transfer switch shall always change the pilot
 % flying side except when the system is switching sides.
 %―――
 R3a: THEOREM
 Reachable_State(s) AND stable_state(s) =>
 (NOT Left_Pilot_Flying_Side(s) AND pressed(ts, s) =>
 Left_Pilot_Flying_Side(next_state(s,TRUE,clk2,clk3,clk4,ts)))

 R3b: THEOREM
 Reachable_State(s) AND stable_state(s) =>
 (NOT Right_Pilot_Flying_Side(s) AND pressed(ts, s) =>
 Right_Pilot_Flying_Side(next_state(s,clk1,clk2,TRUE,clk4,ts)))

Figure 53 – Incorrect Statement of Asynchronous Requirement R3

These requirements state that if the Transfer Switch is pressed while the system is in a stable

state (i.e. is not switching sides) the side that is not the pilot flying side shall become the pilot

flying side providing its clock is true. However, trying to prove either theorem generates four

sub-goals that cannot be proven. These correspond to cases in which the Transfer Switch was

true the last time the side’s clock was true. In other words, even if the Transfer Switch is pressed

on this step and the side’s clock is true, the side does not see a rising edge of the Transfer Switch

because the last time its clock was true the Transfer Switch was also true.

81

There is no easy fix for this problem. Instead, the system must be designed to ensure that the

pilot not flying side sees the Transfer Switch being pressed. In an actual system, it would be

possible to place additional requirements on the length of time the Transfer Switch must remain

high and the time it must remain low to ensure that the pilot not flying side would see a rising

edge of the Transfer Switch, but since we are making no assumptions about the system clock that

will not work for our system. To make this explicit, we replace the pressed predicate in R3a and

R3b with pressed_seen_left and pressed_seen_right as shown in Figure 54. This makes it clear

the requirements are satisfied only if the pilot not flying side actually observes the Transfer

Switch being pressed. Both of these theorems can be proven with a PVS (use

“Reachable_States_Valid”) command followed by a grind-use-grind command invoking the

appropriate lemmas.

 %―――
 % R3. Pressing the transfer switch shall always change the pilot
 % flying side except when the system is switching sides.
 %―――
 R3a: THEOREM
 Reachable_State(s) AND stable_state(s) =>
 (NOT Left_Pilot_Flying_Side(s) AND pressed_seen_left(ts, s) =>
 Left_Pilot_Flying_Side(next_state(s,TRUE,clk2,clk3,clk4,ts)))

 R3b: THEOREM
 Reachable_State(s) AND stable_state(s) =>
 (NOT Right_Pilot_Flying_Side(s) AND pressed_seen_right(ts, s) =>
 Right_Pilot_Flying_Side(next_state(s,clk1,clk2,TRUE,clk4,ts)))

 %―――
 % R4. The system shall start with the left side as the pilot
 % flying side.
 %―――
 R4: THEOREM
 Left_Pilot_Flying_Side(Initial_State)

Figure 54 – Asynchronous Pilot Flying System Requirements (Part 5)

Requirement R4 (the system shall start with the left side as the pilot flying side) also shown in

Figure 54 is easily proven by installing the axioms of Side_HLR and Bus_HLR as automatic

rewrite rules followed by a grind command. However, requirement R5 (the system shall not

change the pilot flying side unless the Transfer Switch is pressed) turns out to not be true as

formulated in Figure 55

82

 %―――
 % R5. The system shall not change the pilot flying side while it
 % is in a stable state unless the transfer switch is pressed.
 %―――
 R5a: THEOREM
 Valid_State(s) AND stable_state(s) AND NOT pressed(ts, s) =>
 Left_Pilot_Flying_Side(next_state(s,clk1,clk2,clk3,clk4,ts)) =
 Left_Pilot_Flying_Side(s)

 R5b: THEOREM
 Valid_State(s) AND stable_state(s) AND NOT pressed(ts, s) =>
 Right_Pilot_Flying_Side(next_state(s,clk1,clk2,clk3,clk4,ts)) =
 Right_Pilot_Flying_Side(s)

Figure 55 – Incorrect Statement of Asynchronous Requirement R5

The counter example for this occurs when the clock for the Not_Pilot_Flying side becomes false

while the Transfer Switch is false. At a later time, the Transfer Switch becomes true, but the

Not_Pilot_Flying side does not observe this rising edge because its clock is still false. The

Transfer Switch remains true for several steps and during this period, the Not_Pilot_Flying side’s

clock becomes true. At this point, the Not_Pilot_Flying side observes a rising edge of the

Transfer Switch and becomes the Pilot_Flying_Side. However, the predicate pressed is not true

on that step since the Transfer Switch has been true for several steps.

Requirement R5 is false due to a subtle interaction between the component clocks and their

stored value of the Transfer Switch. The intent of this requirement was that the system should

not spontaneously change state while in a stable state unless there is some external stimulation.

Interestingly enough, it is possible to prove R5 if it is restated as shown in Figure 56.

83

 %―――
 % R5. The system shall not change the pilot flying side while it
 % is in a stable state unless the transfer switch is high.
 %―――
 R5a: THEOREM
 Valid_State(s) AND stable_state(s) AND NOT ts =>
 Left_Pilot_Flying_Side(next_state(s,clk1,clk2,clk3,clk4,ts)) =
 Left_Pilot_Flying_Side(s)

 R5b: THEOREM
 Valid_State(s) AND stable_state(s) AND NOT ts =>
 Right_Pilot_Flying_Side(next_state(s,clk1,clk2,clk3,clk4,ts)) =
 Right_Pilot_Flying_Side(s)

 END Pilot_Flying_System_Requirements

Figure 56 – Asynchronous Pilot Flying System Requirements (Part 6)

Here, we have replaced the NOT pressed(ts, s) with NOT ts, so that the requirement states that

the system shall not change the pilot flying side while it is in a stable state unless the Transfer

Switch is high. While technically a slightly weaker requirement, this formulation still satisfies

the original intent of the requirement and is easily proven to be true.

84

3.5 The Synchronous Pilot Flying Example in HOL

Higher Order Logic (HOL) is a formal system originally adopted and implemented by Mike

Gordon [7], [8]. Subsequently, other implementations of HOL have been developed [24], [25],

[13], [27], [26], [17]. In general, these systems agree on the formal system implemented [24], but

their interfaces and proof infrastructure can be quite different. In our example we will work with

HOL4 [25], [12].

In HOL4 notation, ‘~’ is the ‘not’ operator, ‘/\’ is conjunction, ‘\/’ is disjunction, ‘T’ is True, and

‘F’ is False. The ‘!’ symbol is ‘for all’, and the ‘?’ symbol is ‘there exists’. Finally, ‘<|’ and ‘|>’

are used to indicate a record structure.

3.5.1 Specification in HOL4 using a Next-State Approach

This section describes a HOL4 specification of the synchronous pilot flying example using a

“this state, next state” approach similar to what was done in PVS. We start by defining the RISE

function in terms of a Boolean signal s. We then define data types for PFS (cf. Pilot_Flying_Side

type in Figure 15) and Side_State (cf. State type in Figure 15). We also define System_State (cf.

State type in Figure 18). These HOL4 definitions are shown in Figure 57.

85

numLib.prefer_num();

(*---*)
(* Rise definition *)
(*---*)

val RISE_def =
 Define
 `RISE(pre_s : bool,
 s : bool)
 =
 ~pre_s /\ s`;

(*---*)
(* Data type definitions *)
(*---*)

Hol_datatype
 `PFS = Pilot_Flying
 | Not_Pilot_Flying`;

Hol_datatype
 `Side_State =
 <| st: PFS;
 pre_ts: bool;
 pre_ospf: bool
 |>`;

Hol_datatype
 `System_State =
 <| stateLS: Side_State;
 stateLR: bool;
 stateRS: Side_State;
 stateRL: bool;
 pre_ts: bool
 |>`;

Figure 57 – Rise and Data Type Definitions

Next we define the initial states for the sides (both the primary side and the non-primary side),

the buses, and the system. These are shown in Figure 58 and correspond with the initial state

definitions in PVS.

86

val Initial_Side_State_Primary_def =
 Define
 `Initial_Side_State_Primary = <| st:= Pilot_Flying;
 pre_ts:= T;
 pre_ospf:= F |>`;

val Initial_Side_State_Not_Primary_def =
 Define
 `Initial_Side_State_Not_Primary = <| st:= Not_Pilot_Flying;
 pre_ts:= T;
 pre_ospf:= T |>`;

val Initial_Bus_State_Primary_def =
 Define
 `Initial_Bus_State_Primary = T`;

val Initial_Bus_State_Not_Primary_def =
 Define
 `Initial_Bus_State_Not_Primary = F`;

val Initial_System_State_def =
 Define
 `Initial_System_State = <| stateLS := Initial_Side_State_Primary;
 stateLR := Initial_Bus_State_Primary;
 stateRS := Initial_Side_State_Not_Primary;
 stateRL := Initial_Bus_State_Not_Primary;
 pre_ts := T |>`;

Figure 58 – Initial State Definitions

To complete the specification, we have left to define the next state functions for Side, Bus, and

System. These functions are called Side_ns, Bus_ns, and System_ns in the code shown in Figure

59. Note that the Bus_ns function simply returns the input value. The delay is implemented at the

top level in the System_ns function.

87

val Side_ns_def =
 Define
 `Side_ns (state : Side_State,
 ts : bool,
 ospf : bool) =
 let
 nextst =
 if (state.st = Pilot_Flying) /\ RISE(state.pre_ospf, ospf)
 then Not_Pilot_Flying
 else if (state.st = Not_Pilot_Flying) /\ RISE(state.pre_ts, ts)
 then Pilot_Flying
 else state.st
 in
 state with <| st:= nextst; pre_ts:= ts; pre_ospf:= ospf |>`;

val Bus_ns_def =
 Define
 `Bus_ns (input : bool) = input`;

val System_ns_def =
 Define
 `System_ns (state : System_State,
 ts : bool) =
 let
 nextLR = Bus_ns (state.stateLS.st = Pilot_Flying) and
 nextRL = Bus_ns (state.stateRS.st = Pilot_Flying)
 in
 state with <| stateLS := Side_ns(state.stateLS, ts, nextRL);
 stateLR := nextLR;
 stateRS := Side_ns(state.stateRS, ts, nextLR);
 stateRL := nextRL;
 pre_ts := ts |>`;

Figure 59 – Next State Definitions

3.5.2 Formal Verification of the Next-State Approach in HOL4

In this section we discuss formal verification in HOL4 of the specification described in the

previous section. We prove one property (“At Least One Side Flying”) as an example.

Proving properties of the system proceeds in a manner very similar to that used in PVS. We will

walk through the proof of the first property, R1: “At least one side shall be the pilot flying side.”

We first define Reachable_State. We then define Valid_State, which contains all system states

satisfying the following four predicates: Pre_TS_Consistency, Pre_OSPF_Consistency,

At_Least_One_Side_Flying, and Buses_Differ_When_Both_Sides_Flying. These definitions are

shown in Figure 60.

88

(*---*)
(* Reachable_State *)
(*---*)

val reachable = Hol_reln
 `Reachable Initial_System_State
 /\
 (!s1 s2 ts. Reachable s1 /\ (System_ns(s1,ts) = s2) ==> Reachable s2)`;

val (Reachable_rules,Reachable_induction,Reachable_cases) = reachable;

(*---*)
(* Definitions required by Valid_State *)
(*---*)

val Pre_TS_Consistency_def =
 Define
 `Pre_TS_Consistency s =
 (s.stateLS.pre_ts = s.pre_ts) /\ (s.stateRS.pre_ts = s.pre_ts)`;

val Pre_OSPF_Consistency_def =
 Define
 `Pre_OSPF_Consistency s =
 (s.stateLS.pre_ospf = s.stateRL) /\ (s.stateRS.pre_ospf = s.stateLR)`;

val At_Least_One_Side_Flying_def =
 Define
 `At_Least_One_Side_Flying s =
 (s.stateLS.st = Pilot_Flying) \/ (s.stateRS.st = Pilot_Flying)`;

val Buses_Differ_When_Both_Sides_Flying_def =
 Define
 `Buses_Differ_When_Both_Sides_Flying s =
 (s.stateLS.st = Pilot_Flying) /\ (s.stateRS.st = Pilot_Flying)
 ==> ~(s.stateLR = s.stateRL)`;

(*---*)
(* Valid_State *)
(*---*)

val Valid_State_def =
 Define
 `Valid_State s = Pre_TS_Consistency s /\
 Pre_OSPF_Consistency s /\
 At_Least_One_Side_Flying s /\
 Buses_Differ_When_Both_Sides_Flying s`;

Figure 60 – Valid State Definition

We wish to show the first property, R1: “At least one side shall be the pilot flying side.” We do

this in two steps. We show that all reachable states are valid, and then we show that all valid

states satisfy R1. First, we define a custom simplification set (shown in Figure 61), which we

89

will use in nearly all of our proofs. This simplification set expands the definitions in our

specification as needed and includes LET_THM to simplify complicated LET expressions.

val sys_ss = srw_ss() ++ rewrites
 [Pre_TS_Consistency_def,
 Pre_OSPF_Consistency_def,
 At_Least_One_Side_Flying_def,
 Buses_Differ_When_Both_Sides_Flying_def,
 Valid_State_def,
 Side_ns_def,
 Bus_ns_def,
 System_ns_def,
 RISE_def,
 Initial_System_State_def,
 Initial_Side_State_Primary_def,
 Initial_Side_State_Not_Primary_def,
 Initial_Bus_State_Primary_def,
 Initial_Bus_State_Not_Primary_def,
 LET_THM];

Figure 61 – Custom Simplification Set sys_ss

Using the sys_ss simplification set just defined, we can show that the initial state is valid and that

the next state of a valid state is valid. These two theorems are then used to show that all

reachable states are valid (see Figure 62).

val Valid_State_Base = ``Valid_State Initial_System_State``;

val Valid_State_Base_Thm = prove
(Valid_State_Base,
 RW_TAC sys_ss [] THEN METIS_TAC[]);

val Valid_State_Inductive =
 ``!s ts. Valid_State s ==> Valid_State (System_ns(s,ts))``;

val Valid_State_Inductive_Thm = prove
(Valid_State_Inductive,
 RW_TAC sys_ss [] THEN METIS_TAC[]);

val Reachable_States_Are_Valid = prove
(``!s. Reachable s ==> Valid_State s``,
 Induct_on `Reachable s`
 THEN METIS_TAC [Valid_State_Base_Thm,
 Valid_State_Inductive_Thm]);

Figure 62 – HOL4 Proof that all Reachable States are Valid

90

Next we show that all valid states satisfy R1: “At least one side shall be the pilot flying side.”

The proof is done using rewriting with the custom simplification set sys_ss as shown in

val R1_Thm = store_thm
 ("R1_Thm",
 ``!s. Valid_State s ==>
 (s.stateLS.st = Pilot_Flying) \/ (s.stateRS.st = Pilot_Flying)``,
 RW_TAC sys_ss []);

Figure 63 – HOL4 Proof that All Valid States Satisfy R1

We now put the two pieces together to prove that all reachable states satisfy R1.

val R1_Thm_Reachable = store_thm
 ("R1_Thm",
 ``!s. Reachable s ==>
 (s.stateLS.st = Pilot_Flying) \/ (s.stateRS.st = Pilot_Flying)``,
 METIS_TAC [R1_Thm, Reachable_States_Are_Valid]);

Figure 64 – HOL4 Proof that All Valid States Satisfy R1

3.5.3 Specification in HOL4 using a Streams Approach

Modeling components that operate over infinite streams of data can be approached in a variety of

ways. An approach that is well-suited to higher order logic represents a stream of elements,

where each element has type τ, by a function of type num→ τ. A device, or component, having a

number of ports is modeled as a predicate on the possible values of the ports. Since a port is a

stream, the behavior of the device is represented by a predicate that takes a bundle of streams and

returns true or false.

For example, a bus that acts as a unit delay can be represented as

 Bus (init,input,output) =
 (output 0 = init) /\
 (output (n+1) = input n)

Figure 65 – Bus Specification with Streams Approach

where input and output have type num→α, and init, the initial value of the stream, has type α.

The type variable α shows that the definition is polymorphic, and thus can be instantiated to yield

a bus over streams of any type.

91

The parallel composition of devices is achieved by conjunction of the corresponding predicates.

Combining devices by connecting them together is modeled by relational composition: the

resulting device is a predicate on the external ports, and internal connections are hidden by

existential quantification. Thus, we may obtain a bus that delays data by two clock ticks by

composing two buses:

 Two_Delay_Bus (init1,init2,input,output) =
 ?c. Bus (init1,input,c) /\
 Bus (init2,c,output)

Figure 66 – Two-Delay Bus Specification with Streams Approach

Suppose we want to say that there has been a "rise" at time t on a Boolean stream, written "RISE

stream t". At time zero there can be no rise. At any other time, a rise occurs at time t if the line is

low at time t-1 and high at time t. This can be directly modeled as follows:

 (RISE stream 0 = F) /\
 (RISE stream (t+1) = ~(stream t) /\ stream (t+1)

Figure 67 – ‘Rise’ Definition with Streams Approach

The RISE predicate has been defined by explicit case analysis on whether a number is zero or a

successor. An equivalent definition is the following:

RISE stream t = if t = 0 then F else ~(stream (t-1)) /\ stream t

Figure 68 – Alternate ‘Rise’ Definition with Streams Approach

This modeling style has been used successfully on a wide variety of system verifications [20]. It

is well suited to systems where all components share the same clock, but it can also be extended

to deal with asynchronous systems with handshakes, for example. It can express circuits with

feedback loops without having to solve tricky recursive equations.

3.5.3.1 Properties
Expressing properties of systems modeled in this style involves asserting that the behaviors of a

device, or implementation, are contained within the behaviors allowed by a specification. Using

the fact that subset is defined by implication, we obtain the general recipe:

92

 implementation ==> specification

This can also be read as "anything that models the implementation is also a model of the

specification". Note that there is a residual question to be dealt with, namely one would want to

show that there is indeed a model of the implementation. However, when working with

implementations imported into logic from an existing design, this step is often skipped over.

3.5.3.2 System Model
We will proceed in a top-down fashion. The flight guidance system can be directly modeled as

follows:

System (L,R,Transfer_Switch) =
 ?w1 w2.
 Side(T,Transfer_Switch,w2,L) /\ (* Left Side *)
 Side(F,Transfer_Switch,w1,R) /\ (* Right Side *)
 Bus(L,w1) /\ (* LR_Bus *)

 Bus(R,w2) (* RL_Bus *)

Figure 69 – System Specification with Streams Approach

The external ports of the system are L, R, and Transfer_Switch. There are also two internal buses

w1, w2 that connect the two sides. The left side is initialized with T and the right side with F,

setting the initial pilot flying side. Both sides take the transfer switch as input and connect to the

buses and the external ports L and R.

Each Side component implements some decision-making logic. This is defined as follows:

 Side (Initial_Pilot_Flying_Side : bool,
 Transfer_Switch : num->bool,
 Other_Side_Pilot_Flying : num->bool,
 Pilot_Flying_Side : num->bool)
 =
 (Pilot_Flying_Side 0 = Initial_Pilot_Flying_Side) /\
 (!t. Pilot_Flying_Side (SUC t) =
 if (Pilot_Flying_Side t = T) /\
 RISE Other_Side_Pilot_Flying (SUC t)
 then F
 else if (Pilot_Flying_Side t = F) /\
 RISE Transfer_Switch (SUC t)
 then T
 else Pilot_Flying_Side t)

Figure 70 – Side Specification with Streams Approach

93

This tiny state machine is defined by case analysis on whether the system is at its initial step

(time 0) or otherwise.

We have specified the buses as pure unit delays, omitting to specify the output at time zero:

Bus (instream:num->bool, outstream:num->bool)
 =
 !t. outstream (SUC t) = instream t

Figure 71 – Final Bus Specification for Streams Approach

In an earlier formalization of the system, initial values were specified for the buses, but the

proofs revealed that the proof succeeded no matter what the initial values were set to. By

omitting initial values, the statements and proofs about the system become more general, since

any possible initial values will be acceptable for the purposes of proof.

3.5.4 Formal Verification of the Streams Approach in HOL4

We proved two facts about the system in HOL4. First, we proved that the L port is high at time

zero. The statement of this is

 System(L,R,Transfer_Switch) ==> L(0)

Figure 72 – Statement of R4 Property

and the proof is quite straightforward, as we discuss below. Next, we proved that at least one side

is the pilot flying side:

System(L,R,Transfer_Switch) ==> !t. L(t) \/ R(t)

Figure 73 – Statement of R1 Property

This proof is more challenging but still relatively small.

3.5.4.1 Left at Time Zero
This proof is straightforward. We merely simplify with the system definitions and then reduce.

94

 val Left_at_Time_Zero = prove
 (``System(L,R,Transfer_Switch) ==> L(0)``,
 RW_TAC std_ss [System_def, Side_def,Bus_def]);

Figure 74 – Proof of R4 Property for Streams Approach

3.5.4.2 At Least One Side Flying
This property is more challenging. It requires induction and the system state at time t can depend

on the state at times t-1 and t-2, which means that complete induction is needed. The proof then

proceeds by case analysis on whether the system is at step 0, 1, or some arbitrary number greater

than one. The base cases are simple to prove by simplification with the definitions of the system

components. The inductive hypothesis yields 4 possible combinations for values of the two

Pilot_Flying_Side ports at the two previous steps in the computation. Some basic reasoning

finishes the proof.

The full proof of this property, once packaged up, is shown in Figure 75.

 val At_Least_One_Side_Flying =
 Count.apply prove
 (``System(L,R,Transfer_Switch) ==> !t. L(t) \/ R(t)``,
 DISCH_TAC
 THEN completeInduct_on `t`
 THEN `(t = 0) \/ (t = SUC 0) \/ ?k. t = SUC (SUC k)`
 by METIS_TAC [arithmeticTheory.num_CASES]
 THEN FULL_SIMP_TAC kstd_ss [System_def,Bus_def,Side_def,RISE_def]
 THEN `(L k \/ R k) /\ (L (SUC k) \/ R (SUC k))`
 by METIS_TAC [prim_recTheory.LESS_SUC_SUC]
 THEN METIS_TAC[]);

Figure 75 – Proof of R1 Property for Streams Approach

Elapsed time was about a fifth of a second. In the course of the proof, no axioms were declared,

no definitions were made, and no theories were brought in from disk. Approximately 41,000

primitive inference steps were required to achieve the proof.

95

4 Case Study: Model Checking
This chapter illustrates the use of model checking to verify the correctness of the mode logic of a

single side of the FGS. The FGS mode logic, while quite complex, consists only of Boolean

inputs and outputs. This makes it ideally suited for formal verification with a wide range of

model checkers, including implicit state BDD-based model checkers such as NuSMV as well as

Satisfiability Modulo Theories (SMT)-based model checkers such as Kind. While models

consisting only of Boolean logic are well-suited for model checking, most model checkers can

also handle models with enumerated types and small integers. SMT-based model checkers such

as Kind can also handle models with real numbers if they do not involve nonlinear arithmetic.

The rest of this chapter is organized as follows. Section 4.1 provides an overview of the FGS

mode logic. Section 4.2 describes the software verification plan for the mode logic, identifying

the life-cycle data items to be produced, the DO-178C objectives to be satisfied, and tool

qualification issues. Section 4.3 provides a detailed specification of the mode logic as a

MATLAB Simulink/Stateflow model. Section 4.4 discusses the formal verification of the mode

logic using the Kind model checker and Simulink Design Verifier™.

4.1 Mode Logic Overview

Modes are defined by Leveson as mutually exclusive sets of system behaviors [18]. Specifically

as it relates to the FGS, Advisory Circular AC/ACJ 25.1329 defines a mode as a system

configuration that corresponds to a single (or set of) FGS behavior(s) [5]. In the FGS, the modes

are actually abstractions of their associated flight control law and reflect the current state of the

flight control law. There are three different types of modes in the FGS mode logic.

The simplest modes (non-arming modes) have only two actual states, CLEARED and

SELECTED, as shown in Figure 76. A mode is said to be selected if it has been manually

requested by the flight crew or if it has been automatically requested by a subsystem such as the

FMS, otherwise it is said to be cleared. Non-arming modes become active immediately upon

selection with its associated flight control law providing guidance commands to the FD and, if

engaged, the AP. When cleared, the mode’s associated flight control law is non-operational, i.e.,

it does not generate any outputs.

96

ACTIVECLEARED

Figure 76 – A Non-Arming Mode

Some modes must first be armed to become active when a capture condition is met, such as the

acquisition of a navigation source or proximity to a target reference such as a desired altitude.

Such modes have three states as shown in Figure 77. The two states ARMED and ACTIVE are

sub-states of the SELECTED state, i.e., when the mode is armed or active, it is also selected.

While in the ARMED state, the mode’s flight control law is not generating guidance commands

for the FD or AP, but it may be accepting inputs, accumulating state information, and helping to

determine if the capture condition is met. Once the capture condition is met, the mode transitions

to the ACTIVE state and its flight control law begins generating guidance for the FD and AP.

Note that in most arming modes the only way to exit the ACTIVE state is to deselect the mode,

i.e., it is not usually possible to revert directly from the ACTIVE state to the ARMED state.

ARMED ACTIVE

SELECTEDCLEARED

Figure 77 – An Arming Mode

Some modes also distinguish between capturing and tracking the target. Such a mode is shown in

Figure 78. Once in the ACTIVE state, such a mode’s flight control law first captures the target by

maneuvering the aircraft to align it with the navigation source or reference. Once correctly

aligned, the mode transitions to the tracking state in which it holds the aircraft on the target. Both

the CAPTURE and TRACK states are sub-states of the ACTIVE state and the mode’s flight

control law is active in both states, i.e., generating guidance commands for the FD and AP. Note

that the only way to exit the ACTIVE state is to deselect the mode, i.e., it is not usually possible

to revert directly from the TRACK state to the CAPTURE state or from the ACTIVE state to the

ARMED state.

97

ARMED

ACTIVE

TRACK

CAPTURE

SELECTEDCLEARED

Figure 78 – A Capture/Track Mode

The FGS modes are organized into the lateral modes, which control the behavior of the aircraft

about the longitudinal, or roll, axis of the aircraft and the vertical modes, which control the

behavior of the aircraft about the lateral, or pitch, axis of the aircraft. The lateral modes in this

example include Roll Hold, Lateral Navigation, Lateral Approach and Lateral Go Around. The

vertical modes include Pitch Hold, Vertical Speed, Flight Level Change, Altitude Hold, Altitude

Select, Vertical Approach and Vertical Go Around.

The mode logic of the FGS consists of the specification of these individual modes and the rules

for transitioning between them. To provide proper guidance of the aircraft, these modes are

tightly synchronized so that only a small portion of their total state space is actually reachable.

For example, since at least one lateral and one vertical mode must be active and providing

guidance whenever the FD is displayed or the AP is engaged, one mode is designated as the

basic mode for each axis. The basic mode is automatically activated if no other mode is active

for that axis. In this example, the basic modes are Roll Hold and Pitch Hold. In similar fashion,

only one lateral mode and one vertical mode can provide guidance to the FD and the AP at the

same time, so the mode logic must ensure that at most one lateral and one vertical mode are ever

active at the same time.

Other constraints enforce relationships between the modes that are dictated by the characteristics

of the aircraft and the airspace. For example, Vertical Approach mode is not allowed to become

active until Lateral Approach mode has become active to ensure that the aircraft is horizontally

centered on the localizer before tracking the glideslope. As another example, if the pilot cancels

a landing and performs a go around, Lateral and Vertical Go Around modes must both be active.

98

Still other relationships must be maintained between the mode logic and the surrounding

systems. For example, the AP should never be engaged when Lateral and Vertical Go Around

modes are active since the pilot should be manually flying the aircraft during a go around.

While verifying the behavior of a single mode is straightforward, ensuring that all the

relationships between the modes and the aircraft are always maintained can be very complex.

Moreover, since many of these relationships are of the form “the mode logic shall always ensure

relationship x” they cannot be fully verified with testing since testing can only verify a small

sample of the total inputs and states. In contrast, model checking is an ideal way to verify these

relationships. All of the relationships described above and many others are formally stated and

verified in Section 4.4.

4.2 Software Verification Plan

In this case study, we will use model checking to perform verification activities associated with

the outputs of the software design process, focusing on the objectives of Table A-4 in DO-178C

and Table FM.A-4 in DO-333. The purpose of these verification activities is to detect any errors

that may have been introduced during the software design process (DO-178C Section 5.2).

Specifically, this case study will verify the low-level software requirements for the mode logic of

a side of the FGS and show that the software architecture and the low-level software

requirements comply with the high-level software requirements.

4.2.1 Formal Specification and Verification Tools

The low-level software requirements and software architecture will be specified as MATLAB

Simulink and Stateflow models. These models will be translated into the Lustre formal

specification language using a proprietary Rockwell Collins tool. Lustre is the input language of

the JKind SMT-based model checker [14]. JKind is a Java implementation of the Kind model

checker developed by the University of Iowa [9].

Kind and JKind make use of SMT (Satisfiability Modulo Theories) solvers and the k-induction

inference principle. SMT solvers are tools for determining the satisfiability of logical

expressions containing a finite number of terms. A bounded model checking problem (one that

considers only a finite number of steps) can be mapped to a satisfiability problem. The k-

induction principle is then used to extend the analysis to traces of infinite length.

99

The high-level software requirements will be specified as Lustre predicates and merged with the

Lustre specification of the low-level requirements. The low-level software requirements and

software architecture will be shown to comply with the high-level requirements using JKind.

To provide a commercially available example, the MATLAB Design Verifier model checker will

also be used to show that the low-level software requirements and the software architecture

comply with a subset of the high-level requirements. These high-level requirements will be

specified using both the MATLAB Simulink graphical and textual notations.

4.2.2 Life Cycle Data Items

Life cycle data items for this example are specified using a variety of notations and tools.

High-Level Software Requirements The high-level software requirements are specified in two

different ways. For verification with the JKind SMT-based model checker, they are

specified as predicates in the Lustre formal specification language in the file

Mode_Logic.lustre-props. For verification with MATLAB Simulink Design Verifier,

they are specified using both the Simulink graphical and textual notation in the file

Mode_Logic_Props.mdl. Mode_Logic_Props.mdl also refers to other modeling files,

including Mode_Logic_Props_lib.mdl which contains Simulink blocks frequently used

by Mode_Logic_Props.mdl, and mode_logic_inputs.mat, mode_logic_outputs.mat and

no_higher_event.mat which contain Simulink bus definitions for the system inputs,

outputs and prioritized events.

Low-Level Software Requirements The low-level software requirements are specified as

MATLAB Simulink/Stateflow models Mode_Logic.mdl and Mode_Logic_lib.mdl.

Software Architecture The software architecture is specified as MATLAB Simulink/Stateflow

models in the files Mode_Logic.mdl and Mode_Logic_lib.mdl.

4.2.3 Objectives to Be Satisfied

The DO-178C and DO-333 objectives to be satisfied through model checking are summarized in

Table 2. A more detailed discussion of how each objective is satisfied is provided in this section.

Objective A-4.1 – Low-level requirements comply with high-level requirements. This objective is

demonstrated by proving with the JKind model checker or Design Verifier that the high-level

100

software requirements are implemented by the low-level software requirements and the software

architecture.

Objective A-4.2 – Low-level requirements are accurate and consistent. This objective is met by

modeling the low-level requirements and the software architecture in the executable model

language Simulink/Stateflow and by translating into the formal specification language Lustre.

Objective A-4.4 – Low-level requirements are verifiable. This objective is met by modeling the low-

level requirements and the software architecture in the executable model language

Simulink/Stateflow and by translating that model into the formal specification language Lustre.

Objective A-4.5 – Low-level requirements conform to standards. This objective is partially met by

modeling the low-level requirements and the software architecture in the Simulink/Stateflow

design language. Commonly used blocks are provided in a library of blocks approved for use on

the project. Models can be automatically checked with the MATLAB Model Advisor for

conformance with some project defined standards. Conformance to any remaining standards can

be shown by manual review of the graphical models.

Objective A-4.6 – Low-level requirements are traceable to high-level requirements. This objective is

partially met by proving with the JKind model checker or Design Verifier that the high-level

software requirements are implemented by the low-level software requirements and the software

architecture, demonstrating that all high-level requirements have been developed into low-level

requirements. Demonstrating that all low-level requirements can be traced to high-level

requirements is accomplished through manual review.

Objective A-4.7 – Algorithms are accurate. This objective is met by modeling the low-level

requirements in Simulink/Stateflow and proving that the high-level software requirements are

implemented by the low-level software requirements and the software architecture.

101

Table 2 – Summary of Objectives Satisfied by Model Checking

Objective Description A B C D Notes

A.4.1 Low-level requirements comply
with high-level requirements.

■ ■ ■ Established by proof that the high-level
requirements are implemented by the low-level
requirements and the software architecture.

A.4.2 Low-level requirements are
accurate and consistent.

■ ■ ■ Established by modeling using an executable
language and translation to a formal specification
language.

A.4.3 Low-level requirements are
compatible with target computer.

 Not addressed

A.4.4 Low-level requirements are
verifiable.

■ ■ Established by modeling using an executable
language and translation to a formal specification
language.

A.4.5 Low-level requirements conform
to standards.

□ □ □ Established by use of Simulink/Stateflow design
language.

A.4.6 Low-level requirements are
traceable to high-level
requirements.

□ □ □ Established by verification of the high-level
requirements.

A.4.7 Algorithms are accurate. ■ ■ ■ The accuracy of the mode logic is established by
model checking.

A.4.8 Software architecture is
compatible with high-level
requirements.

■ ■ ■ Established by proof that the high-level
requirements are implemented by the low-level
requirements and the software architecture.

A.4.9 Software architecture is
consistent

■ ■ ■ Established by modeling using an executable
language and translation to a formal specification
language.

A.4.10 Software architecture is
compatible with target computer.

 Not addressed

A.4.11 Software architecture is verifiable. ■ ■ Established by modeling using an executable
language and translation to a formal specification
language.

A.4.12 Software architecture conforms to
standards.

□ □ □ Partially established by use of Simulink/Stateflow.

A.4.13 Software partitioning integrity is
confirmed.

 Partitioning integrity has been established using
formal methods for several commercial operating
systems. This is not addressed in the current case
study.

FM.A-4.14 Formal analysis cases and
procedures are correct.

■ ■ ■ Established by review

FM.A-4.15 Formal analysis results are
correct and discrepancies
explained.

■ ■ ■ Established by review

FM.A-4.16 Requirements formalization is
correct.

■ ■ ■ Established by review

FM.A-4.17 Formal method is correctly
defined, justified, and appropriate.

■ ■ ■ ■ Established by review

■ Full credit claimed □ Partial credit claimed Satisfaction of objective is at applicant’s discretion

102

Objective A-4.8 – Software architecture is compatible with the high-level requirements. This

objective is demonstrated by proving with the JKind model checker or Design Verifier that the

high-level software requirements are implemented by the low-level software requirements and

the software architecture.

Objective A-4.9 – Software architecture is consistent. This objective is met by modeling the low-

level requirements and the software architecture in the executable modeling language

Simulink/Stateflow and by translating that model into the formal specification language Lustre.

Objective A-4.11 – Software architecture is verifiable. This objective is met by modeling the low-

level requirements and the software architecture in the executable model language

Simulink/Stateflow and by translating that model into the formal specification language Lustre.

Objective A-4.12 – Software architecture conforms to standards. This objective is partially met by

modeling the low-level requirements and the software architecture in the Simulink/Stateflow

design language. Commonly used blocks are provided in a library of blocks approved for use on

the project. Models can be automatically checked with the MATLAB Model Advisor for

conformance with some project defined standards. Conformance to any remaining standards can

be shown by manual review of the graphical models.

Objective FM.A-4.14 Formal analysis cases and procedures are correct. This objective is met

through review to ensure that the analyses and procedures satisfy the objectives A-4.1 through

A-4.12 for which credit is claimed. There are no assumptions associated with the

Simulink/Stateflow models to be checked. The model contains only Boolean and enumerated

types, has only Boolean inputs and outputs, and assumes no constraints on its inputs.

Objective FM.A-4.15 Formal analysis results are correct and discrepancies explained. This

objective is met through review to ensure that all formal properties are proven. Many of the

properties had to be revised before they could be proved. Typically, these were due to omissions

in the original requirements or oversights introduced by the informality of textual requirements.

For example, the requirement that “vertical approach mode shall be active only if lateral

approach mode is active” could not be implemented with the chosen software architecture and

had to be relaxed to allow lateral approach mode to be inactive for a single step before vertical

approach mode became inactive. Each such requirement change or discrepancy was explained

and fed back into the safety assessment process for review.

103

Objective FM.A-4.16 Requirements formalization is correct. This objective is met through review to

ensure that the formal statement of a requirement is a conservative representation of the informal

requirement. In the case where the JKind model checker is used for verification, the translation

of the Simulink/Stateflow model to Lustre must either be checked by review or by qualification

of the translation tool.

Objective FM.A-4.17 Formal method is correctly defined, justified, and appropriate. This objective

is met through a review to ensure:

a. All notations used for formal analysis are verified to have precise, unambiguous,

mathematically defined syntax and semantics. The formal notation used was a subset of

Simulink/Stateflow that was automatically translated to the Lustre formal specification

language.

b. The soundness of each formal analysis method is justified. The JKind model checker is

based k-induction, as is the Kind model checker upon which it is based. Soundness of k-

induction is straightforward and is discussed in [9] and its references. Since the Design

Verifier model checker is a commercial product, less information is available about the

underlying methodology. Soundness concerns would have to be addressed by the vendor

as part of a qualification support kit.

c. Assumptions related to each formal analysis are described and justified. Since this

example contains only Boolean and enumerated types, no assumptions related to the

formal analysis (e.g., approximating floating-point numbers as reals) were necessary.

4.2.4 Tool Qualification Issues

As was the case for the theorem proving case study, for the certification objectives and mode of

tool use that we are considering in this case study, Criteria 3 applies. This means that for all

airborne software levels the model checkers would need to be qualified to TQL-5. Model

checking does not (in general) produce independently checkable output. This means that the

model checker must be qualified if its outputs are to be used for certification credit.

In addition to the development artifacts that must be provided, tool qualification requires that

Tool Operational Requirements (TOR) be defined. The TORs describe what the tool claims to

do relative to the certification objectives. Then a comprehensive test suite must be developed to

104

show that those requirements are satisfied over an appropriate range of tool inputs. For a model

checker, this would mean producing a collection of models and properties that span the full range

of constructs found in the model and property specification language(s) of the tool. These

example models would need to contain property errors which the model checker would have to

be shown to identify correctly.

We are not aware of any existing efforts to qualify an academic open source model checker like

Kind. However, there is no reason that this could not be accomplished following the process

outlined above, in a manner similar to that carried out for any other TQL-5 verification tool.

Our use of Kind relied upon the Rockwell Collins translation framework to generate Lustre input

from the Simulink/Stateflow model. There are two ways that this might be handled with respect

to certification/qualification concerns. The first approach would be to consider the translation

tool and the model checker to be a single tool that acts directly on the Simulink/Stateflow model

and doesn’t directly expose the intermediate Lustre translation. The TORs and qualification test

suite would be written to be consistent with this interface. The second approach would be to

consider the translation and model checking steps separately. The model checker would be

qualified on its own based on the Lustre input language. The translation step would then be

treated as part of the Low-Level Requirements formalization process (Objective FM.A-4.16).

The objective would be to show that the Lustre output is a conservative representation of the

Simulink/Stateflow input model. This could be satisfied either through a manual review of the

input and output, or by qualification of the translation tool to automate this function.

For commercial tools like Simulink Design Verifier, some support from the tool vendor may be

needed to achieve qualification. As of this time, MathWorks has not provided a qualification kit

for the Design Verifier. However, there is no reason in principle, that this could not be done.

The general outline of qualification should be similar to that of the Polyspace abstract

interpretation tool (described in section 5.2.3 and [19]).

4.3 Specification of the Mode Logic

This section describes the mode logic in detail as a MATLAB Simulink/Stateflow model. The

top level Simulink diagram is shown in Figure 79.

105

29
VGA_Active

28
VGA_Selected

27
VAPPR_Active

26
VAPPR_Selected

25
ALTSEL_Track

24
ALTSEL_Active

23
ALTSEL_Selected

22
ALT_Active

21
ALT_Selected

20
FLC_Active

19
FLC_Selected

18
VS_Active

17
VS_Selected

16
PITCH_Active

15
PITCH_Selected

14
LGA_Active

13
LGA_Selected

12
LAPPR_Active

11
LAPPR_Selected

10
NAV_Active

9
NAV_Selected

8
HDG_Active

7
HDG_Selected

6
ROLL_Active

5
ROLL_Selected

4
Active_Side

3
Independent_Mode

2
FD_On

1
Modes_OnPilot_Flying_Side

Is_AP_Engaged

Overspeed

Is_Offside_FD_On

Is_Offside_VAPPR_Active

Is_Offside_VGA_Active

Pilot_Flying_Transfer

When_AP_Engaged

SYNC_Switch_Pressed

FD_Switch_Pressed

HDG_Switch_Pressed

NAV_Switch_Pressed

APPR_Switch_Pressed

GA_Switch_Pressed

VS_Switch_Pressed

FLC_Switch_Pressed

ALT_Switch_Pressed

VS_Pitch_Wheel_Rotated

ALTSEL_Target_Changed

NAV_Capture_Condition_Met

LAPPR_Capture_Condition_Met

ALTSEL_Capture_Condition_Met

ALTSEL_Track_Condition_Met

VAPPR_Capture_Condition_Met

Selected_NAV_Source_Changed

Selected_NAV_Frequency_Changed

Modes_On

FD_On

Independent_Mode

Active_Side

ROLL_Selected

ROLL_Active

HDG_Selected

HDG_Active

NAV_Selected

NAV_Active

LAPPR_Selected

LAPPR_Active

LGA_Selected

LGA_Active

PITCH_Selected

PITCH_Active

VS_Selected

VS_Active

FLC_Selected

FLC_Active

ALT_Selected

ALT_Active

ALTSEL_Selected

ALTSEL_Active

ALTSEL_Track

VAPPR_Selected

VAPPR_Active

VGA_Selected

VGA_Active

Flight_Modes

Is_Pilot_Flying_Side

AP_Engaged

SYNC_Switch

FD_Switch

HDG_Switch

NAV_Switch

APPR_Switch

GA_Switch

VS_Switch

FLC_Switch

ALT_Switch

VS_Pitch_Wheel_Rotated

ALTSEL_Target_Changed

NAV_Capture_Cond_Met

LAPPR_Capture_Cond_Met

ALTSEL_Capture_Cond_Met

ALTSEL_Track_Cond_Met

VAPPR_Capture_Cond_Met

When_Pilot_Fllying_Transfer_Seen

When_AP_Engaged_Seen

When_SYNC_Switch_Pressed_Seen

When_FD_Switch_Pressed_Seen

When_HDG_Switch_Pressed_Seen

When_NAV_Switch_Pressed_Seen

When_APPR_Switch_Pressed_Seen

When_GA_Switch_Pressed_Seen

When_VS_Switch_Pressed_Seen

When_FLC_Switch_Pressed_Seen

When_ALT_Switch_Pressed_Seen

When_VS_Pitch_Wheel_Rotated_Seen

When_ALTSEL_Target_Changed_Seen

If_NAV_Capture_Cond_Met_Seen

If_LAPPR_Capture_Cond_Met_Seen

If_ALTSEL_Capture_Cond_Met_Seen

If_ALTSEL_Track_Cond_Met_Seen

If_VAPPR_Capture_Cond_Met_Seen

Event_Processing

24
Selected_Nav_Frequency_Changed

23
Selected_Nav_Source_Changed

22
VAPPR_Capture_Cond_Met

21
ALTSEL_Track_Cond_Met

20
ALTSEL_Capture_Cond_Met

19
LAPPR_Capture_Cond_Met

18
NAV_Capture_Cond_Met

17
ALTSEL_Target_Changed

16
VS_Pitch_Wheel_Rotated

15
ALT_Switch

14
FLC_Switch

13
VS_Switch

12
GA_Switch

11
APPR_Switch

10
NAV_Swiitch

9
HDG_Switch

8
FD_Switch

7
SYNC_Switch

6
Is_Offside_VGA_Active

5
Is_Offside_VAPPR_Active

4
Offside_FD_On

3
Overspeed

2
Is_AP_Engaged

1
Pilot_Flying_Side

Figure 79 – Mode Logic Top Level

As can be seen in Figure 79, the mode logic takes several Boolean valued inputs and outputs

several Boolean values summarizing the status of the system modes. The mode logic has two

subsystems, Event Processing and Flight Modes. Event Processing outputs Boolean events

(signals that are true for at most one step) and Boolean conditions (signals that can be true for

several steps). It establishes a priority among the incoming events and conditions and ensures

106

that if multiple events or conditions occur on the same step, only the higher priority events and

conditions are output to the Flight Modes. Event Processing is discussed in more detail in

Section 4.3.2.

4.3.1 Flight Modes

The Flight Modes subsystem of Figure 79 is the heart of the mode logic. As shown in Figure 80,

it is organized into four parallel state machines, FD, ANNUNCIATIONS, LATERAL, and

VERTICAL,

FD
1

ANNUNCIATIONS
2

Flight_Modes

LATERAL
3

VERTICAL
4

Figure 80 – Flight Modes Subsystem

These four state machines execute in the order indicated by the number in each state machine in

Figure 80. The FD state machine determines whether the FD is displayed on the PFD, while the

ANNUNCIATIONS state machine determines whether the mode annunciations are displayed on

the PFD. The LATERAL and VERTICAL state machines are further decomposed into the state

machines for the lateral and vertical modes of the FGS.

107

4.3.1.1 FD
The FD state machine determines whether the FD associated with this FGS channel is displayed

on the PFD. Its logic is shown in Figure 81.

[Turn_FD_On()]

FD

ON
en: FD_On = true

ex: FD_On = false

OFF
[Turn_FD_Off()]

Figure 81 – FD Mode Logic

The FD is either OFF or ON and always starts in the OFF state. Whether the FD transitions from

the OFF state to the ON state is determined by the Turn_FD_On truth table shown in Table 3. As

specified in that table, the FD should be turned on if the FD switch is pressed, the AP is engaged,

an overspeed condition exists, a lateral mode is manually selected, a vertical mode is manually

selected, or there is a pilot flying transfer to this side of the aircraft while the mode annunciations

are on.

Table 3 – Turn FD On

Condition 1 2 3 4 5 6 7
FD_Switch_Pressed T - - - - - -
When_AP_Engaged - T - - - - -
Overspeed - - T - - - -
Lateral_Mode_Manually_Selected() - - - T - - -
Vertical_Mode_Manually_Selected() - - - - T - -
Pilot_Flying_Transfer - - - - - T -
Pilot_Flying_Side - - - - - T -
Modes_On - - - - - T -
 TRUE TRUE TRUE TRUE TRUE TRUE FALSE

Note that the FD state machine sets the mode logic output FD_On of the mode logic to true when

it enters the ON state and to false when it exits the ON state. All of the FGS outputs are turned

on and off in similar fashion by other state machines.

108

The truth table for when a lateral mode is manually selected is shown in Table 4. A lateral mode

is manually selected when the HDG, NAV, APPR, or GA switch is pressed.

Table 4 – Lateral Mode Manually Selected

Condition 1 2 3 4 5
HDG_Switch_Pressed T - - - -
NAV_Switch_Pressed - T - - -
APPR_Switch_Pressed - - T - -
GA_Switch_Pressed - - - T -
 TRUE TRUE TRUE TRUE FALSE

The truth table for when a vertical mode is manually selected is shown in Table 5. A vertical

mode is manually selected when the VS, FLC, ALT, APPR, or GA switch is pressed or when the

VS Pitch Wheel is rotated while Vertical Speed (VS) and Vertical Approach (VAPPR) modes

are not active and an overspeed condition does not exist.

Table 5 – Vertical Mode Manually Selected

Condition 1 2 3 4 5 6 7
VS_Switch_Pressed T - - - - - -
FLC_Switch_Pressed - T - - - - -
ALT_Switch_Pressed - - T - - - -
APPR_Switch_Pressed - - - T - - -
GA_Switch_Pressed - - - - T - -
VS_Pitch_Wheel_Rotated - - - - - T -
VS_Active - - - - - F -
VAPPR_Active - - - - - F -
Overspeed - - - - - F -
 TRUE TRUE TRUE TRUE TRUE TRUE FALSE

The conditions for turning the FD off are show in Table 6. The FD should be turned off when

the FD switch is pressed provided an overspeed condition does not exist.

Table 6 – Turn FD Off

Condition 1 2
FD_Switch_Pressed T -
Overspeed F -
 TRUE FALSE

109

4.3.1.2 ANNUNCIATIONS
The ANNUNCIATIONS state machine determines whether the mode annunciations are

displayed on the PFD. Its logic is shown in Figure 82.

[Turn_Annunciations_On()]

ANNUNCIATIONS

ON
en: Modes_On = true

ex: Modes_On = false

OFF
en: Modes_On = false

ex: Modes_On = true [Turn_Annunciations_Off()]

Figure 82 – ANNUNCIATIONS Mode Logic

The mode annunciations are either OFF or ON and always start in the OFF state. Whether the

annunciations are displayed is determined by the Turn_Annunciations_On truth table shown in

Table 7. The mode annunciations are turned on whenever the AP is engaged, the offside FD (i.e.,

the FD on the other side of the aircraft) is turned on, or the FD on this side of the aircraft is

turned on.

Table 7 – Turn Annunciations On

Condition 1 2 3 4
Is_AP_Engaged T - - -
Is_Offside_FD_On - T - -
FD_On - - T -
 TRUE TRUE TRUE FALSE

The logic for turning the mode annunciations off is given in the truth table of Table 8. The mode

annunciations are turned off when the AP is not engaged, the offside FD is not displayed, and the

onside FD is not displayed.

Table 8 – Turn Annunciations Off

Condition 1 2
Is_AP_Engaged F -
Is_Offside_FD_On F -
FD_On F -

110

Actions TRUE FALSE

4.3.1.3 LATERAL
The lateral modes control the behavior of the aircraft about the longitudinal, or roll, axis. The

organization of the LATERAL state machine is shown in Figure 83.

LATERAL

Update_Activated_Modes

Lateral_Mode_Active

New_Lateral_Mode_Activated

HDG 1

NAV
2

LAPPR
3

LGA 4

ROLL 5

Figure 83 – LATERAL Modes

The individual lateral modes of HDG, NAV, LAPPR, LGA, and ROLL are implemented as

parallel state machines that execute in the order shown in Figure 83. Since exactly one lateral

mode should be active and providing guidance to the FD and AP at a time, the LATERAL state

machine defines two truth tables, Lateral_Mode_Active and New_Lateral_Mode_Activated, and

a function, Update_Activated_Modes, to support this synchronization.

111

The Lateral_Mode_Active truth table is used to make the default lateral mode Roll Hold (ROLL)

active if no other lateral mode is active and to deactivate ROLL mode when another lateral mode

becomes active. Its specification is given in the description of ROLL mode in Section 4.3.1.3.5.

The New_Lateral_Mode_Activated truth table is used to deactivate the active lateral mode when

a new lateral mode becomes active. Its logic is shown in Table 9.

Table 9 – New Lateral Mode Activated

Condition 1 2 3 4 5
HDG_Will_Be_Activated T - - - -
NAV_Will_Be_Activated - T - - -
LAPPR_Will_Be_Activated - - T - -
LGA_Will_Be_Activated - - - T -
 TRUE TRUE TRUE TRUE FALSE

While the intent of New_Lateral_Mode_Activated is straightforward – it should return true if a

new lateral mode will be activated during this step - its implementation is actually quite subtle.

Invoking it during the execution of the currently active mode to determine if that mode should

deactivate may depend on whether a mode that has not yet executed will become active. The

recommended way to synchronize parallel state machines in Stateflow is to “wake-up” a mode

machine that executed earlier through the use of directed broadcast events. Unfortunately, this

leads to a model that is not well-suited for model checking.5

Instead, we require that each mode implements a truth table Will_Be_Activated that predicts if

that mode will become active based on its current state and its inputs. At the start of each step of

the LATERAL mode machine, these values are computed and stored in local state variables by

the Update_Activated_Modes function. These stored values are then used in the

New_Lateral_Mode_Activated truth table shown in Table 9 so that the current active lateral

mode knows whether to deactivate itself regardless of its order of execution.

5 For model checking, the state transition relation must be “unwound” into a static description of all possible system
transitions. Each directed broadcast significantly increases the complexity of this description and the interleaving of
all possible sequences of directed broadcasts results in a combinatorial explosion in the size of the state transition
relation.

112

4.3.1.3.1 Heading Select (HDG)
Heading Select (HDG) mode turns the aircraft to the selected heading displayed on the PFD and

then holds the aircraft to that heading. It is a non-arming mode that can be selected to become the

active lateral mode at any time. Its logic is shown in Figure 84.

ACTIVE
en: HDG_Active = true

ex: HDG_Active = false

SELECTED
en: HDG_Selected = true

ex: HDG_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

HDG

Figure 84 – Heading Select (HDG) Mode

HDG mode starts in the CLEARED state. It transitions into the SELECTED state when the

HDG_Select truth table shown in Table 10 evaluates to true, i.e., when the HDG switch is

pressed. On entry to the SELECTED state it sets the HDG_Selected output to true.

Table 10 – HDG Select

Condition 1 2
HDG_Switch_Pressed T -
 TRUE FALSE

Since it is not an arming mode, it immediately transitions into the ACTIVE state. On entry to the

ACTIVE state it sets the HDG_Active output to true. HDG mode returns to the CLEARED state

when the HDG_Clear truth table shown in Table 11 evaluates to true, i.e., when the HDG

switch is pressed, when there is a pilot flying transfer, or when the mode annunciations are

turned off. Note that on exit from the ACTIVE state it sets the HDG_Active output to false and

on exit from the SELECTED state it sets the HDG_Selected output to false.

113

Table 11 – HDG Clear

Condition 1 2 3 4
HDG_Switch_Pressed T - - -
Pilot_Flying_Transfer - T - -
Modes_On - - F -
 TRUE TRUE TRUE FALSE

HDG mode will also transition to the CLEARED state if another mode becomes active on this

step (i.e., the transition guarded by New_Lateral_Mode_Activated is taken). In similar fashion, if

HDG mode becomes active, the current active lateral mode must deactivate itself. The

Will_Be_Activated truth table that supports this synchronization for HDG mode is shown in

Table 12.

Table 12 – HDG Will Be Activated

Condition 1 2
in(CLEARED) T -
Select() T -
 TRUE FALSE

4.3.1.3.2 Lateral Navigation (NAV)
Lateral Navigation (NAV) mode captures and tracks lateral guidance for en route navigation and

non-precision approaches. It is an arming mode that must be armed before it can become active.

Its logic is shown in Figure 85.

ARMED

ACTIVE
en: NAV_Active = true

ex: NAV_Active = false

SELECTED
en: NAV_Selected = true

ex: NAV_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

NAV

[Capture()]

Figure 85 – Lateral Navigation (NAV) Mode

114

NAV mode starts in the CLEARED state. It transitions into the SELECTED state when the

NAV_Select truth table shown in Table 13 evaluates to true, i.e., when the NAV switch is

pressed.

Table 13 – NAV Select

Condition 1 2
NAV_Switch_Pressed T -
 TRUE FALSE

Since it is an arming mode, it then enters the ARMED state. From the ARMED state it will

transition to the ACTIVE state when the NAV_Capture truth table shown in Table 14 evaluates

to true, i.e. when the NAV_Capture_Condition_Met input is true.

Table 14 – NAV Capture

Condition 1 2
NAV_Capture_Condition_Met T -
 TRUE FALSE

NAV mode returns to the CLEARED state when the NAV_Clear truth table shown in Table 15

evaluates to true, i.e., when the NAV switch is pressed, when the navigation source or frequency

changes, when there is a pilot flying transfer, or when the mode annunciations are turned off.

Table 15 – NAV Clear

Condition 1 2 3 4 5 6
NAV_Switch_Pressed T - - - - -
Selected_NAV_Source_Changed - T - - - -
Selected_NAV_Frequency_Changed - - T - - -
Pilot_Flying_Transfer - - - T - -
Modes_On - - - - F -
 TRUE TRUE TRUE TRUE TRUE FALSE

NAV mode will also transition to the CLEARED state if another mode becomes active on this

step (i.e., the transition guarded by New_Lateral_Mode_Activated is taken). Note that it is not

possible to directly transition back to the ARMED state from the ACTIVE state. The

Will_Be_Activated truth table for NAV mode is shown in Table 16.

115

Table 16 – NAV Will Be Activated

Condition 1 2
in(SELECTED.ARMED) T -
Capture() T -
Clear() F -
 TRUE FALSE

Note that since NAV is an arming mode, Table 16 must guard against the situation in which

NAV mode receives a command to clear itself at the same time that its capture condition

becomes true.

4.3.1.3.3 Lateral Approach (LAPPR)
Lateral Approach (LAPPR) mode captures and tracks lateral guidance for precision and non-

precision approaches. It is an arming mode that must be armed before it can become active. Its

logic is shown in Figure 86.

ARMED

ACTIVE
en: LAPPR_Active = true

ex: LAPPR_Active = false

SELECTED
en: LAPPR_Selected = true

ex: LAPPR_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

LAPPR

[Capture()]

Figure 86 – Lateral Approach (LAPPR) Mode

LAPPR mode starts in the CLEARED state. It transitions into the SELECTED state when the

LAPPR_Select truth table shown in Table 17 evaluates to true, i.e., when the APPR switch is

pressed.

Table 17 – LAPPR Select

Condition 1 2
APPR_Switch_Pressed T -
 TRUE FALSE

116

Since it is an arming mode, it then enters the ARMED state. From the ARMED state it will

transition to the ACTIVE state when the LAPPR_Capture truth table shown in Table 18

evaluates to true, i.e. when the LAPPR_Capture_Condition_Met input is true.

Table 18 – LAPPR Capture

Condition 1 2
LAPPR_Capture_Condition_Met T -
 TRUE FALSE

LAPPR mode returns to the CLEARED state when the LAPPR_Clear truth table shown in Table

19 evaluates to true, i.e., when the APPR switch is pressed, when the navigation source or

frequency is changed, when there is a pilot flying transfer, or when the mode annunciations are

turned off.

Table 19 – LAPPR Clear

Condition 1 2 3 4 5 6
APPR_Switch_Pressed T - - - - -
Selected_NAV_Source_Changed - T - - - -
Selected_NAV_Frequency_Changed - - T - - -
Pilot_Flying_Transfer - - - T - -
Modes_On - - - - F -
 TRUE TRUE TRUE TRUE TRUE FALSE

LAPPR mode will also transition to the CLEARED state if another mode becomes active on this

step (i.e., the transition guarded by New_Lateral_Mode_Activated is taken). Note that it is not

possible to directly transition back to the ARMED state from the ACTIVE state. The

Will_Be_Activated truth table for LAPPR mode is shown in Table 20.

Table 20 – LAPPR Will Be Activated

Condition 1 2
in(SELECTED.ARMED) T -
Capture() T -
Clear() F -
 TRUE FALSE

117

4.3.1.3.4 Lateral Go Around (LGA)
Lateral Go Around (LGA) mode maintains the current heading when the pilot aborts a landing. It

is a non-arming mode that can become the active lateral mode at any time. Its logic is shown in

Figure 87.

ACTIVE
en: LGA_Active = true

ex: LGA_Active = false

SELECTED
en: LGA_Selected = true

ex: LGA_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

LGA

Figure 87 – Lateral Go Around (LGA) Mode

LGA mode starts in the CLEARED state. It transitions into the SELECTED state when the

LGA_Select truth table shown in Table 21 evaluates to true, i.e., when the GA switch is pressed

while an overspeed condition does not exist.

Table 21 – LGA Select

Condition 1 2
GA_Switch_Pressed T -
Overspeed F -
 TRUE FALSE

Since it is not an arming mode, it immediately transitions into the ACTIVE state. LGA mode

returns to the CLEARED state when the LGA_Clear truth table shown in Table 22 evaluates to

true, i.e., when the AP is engaged, when the SYNC switch is pressed, when Vertical Go Around

(VGA) mode becomes inactive, when there is a pilot flying transfer, or when the mode

annunciations are turned off.

118

Table 22 – LGA Clear

Condition 1 2 3 4 5 6
When_AP_Engaged T - - - - -
SYNC_Switch_Pressed - T - - - -
VGA_Active - - F - - -
Pilot_Flying_Transfer - - - T - -
Modes_On - - - - F -
 TRUE TRUE TRUE TRUE TRUE FALSE

LGA mode will also transition to the CLEARED state if another mode becomes active on this

step (i.e., the transition guarded by New_Lateral_Mode_Activated is taken). The

Will_Be_Activated truth table for LGA mode is shown in Table 23.

Table 23 – LGA Will Be Activated

Condition 1 2
in(CLEARED) T -
Select() T -
 TRUE FALSE

4.3.1.3.5 Roll Hold (ROLL)
Roll Hold (ROLL) mode holds the aircraft at the fixed bank angle it is in when the mode

becomes active or when the SYNC switch is pressed. ROLL mode is the basic lateral mode and

is always active when no other lateral mode is active and the mode annunciations are on. Since it

may need to become active at any time, it a non-arming mode. Its logic is shown in Figure 88.

ACTIVE
en: ROLL_Active = true

ex: ROLL_Active = false

SELECTED
en: ROLL_Selected = true

ex: ROLL_Selected = false

CLEARED

[! Lateral_Mode_Active()]

[Lateral_Mode_Active()]

ROLL

Figure 88 – Roll Hold (ROLL)

ROLL mode starts in the Active state. It transitions into the CLEARED state when the Lateral

Mode Active truth table shown in Table 24 evaluates to true, i.e., when another lateral mode is

119

active. ROLL mode transitions back to the ACTIVE state when no other lateral mode is active,

i.e. when Lateral_Mode_Active evaluates to false.

Table 24 – Lateral Mode Active

Condition 1 2 3 4 5
HDG_Active T - - - -
NAV_Active - T - - -
LAPPR_Active - - T - -
LGA_Active - - - T -
 TRUE TRUE TRUE TRUE FALSE

4.3.1.4 VERTICAL
The vertical modes control the behavior of the aircraft about the lateral, or pitch, axis. The

organization of the VERTICAL state machine is shown in Figure 89.

The individual vertical modes of VS, FLC, ALT, ALTSEL, VAPPR, VGA and PITCH are

implemented as parallel state machines that execute in that order. Just as with the lateral modes,

the VERTICAL state machine defines two truth tables, Vertical_Mode_Active and

New_Vertical_Mode_Activated, and a function, Update_Activated_Modes, to support the

synchronization between the vertical modes.

The Vertical_Mode_Active truth table is used to make the default vertical mode Pitch Hold

(PITCH) active if no other vertical mode is active and to deactivate PITCH mode when another

vertical mode becomes active. Its specification is given in the description of PITCH mode in

Section 4.3.1.4.7.

120

VERTICAL

Update_Activated_Modes

Vertical_Mode_Active

New_Vertical_Mode_Activated

1

2

3

4

VAPPR 5

VS

FLC

ALT

ALTSEL

PITCH

VGA 6

7

Figure 89 – VERTICAL Modes

The New_Vertical_Mode_Activated truth table is used to deactivate the current active vertical

mode when a new vertical mode becomes active. Its logic is shown in Table 25.

121

Table 25 – New Vertical Mode Activated

Condition 1 2 3 4 5 6 7
VS_Will_Be_Activated T - - - - - -
FLC_Will_Be_Activated - T - - - - -
ALT_Will_Be_Activated - - T - - - -
ALTSEL_Will_Be_Activated - - - T - - -
VAPPR_Will_Be_Activated - - - - T - -
VGA_Will_Be_Activated - - - - - T -
 TRUE TRUE TRUE TRUE TRUE TRUE FALSE

As with the lateral modes, we require that each vertical mode implements a truth table

Will_Be_Activated that predicts if that mode will become active based on its current state and its

inputs. At the start of each step of the VERTICAL mode machine, these values are computed and

stored in local state variables by the Update_Activated_Modes function. These stored values are

then used in the New_Vertical_Mode_Activated truth table shown in Table 25 so that the current

active vertical mode knows whether to deactivate itself if another vertical mode will become

active.

4.3.1.4.1 Vertical Speed (VS)
Vertical Speed (VS) mode holds the aircraft to the Vertical Speed (VS) reference displayed on

the PFD. It is a non-arming mode that can become active at any time. Its logic is shown in

Figure 90.

ACTIVE
en: VS_Active = true

ex: VS_Active = false

SELECTED
en: VS_Selected = true

ex: VS_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

VS

Figure 90 – Vertical Speed (VS) Mode

122

VS mode starts in the CLEARED state. It transitions into the SELECTED state when the

VS_Select truth table shown in Table 26 evaluates to true, i.e., when the VS switch is pressed

while an overspeed condition does not exist and Vertical Approach (VAPPR) mode is not active.

Table 26 – VS Select

Condition 1 2
VS_Switch_Pressed T -
Overspeed F -
VAPPR_Active F -
 TRUE FALSE

Since it is not an arming mode, it immediately transitions into the ACTIVE state. VS mode

returns to the CLEARED state when the VS_Clear truth table shown in Table 27 evaluates to

true, i.e., when the VS switch is pressed, when there is a pilot flying transfer, or when the mode

annunciations are turned off.

Table 27 – VS Clear

Condition 1 2 3 4
VS_Switch_Pressed T - - -
Pilot_Flying_Transfer - T - -
Modes_On - - F -
 TRUE TRUE TRUE FALSE

VS mode will also transition to the CLEARED state if another vertical mode becomes active on

this step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The

Will_Be_Activated truth table for VS is shown in Table 28.

Table 28 – VS Will Be Activated

Condition 1 2
in(CLEARED) T -
Select() T -
 TRUE FALSE

123

4.3.1.4.2 Flight Level Change (FLC)
Flight Level Change (FLC) mode acquires and tracks an Indicated Airspeed (IAS) or Mach

Reference Airspeed while also climbing or descending to bring the aircraft to the Preselected

Altitude. It is a non-arming mode that can become active at any time. Its logic is shown in

Figure 91.

ACTIVE
en: FLC_Active = true

ex: FLC_Active = false

SELECTED
en: FLC_Selected = true

ex: FLC_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

FLC

Figure 91 – Flight Level Change (FLC) Mode

FLC mode starts in the CLEARED state. It transitions into the SELECTED state when the

FLC_Select truth table shown in Table 29 evaluates to true, i.e., when the FLC switch is pressed

while Vertical Approach (VAPPR) mode is not active, or when an overspeed condition exists

while Altitude Hold (ALT) mode and Altitude Select (ALTSEL) mode are not active and are not

about to become active.

Table 29 – FLC Select

Condition 1 2 3
FLC_Switch_Pressed T - -
VAPPR_Active F - -
Overspeed - T -
ALT_Active - F -
ALT_Will_Be_Activated - F -
ALTSEL_Active - F -
ALTSEL_Will_Be_Activated - F -
 TRUE TRUE FALSE

Since it is not an arming mode, it immediately transitions into the ACTIVE state. FLC mode

returns to the CLEARED state when the FLC_Clear truth table shown in Table 30 evaluates to

124

true, i.e., when the FLC switch is pressed while there is not an overspeed condition, when the VS

Pitch Wheel is rotated while there is not an overspeed condition, when there is a pilot flying

transfer, or when the mode annunciations are turned off.

Table 30 – FLC Clear

Condition 1 2 3 4 5
FLC_Switch_Pressed T - - - -
Overspeed F F - - -
VS_Pitch_Wheel_Rotated - T - - -
Pilot_Flying_Transfer - - T - -
Modes_On - - - F -
 TRUE TRUE TRUE TRUE FALSE

FLC mode will also transition to the CLEARED state if another vertical mode becomes active on

this step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The

Will_Be_Activated truth table for FLC is shown in Table 31.

Table 31 – FLC Will Be Activated

Condition 1 2
in(CLEARED) T -
Select() T -
 TRUE FALSE

4.3.1.4.3 Altitude Hold (ALT)
Altitude Hold (ALT) mode acquires and tracks the altitude reference, which is set to the current

altitude when the mode is activated or upon a SYNC request by the flight crew. It is a non-

arming mode that can become active at any time. Its logic is shown in Figure 92.

125

ACTIVE
en: ALT_Active = true

ex: ALT_Active = false

SELECTED
en: ALT_Selected = true

ex: ALT_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

ALT

Figure 92 – Altitude Hold (ALT) Mode

ALT mode starts in the CLEARED state. It transitions into the SELECTED state when the

ALT_Select truth table shown in Table 32 evaluates to true, i.e., when the ALT switch is pressed

while Vertical Approach (VAPPR) mode is not active or when the Altitude Select (ALTSEL)

target altitude is changed while ALTSEL mode is in the TRACK state and VAPPR mode is not

active.

Table 32 – ALT Select

Condition 1 2 3
ALT_Switch_Pressed T - -
VAPPR_Active F F -
ALTSEL_Target_Changed - T -
ALTSEL_Track - T -
 TRUE TRUE FALSE

Since it is not an arming mode, it immediately transitions into the ACTIVE state. ALT mode

returns to the CLEARED state when the ALT_Clear truth table shown in Table 33 evaluates to

true, i.e., when the ALT switch is pressed, when the VS Pitch Wheel is rotated, when there is a

pilot flying transfer, or when the mode annunciations are turned off.

126

Table 33 – ALT Clear

Condition 1 2 3 4 5
ALT_Switch_Pressed T - - - -
VS_Pitch_Wheel_Rotated - T - - -
Pilot_Flying_Transfer - - T - -
Modes_On - - - F -
Actions TRUE TRUE TRUE TRUE FALSE

ALT mode will also transition to the CLEARED state if another vertical mode becomes active

on this step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The

Will_Be_Activated truth table for ALT is shown in Table 34.

Table 34 – ALT Will Be Activated

Condition 1 2
in(CLEARED) T -
Select() T -
 TRUE FALSE

4.3.1.4.4 Altitude Select (ALTSEL)
Altitude Select (ALTSEL) mode captures and tracks the Preselected Altitude. It is a capture/track

mode that must be armed before it can become active and that has both capture and track sub-

states of its active state. Its logic is shown in Figure 93.

ARMED

ACTIVE
en: ALTSEL_Active = true

ex: ALTSEL_Active = false

TRACK
en: ALTSEL_Track = true

ex: ATLSEL_Track = false

[Track()]

CAPTURE

SELECTED
en: ALTSEL_Selected = true

ex: ALTSEL_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

ALTSEL

[Capture()]

Figure 93 – Altitude Select (ALTSEL) Mode

127

ALTSEL starts in the CLEARED state. It transitions to the SELECTED state when the

ALTSEL_Select truth table shown in Table 35 evaluates to true, i.e., when none of Vertical

Approach (VAPPR), Vertical Go Around (VGA), or Altitude Hold (ALT) mode are active.

Table 35 – ALTSEL Select

Condition 1 2
VAPPR_Active F -
VGA_Active F -
ALT_Active F -
 TRUE FALSE

It also immediately enters the ARMED state in which the FGS monitors the aircraft closure rate

towards the target altitude and determines the optimum capture point to transition to the capture

state. When the ALTSEL capture condition is met (Table 36) it enters the ACTIVE state.

Table 36 – ALTSEL Capture

Condition 1 2
ALTSEL_Capture_Condition_Met T -
Actions TRUE FALSE

It also immediately enters the CAPTURE state in which the FGS generates vertical guidance

commands to perform a smooth capture of the target altitude. Once the target altitude is reached

and the ALTSEL track condition is met (Table 37) it transitions to the TRACK state.

Table 37 – ALTSEL Track

Condition 1 2
ALTSEL_Track_Condition_Met T -
 TRUE FALSE

ALTSEL mode returns to the CLEARED state when the ALTSEL_Clear truth table shown in

Table 38 evaluates to true, i.e., when one of Vertical Approach (VAPPR), Vertical Go Around

(VGA), or Altitude Hold (ALT) modes becomes active, or when the mode annunciations are

turned off.

128

Table 38 – ALTSEL Clear

Condition 1 2 3 4 5
VAPPR_Active T - - - -
VGA_Active - T - - -
ALT_Active - - T - -
Modes_On - - - F -
Actions TRUE TRUE TRUE TRUE FALSE

ALTSEL mode will also transition to the CLEARED state if another mode becomes active on

this step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The

Will_Be_Activated truth table for ALTSEL mode is shown in Table 39.

Table 39 – ALTSEL Will Be Activated

Condition 1 2
in(SELECTED.ARMED) T -
Capture() T -
Clear() F -
 TRUE FALSE

4.3.1.4.5 Vertical Approach (VAPPR)
Vertical Approach (VAPPR) mode captures and tracks the vertical guidance for Instrument

Landing System (ILS) precision glideslope approaches. It is an arming mode that must be armed

before it can become active. Its logic is shown in Figure 94.

ARMED

ACTIVE
en: VAPPR_Active = true

ex: VAPPR_Active = false

SELECTED
en: VAPPR_Selected = true

ex: VAPPR_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

VAPPR

[Capture()]

 Figure 94 – Vertical Approach (VAPPR) Mode

129

VAPPR mode starts in the CLEARED state. It transitions into the SELECTED state when the

VAPPR_Select truth table shown in Table 40 evaluates to true, i.e., when the APPR switch is

pressed.

Table 40 – VAPPR Select

Condition 1 2
APPR_Switch_Pressed T -
 TRUE FALSE

It also immediately enters the ARMED state. From the ARMED state it will transition to the

ACTIVE state when the VAPPR Capture truth table shown in Table 41 evaluates to true, i.e.,

when the vertical approach capture condition is met and Lateral Approach (LAPPR) mode is

active and an overspeed condition does not exist.

Table 41 – VAPPR Capture

Condition 1 2
VAPPR_Capture_Condition_Met T -
LAPPR_Active T -
Overspeed F -
 TRUE FALSE

VAPPR mode returns to the CLEARED state when the VAPPR_Clear truth table shown in

Table 42 evaluates to true, i.e., when the APPR switch is pressed, when Lateral Approach

(LAPPR) mode is not selected, when the navigation source or frequency is changed, when there

is a pilot flying transfer, or when the mode annunciations are turned off.

Table 42 – VAPPR Clear

Condition 1 2 3 4 5 6 7
APPR_Switch_Pressed T - - - - - -
LAPPR_Selected - F - - - - -
Selected_NAV_Source_Changed - - T - - - -
Selected_NAV_Frequency_Changed - - - T - - -
Pilot_Flying_Transfer - - - - T - -
Modes_On - - - - - F -
 TRUE TRUE TRUE TRUE TRUE TRUE FALSE

130

VAPPR mode will also transition to the CLEARED state if another mode becomes active on this

step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The

Will_Be_Activated truth table for VAPPR mode is shown in Table 43.

Table 43 – VAPPR Will Be Activated

Condition 1 2
in(SELECTED.ARMED) T -
Capture() T -
Clear() F -
 TRUE FALSE

4.3.1.4.6 Vertical Go Around (VGA)
Vertical Go Around (VGA) mode maintains a fixed pitch angle when the pilot aborts a landing.

It is a non-arming mode that can become the active vertical mode at any time. Its logic is shown

in Figure 95.

ACTIVE
en: VGA_Active = true

ex: VGA_Active = false

SELECTED
en: VGA_Selected = true

ex: VGA_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

VGA

Figure 95 – Vertical Go Around (VGA) Mode

VGA mode starts in the CLEARED state. It transitions into the SELECTED state when the

VGA_Select truth table shown in Table 44 evaluates to true, i.e., when the GA switch is pressed

while an overspeed condition does not exist.

131

Table 44 – VGA Select

Condition 1 2
GA_Switch_Pressed T -
Overspeed F -
Actions TRUE FALSE

It immediately transitions into the ACTIVE state. VGA mode returns to the CLEARED state

when the VGA_Clear truth table shown in Table 45 evaluates to true, i.e., when the AP is

engaged, when the SYNC switch is pressed, when the VS Pitch Wheel is rotated, when there is a

pilot flying transfer, or when the mode annunciations are turned off.

Table 45 – VGA Clear

Condition 1 2 3 4 5 6
When_AP_Engaged T - - - - -
SYNC_Switch_Pressed - T - - - -
VS_Pitch_Wheel_Rotated - - T - - -
Pilot_Flying_Transfer - - - T - -
Modes_On - - - - F -
 TRUE TRUE TRUE TRUE TRUE FALSE

LGA mode will also transition to the CLEARED state if another mode becomes active on this

step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The

Will_Be_Activated truth table for LGA mode is shown in Table 23.

Table 46 – LGA Will Be Activated

Condition 1 2
in(CLEARED) T -
Select() T -
 TRUE FALSE

4.3.1.4.7 Pitch Hold (PITCH)
Pitch Hold (PITCH) mode holds the aircraft at the fixed pitch angle it is in when the mode

becomes active or when the SYNC switch is pressed. PITCH is the basic vertical mode and is

always active when no other vertical mode is active. Since it may need to become active at any

time, it is a non-arming mode. Its mode logic is shown in Figure 96.

132

ACTIVE
en: PITCH_Active = true

ex: PITCH_Active = false

SELECTED
en: PITCH_Selected = true

ex: PITCH_Selected = false

CLEARED

[! Vertical_Mode_Active()]

[Vertical_Mode_Active()]

PITCH

Figure 96 – Pitch Hold (PITCH) Mode

PITCH mode starts in the Active sub-state of the SELECTED state. It transitions into the

CLEARED state when the Vertical_Mode_Active truth table shown in Table 47 evaluates to true,

i.e., when another vertical mode is active. PITCH mode transitions back to the ACTIVE state

when no other vertical mode is active, i.e. when Vertical_Mode_Active evaluates to false.

Table 47 – Vertical Mode Active

Condition 1 2 3 4 5 6 7
VS_Active T - - - - - -
FLC_Active - T - - - - -
ALT_Active - - T - - - -
ALTSEL_Active - - - T - - -
VAPPR_Active - - - - T - -
VGA_Active - - - - - T -
 TRUE TRUE TRUE TRUE TRUE TRUE FALSE

4.3.2 Event Processing

While the Flight Modes subsystem of Section 4.3.1 constitutes most of the mode logic, the Event

Processing subsystem also plays an important role. The LATERAL and VERTICAL state

diagrams ensure that there is always at least one lateral and one vertical mode active, and that the

current active lateral or vertical mode is always deactivated if a new mode becomes active.

However, they do not ensure that only one lateral and one vertical mode is active at the same

time. In fact, without Event Processing there are several situations in which more than one lateral

or vertical mode can become active. The next section describes the approach taken here -

prioritization of input events - to keep this from happening. Other approaches and the reasons for

not selecting them are discussed in Section 4.3.2.1.

133

4.3.2.1 Event Prioritization
The logic of the Event Processing subsystem is shown in Figure 97. Event processing

establishes a ranking of input events so that higher priority events supersede lower priority

events.

18
If_VAPPR_Capture_Cond_Met_Seen

17
If_ALTSEL_Track_Cond_Met_Seen

16
If_ALTSEL_Capture_Cond_Met_Seen

15
If_LAPPR_Capture_Cond_Met_Seen

14
If_NAV_Capture_Cond_Met_Seen

13
When_ALTSEL_Target_Changed_Seen

12
When_VS_Pitch_Wheel_Rotated_Seen

11
When_ALT_Switch_Pressed_Seen

10
When_FLC_Switch_Pressed_Seen

9
When_VS_Switch_Pressed_Seen

8
When_GA_Switch_Pressed_Seen

7
When_APPR_Switch_Pressed_Seen

6
When_NAV_Switch_Pressed_Seen

5
When_HDG_Switch_Pressed_Seen

4
When_FD_Switch_Pressed_Seen

3
When_SYNC_Switch_Pressed_Seen

2
When_AP_Engaged_Seen

1
When_Pilot_Fllying_Transfer_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

VS_Switch_Pressed_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

VS_Pitch_Wheel_Rotated_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

VAPPR_Capture_Cond_Met_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

SYNC_Switch_Pressed_Seen

OR

Inhibit_In

Input

If_Seen

Inhibit_Out

NAV_Switch_Pressed_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

NAV_Capture_Cond_Met_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

LAPPR_Capture_Cond_Met_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

HDG_Switch_Presssed_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

GA_Switch_Pressed_Seen

false

false

Inhibit_In

Input

If_Seen

Inhibit_Out

FLC_Switch_Pressed_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

FD_Switch_Pressed_Seen

CHG

Inhibit_In

Input

If_Seen

Inhibit_Out

AP_Engaged_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

APPR_Switch_Pressed_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

ALT_Switch_Pressed_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

ALTSEL_Track_Cond_Met_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

ALTSEL_Target_Changed_Seen

Inhibit_In

Input

If_Seen

Inhibit_Out

ALTSEL_Capture_Cond_Met_Seen

18
VAPPR_Capture_Cond_Met

17
ALTSEL_Track_Cond_Met

16
ALTSEL_Capture_Cond_Met

15
LAPPR_Capture_Cond_Met

14
NAV_Capture_Cond_Met

13
ALTSEL_Target_Changed

12
VS_Pitch_Wheel_Rotated

11
ALT_Switch

10
FLC_Switch

9
VS_Switch

8
GA_Switch

7
APPR_Switch

6
NAV_Switch

5
HDG_Switch

4
FD_Switch

3
SYNC_Switch

2
AP_Engaged

1
Is_Pilot_Flying_Side

Figure 97 – Event Processing

Blocks such as SYNC_Switch_Pressed_Seen instantiate the Seen logic shown in Figure 97, which

outputs Seen as true if its Input signal is true while the Inhibit_In signal is false. This block also

generates an Inhibit_Out signal when either the Inhibit_In input or the Seen output is true.

134

Figure 98 – Seen Logic

These blocks can be cascaded as shown in Figure 97 to inhibit generation of low priority events

when a higher priority event occurs at the same time. In this way, simultaneous input events are

resolved in favor of the more important events, providing a mechanism to ensure that only one

lateral and one vertical mode becomes active on each step.

It is not necessary to preempt all simultaneous events. For example, the HDG_Switch_Pressed

event can occur simultaneously with the VS_Switch_Pressed event without conflict. For this

reason, the prioritization of events is organized in a lattice that allows some simultaneous events.

This helps to ensure that as few input events as possible are inhibited. Identifying which events

can safely occur simultaneously is done through model checking.

Most of the blocks are guarded by a rising edge detector, which is true for the one step on which

the input transitions from false to true. These blocks generate signals that correspond to events,

which can only be true for one step. However, some blocks, such as

LAPPR_Capture_Cond_Met_Seen, are not preceded by rising edge detectors. These blocks

establish a priority on input conditions, which can be true for several steps. Input conditions are

given a lower priority than input events. This allows the mode logic to respond to a high priority

input event and still respond to an input condition (that will probably still be true) on the

subsequent step.

Also, note that the When_Pilot_Flying_Transfer_Seen event is set true whenever the

Is_Pilot_Flying input (indicating if this is the pilot flying side of the aircraft) changes value. This

event does not conflict with any other inputs or conditions and is neither inhibited nor inhibits

the other outputs of Event Processing.

2
Inhibit_Out

1
If_Seen

OR

OR

AND

AND

2
Input

1
Inhibit_In

135

The advantage of this approach is that it isolates the handling of conflicting input events into one

place where it is easier to reason about their priority. While discarding some events might seem

unsafe, a simple thought exercise shows that it is safe and preferable to discard the lower priority

event than it is to try to process both events. Consider the situation in the FGS in which the lower

priority event occurs immediately after the higher priority event. In that situation, the lower

priority event effectively overrides the higher priority event. Now consider the situation in which

the higher priority event occurs immediately after the lower priority event. In that situation, the

higher priority event effectively overrides the lower priority event. Both sequences can happen in

the FGS and both result in safe flight. So discarding the lower priority event is acceptable since it

corresponds to the situation in which the lower priority event occurs immediately before the

higher priority event. Allowing some events to occur simultaneously because they do not

conflict with each other is a modest advantage made feasible through formal verification.

4.3.2.2 Alternatives to Event Prioritization
There are other approaches to resolving conflicting simultaneous events. One approach is to

resolve the conflicts by adding constraints in the tables for mode activation that directly consider

all possible combinations of inputs. However, this can quickly become overwhelming and

obscures the most important cases when there aren’t simultaneous inputs. It also unnecessarily

entangles the logic of the different modes.

Another approach is to add an Active state machine that keeps track of which mode is currently

active and use it to coordinate the individual mode machines. While appealing on the surface, it

has several disadvantages. First, unlike the individual mode machines, it does not represent an

abstraction of the underlying system state; its purpose is to enforce the constraint that only one

lateral mode and one vertical mode can be active at a time. An indication of this is the fact that

there must be a transition from every active mode to every other active mode, since any mode

can become active at any time. However, the more important issue is that it separates the logic

for making a mode active from the logic for arming and clearing the modes. This leads to a

model of the mode logic that is distributed across several state machines and is difficult to

understand.

The approach taken here is to represent each mode as a small, relatively independent, state

machine that represents an abstraction of the underlying flight control law. Rather than building

136

complex structures to enforce constraints required by the physical aircraft, we use formal

analysis to ensure those constraints are met.

4.4 Formal Verification of the Mode Logic

This section discusses how model checking can be used to formally verify that the Mode Logic

model meets is requirements. Since model checking is so highly automated, more of the

emphasis shifts to writing good properties than in theorem proving. In Section 4.4.1, we discuss

informal heuristics for writing good properties. In Section 4.4.2 we use these heuristics to

develop formal properties for the mode logic and verify them using the Kind SMT-based model

checker. In Section 4.4.3 we discuss verifying a subset of these properties using MATLAB

Design Verifier.

4.4.1 Heuristics for Writing Formal Properties

Writing good formal properties shares many similarities with writing good requirements and is

as much art as science. Fortunately, most organizations tend to build variations of the same

systems and will develop libraries of good properties over time. However, writing that first set of

properties can be challenging. Formal properties do have the advantage over requirements that

they can be mathematically checked against a model of the system and even a single property

can find many errors. In many ways, it is more important to get started than it is to write the ideal

set of properties. This section describes several strategies, heuristics, and rules of thumb for

writing good formal properties. While certainly incomplete and informal, many of these were

followed in developing the formal properties for the mode logic discussed in the next section.

One of best sources of formal properties is often found in the safety-related6 requirements for the

system. Not only are these requirements inherently important, but their implementation typically

touches on several parts of the system. Properties that cut across an entire system in this way

often find the most errors. For example, in the mode logic, the properties that found the most

errors were those that checked that at least one lateral and vertical mode was active and that at

most one lateral and vertical mode was active. These properties depended on the correct

interaction of all the modes and cut across the entire model.

6 Here “safety-related requirements” are those can affect the safe operation of the aircraft as used in DO-178C rather
than the formal methods notion of a predicate over a finite number of successive states.

137

If the system developers or domain experts are available, another good strategy is to simply ask

them what things they are the most worried about in the system. Refining their concerns into a

set of formal properties often requires an ongoing dialogue7, but their intuition and knowledge of

the system can be invaluable.

Another excellent source of formal properties is the system or software requirements. Informal

requirements can take on many different forms, from text to block diagrams to state-machines to

use cases to pseudo-code, but their intent is always to describe what the system should do

without specifying how it should do it. Often, an informal requirement actually encompasses

several properties. A strategy that we have used successfully is to transcribe the informal

requirement into one or more textual statements and then writing a formal property for each

textual statement.

User manuals can also be an excellent source of formal properties. Often, user manuals are

written with less design information than the system requirements. Most of the requirements for

the mode logic were originally developed from user manuals describing the system for pilots.

Once the above sources of properties have been exhausted, another option is to carefully review

the model itself looking for anything that is not checked by a property. Often, this will identify

requirements (and hence properties) that have been completely omitted. Surprisingly, even

writing properties directly from the model itself will often expose errors in understanding the

semantics of the model and should not be ruled out as a strategy.

Another heuristic that can be helpful in developing properties is to consider each input and try to

identify all the ways that changing that input can affect one or more outputs and then write

properties describing each such change. This provides a systematic way of breaking the problem

down into several small problems and identifying properties. Ideally, the behavior of the system

expressed in the requirement is gleaned from requirements or user manuals.

A final guideline concerns the process of writing properties and their verification. When a

property is found to be false, this only means that there is a discrepancy between the formal

property and the model. As often as not, such discrepancies expose errors in the property rather

7 For example, when asked this question one developer replied simply “whether it’s right.” Further discussion led to
the development of several important safety-related properties.

138

than in the model, and these take the form of missing assumptions. For example, the original

requirement may be written as “the system shall arm for vertical approach mode when the APPR

button is pressed” but formal verification reveals that this is true unless an overspeed condition

exists. In this situation, it is probably the formal property, not the model, which needs to be

corrected. Since many requirements will share the same undocumented assumptions, it is

generally best to check properties incrementally as they are developed rather than developing all

the properties and then checking them. In this way, insights gained from verifying the first

properties can be incorporated into the development of later properties.

4.4.2 Verification of the Mode Logic Using the Kind Model Checker

This section describes how the Kind Model Checker can be used to formally verify that the

MATLAB Simulink/Stateflow model described in Section 4.2 meets its requirements. To do this,

the model must be translated into the Lustre language accepted by the Kind model checker and

the requirements stated formally in Lustre. The translation into Lustre has been performed using

the Rockwell Collins Formal Verification Framework. The resulting file is provided along with

this report. Section 4.4.2.1 describes how the safety-related requirements and functional

requirements are stated formally in the Lustre language. Section 4.4.2.2 discusses the process of

understanding the counterexamples produced from three false properties and correcting the

Mode Logic model.

4.4.2.1 Writing Properties for the Kind Model Checker
There are 118 properties that have been formally verified for the mode logic. These are listed in

Appendix B – Mode Logic Properties. The reader may wish to refer to that appendix while

reading this section. We specify properties in Lustre by defining a unique Boolean variable for

each requirement and assigning to this variable the formal specification of the requirement. For

example, the requirement that at least one lateral mode shall always be active is specified as

--
-- At least one lateral mode shall always be active
-- when the FD is displayed or the AP is engaged.
--
 At_Least_One_Lateral_Mode_Active =
 ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active or LGA_Active;

 check At_Least_One_Lateral_Mode_Active;

Figure 99 – At Least One Lateral Mode Active (Lustre)

139

We have chosen to use descriptive names such as At_Least_One_Lateral_Mode_Active for the

Boolean values assigned to requirements. Any unique valid Lustre name, for example, R0015a,

would also be acceptable. We will also follow the convention of embedding the informal, textual

statement of the requirement in Lustre comments (lines starting with “—“) immediately before

the formal statement of the requirement. The requirement is then formally specified by assigning

a predicate defining the requirement to the Boolean variable. In the case of Figure 99 this is just

a Boolean expression stating that at least one of the system outputs specifying the active status of

the lateral modes must be true. Finally, the “check” statement instructs the Kind model checker

to attempt to prove the property is always true for all possible combination of inputs and states.

Note that we have actually verified a stronger requirement than the one stated in the informal

textual requirement which requires that a lateral mode must be active when the FD is displayed

or the AP is engaged. Its proof demonstrates at least one lateral mode is always active, not just

when the FD is displayed or the AP is engaged. It is always acceptable to prove a stronger

property than is actually required, though we may wish to keep track of the original requirement

in case changes to the model invalidate the stronger property. If this stronger property was not

true of our model, the weaker actual property could be stated using an implication as shown in

Figure 100.

--
-- At least one lateral mode shall always be active
-- when the FD is displayed or the AP is engaged.
--
 At_Least_One_Lateral_Mode_Active =
 FD_On or Is_AP_Engaged =>
 ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active or LGA_Active;

 check At_Least_One_Lateral_Mode_Active;

Figure 100 – Weaker Version of at Least One Lateral Mode Active (Lustre)

The requirement that at least one lateral mode is always active when the FD is on or the AP is

engaged is an example of a safety-related software requirement that traces to a system level

safety requirement that the FGS shall provide valid guidance when the FD is on or the AP is

engaged. As discussed in 4.4.1, safety-related requirements are excellent candidates for formal

verification. This is partly because of their explicit relationship to system safety, but it is also due

to the inherent difficulty of testing them. Safety-related requirements are often of the form “bad

things shall never happen” or conversely, “good things shall always happen.” Such requirements

are difficult to test since testing can demonstrate their truth only for states and inputs actually

140

tested. In contrast, formal verification proves them to be true for all possible combinations of

inputs and system states. Safety-related requirements are also excellent properties for finding

design errors since the entire system often contributes to maintaining safety-related requirements

and an error anywhere in the system will often falsify the requirement.

Another safety-related requirement is the requirement that no more than one lateral mode can

ever be active at the same time. This is important since having two lateral flight control laws

active at the same time would generate conflicting guidance commands to the FD and the AP.

This requirement is formally stated in Figure 101.

--
-- At most one lateral mode shall be active
-- when the FD is displayed or the AP is engaged.
--
 At_Most_One_Lateral_Mode_Active =
 (ROLL_Active =>
 not (HDG_Active or NAV_Active or LAPPR_Active or LGA_Active)) and
 (HDG_Active =>
 not (ROLL_Active or NAV_Active or LAPPR_Active or LGA_Active)) and
 (NAV_Active =>
 not (ROLL_Active or HDG_Active or LAPPR_Active or LGA_Active)) and
 (LAPPR_Active =>
 not (ROLL_Active or HDG_Active or NAV_Active or LGA_Active)) and
 (LGA_Active =>
 not (ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active));

 check At_Most_One_Lateral_Mode_Active;

Figure 101 – At Most One Lateral Mode Active (Lustre)

The requirements for at least one and at most one lateral mode active could be combined into a

single requirement that exactly one lateral mode shall be active. We have chosen to state them as

separate requirements as a matter of preference. In similar fashion, there are requirements that at

least one vertical mode shall be active and at most one vertical mode shall be active.

Another safety-related requirement is that VAPPR (vertical approach) mode shall be active only

if LAPPR (lateral approach) mode is active. This is important since the aircraft should not be

making a vertical descent to land when it isn’t aligned with the runway. It turns out to be

difficult to deactivate VAPPR mode on the exact step in which LAPPR mode is deactivated, but

easy to deactivate VAPPR mode on the next step after LAPPR is deactivated. Since a delay of

one step is insignificant given the inertia of the aircraft, this requirement can be relaxed to allow

a one-step delay in clearing VAPPR mode when LAPPR mode is deactivated. This can be

formally stated as “if VAPPR mode is active on two successive steps, LAPPR mode must be

141

active on the first step.” Since this is true for any two successive steps, it is equivalent to

requiring that LAPPR must be active when VAPPR is active except on the last step in which

LAPPR is active. This is shown in Figure 102 using the Lustre “pre” operator which returns the

value of a variable on the previous step.

--
-- VAPPR mode shall be active only if LAPPR mode is active (except on the last step).
--
 VAPPR_Active_Implies_LAPPR_Active =
 (pre VAPPR_Active and VAPPR_Active) => pre LAPPR_Active;

 check VAPPR_Active_Implies_LAPPR_Active;

Figure 102 – VAPPR Active Only If LAPPR Active (Lustre)

Of course, the weakening of the original requirement to accommodate the design decision

allowing a one-step delay needs to be fed back into the system safety process for review as

specified in DO-178B/C to ensure that it does not violate the system safety requirements.

Another safety-related requirement is that LGA (lateral go around) mode shall be active if and

only if VGA (vertical go around) mode is active. These modes are active only during takeoff or

during a go around following an aborted landing. The LGA flight control law maintains a fixed

heading while the VGA flight control law maintains a fixed pitch and both modes should be

active at the same time. Similar to the requirement that VAPPR mode active implies LAPPR

mode active, this requirement is much simpler to implement if it can be relaxed for one step. For

this reason, the requirement is specified as two implications as shown in Figure 103.

--
-- VGA mode shall be active if LGA mode is active (except for one step).
--
 LGA_Active_Implies_VGA_Active =
 (pre LGA_Active and LGA_Active) => pre VGA_Active;

 check LGA_Active_Implies_VGA_Active;

--
-- LGA mode shall be active if VGA mode is active (except for one step).
--
 VGA_Active_Implies_LGA_Active =
 pre VGA_Active and VGA_Active => pre LGA_Active;

 check VGA_Active_Implies_LGA_Active;

 Figure 103 – LGA Active If and Only If VGA Active (Lustre)

Another safety-related requirement is that when an overspeed condition occurs, either FLC,

ALT, or ALTSEL mode shall be active. The normal response of the FGS to an overspeed

142

condition is to enter FLC mode to pitch the aircraft up to reduce speed. However, to avoid

moving outside of the aircraft’s assigned flight level, the pilot may select either ALT mode to

hold the aircraft at its current altitude or the aircraft may activate ALTSEL mode by capturing

and tracking the preselected altitude. However, trying to prove this requirements reveals that

there are several ways in which either ALT or ALTSEL mode can be deactivated (e.g.,

deselection by the pilot, rotating the VS Pitch Wheel, or a pilot flying transfer) causing the

aircraft to enter basic PITCH mode in which it holds the current pitch angle. However, we can

prove that FLC, ALT, ALTSEL, or PITCH mode must be active when an overspeed condition

exists as shown in Figure 104.

--
-- FLC, ALT, ALTSEL, or PITCH mode shall be active
-- while an overspeed condition exists.
--
 Overspeed_Implies_FLC_ALT_ALTSEL_PITCH =
 Overspeed => FLC_Active or ALT_Active or ALTSEL_Active or PITCH_Active;

 check Overspeed_Implies_FLC_ALT_ALTSEL_PITCH;

Figure 104 – Overspeed Implies FLC, ALT, ALTSEL, or PITCH Active (Lustre)

Once in PITCH mode, FLC will immediately be selected due to the overspeed condition, so

PITCH mode can be active for only one step while an overspeed condition exists. We confirm

this by proving the property shown in Figure 105 that if PITCH is active in one step and an

overspeed condition exists in the next step, the system shall exit PITCH mode.

--
-- PITCH mode shall be active for only one step while an overspeed condition exists.
--
 Overspeed_and_PITCH_Transitory = true ->
 pre PITCH_Active and Overspeed => not PITCH_Active;

 check Overspeed_and_PITCH_Transitory;

Figure 105 – Overspeed and PITCH Transitory (Lustre)

The -> (followed by) operator of Lustre (not to be confused with the => implies operator) is used

in Figure 105 to exclude the initial system state from the proof. The -> operator replaces the

value of the Boolean predicate in the first step with the value true (its left hand operand) and uses

the value of the predicate (its right hand operand) for all subsequent steps. This is necessary

since as it is possible for the Overspeed input to be true in the initial step before the system has

had time to respond to it. The -> operator is a convenient way to exclude the initial system state

from proofs in which the validity of the property in the initial step does not matter.

143

When combined with the proof of Figure 104 this proves that FLC, ALT, or ALTSEL mode

must be active during an overspeed condition except for one transitory step during which PITCH

mode can be active. As before, these requirement changes must be fed back into the system

safety process for review.

As discussed in Section 4.4.1, another useful source of properties is the functional requirements

for the mode logic or the user’s manual. For example, HDG is simple lateral mode in which the

aircraft acquires and tracks a heading reference (i.e. a compass direction). Both the system

requirements and the user’s manual for the FGS state that this mode should be selected whenever

the pilot presses the HDG button on the FCP if HDG mode is not already selected. This is

formally stated as shown in Figure 106.

--
-- HDG mode shall be selected if the HDG switch is pressed while HDG mode is cleared.
--
 HDG_Switch_Pressed_Selects_HDG =
 not pre HDG_Selected and RISING(HDG_Switch)
 and No_Higher_Event_Than_HDG_Switch_Pressed => HDG_Selected;

 check HDG_Switch_Pressed_Selects_HDG;

Figure 106 – HDG Switch Pressed Selects HDG (Lustre)

Formally stating the requirement of Figure 106 requires the introduction of two auxiliary

definitions in Lustre. The first of these, the function RISING, is quite simple. Its definition is

shown in Figure 107.

--
-- RISING - returns true when signal s changes from false to true
--
node RISING (s : bool) returns (p : bool);
let
 p = false -> (not pre s and s);
tel;

Figure 107 – Definition of RISING (Lustre)

RISING takes a single Boolean valued input and returns true if its value has changed from false

to true. Note that its value in the initial step is always false. The function RISING must be used in

the formal statement of Figure 106 since the mode logic only responds a rising value of the input

HDG_Switch as shown in the Event_Prioitization logic of Figure 97.

The second auxiliary definition, No_Higher_Event_Than_HDG_Switch_Pressed, is more

complicated. Recall that the Event_Prioritization logic described in Section 4.3.2.1 masks some

144

input events when a higher priority event occurs at the same time. Since the input HDG_Switch

refers to the system level input rather than the possibly masked value

HDG_Switch_Pressed_Seen passed into the Flight_Modes specification (Section 4.3.1), formally

specifying the conditions under which HDG mode is selected must incorporate the behavior in

the event prioritization logic.

One way to do this would be to use the internal value HDG_Switch_Pressed_Seen computed in

the model itself to formally state the requirement. A practical difficulty in doing this is that the

intermediate value’s name in the Lustre specification may be quite different from the name used

by the Simulink designer due to the translation process. In fact, the intermediate value may even

have been optimized away during translation. However, if both of these obstacles were

overcome, the requirement of Figure 106 could be restated as shown in Figure 108.

--
-- HDG mode shall be selected if the HDG switch is pressed while HDG mode is cleared.
--
 HDG_Switch_Pressed_Selects_HDG =
 not pre HDG_Selected and HDG_Switch_Pressed_Seen => HDG_Selected;

 check HDG_Switch_Pressed_Selects_HDG;

Figure 108 – HDG Switch Pressed Selects HDG Using Internal Variables (Lustre)

Despite its intuitive appeal, there is a more insidious danger in using internal values to specify

properties. The problem is that the validity of the proof now depends on the correctness of the

model itself. For example, imagine that the portion of the model that computes

HDG_Switch_Pressed_Seen is incorrect and always returns the value false. The property is then

trivially true since false => p is always true for any predicate p. The effect would be that an error

in the portion of the model defining HDG_Switch_Pressed_Seen could mislead us into believing

the property of Figure 108 was true when it was actually false.

One solution to this problem would be to prove the correctness of the internal variable with its

own set of properties. Another solution, and the one that we have used here, is to only use input

and output variables (i.e. no internal variables) in our properties. However, restricting the

variables in properties to only system input and output variables leads to verbose properties

unless we first introduce auxiliary definitions that independently specify portions of the model.

The function RISING is one example of such an auxiliary definition. Another is the Lustre

145

variable No_Higher_Event_Than_Heading_Switch_Pressed. Its definition is shown in Figure

109.

 No_Higher_Event_Than_HDG_Switch_Pressed =
 (not RISING(APPR_Switch) and No_Higher_Event_Than_APPR_Switch_Pressed);

Figure 109 – No Higher Event Than HDG Switch Pressed (Lustre)

The purpose of this variable is to independently specify the event prioritization logic relevant to

the HDG switch. It is set to the value true if the next higher priority event, the pressing of the

APPR switch, does not occur and no even higher priority event than the pressing of the APPR

switch occurs. Of course, the Lustre variable No_Higher_Event_Than_APPR_Switch_Pressed

must also be defined, but the resulting collection of recursive definitions nicely captures the

event prioritization logic in a form that supports succinct specification of mode logic properties.

For example, formalizing the requirement that HDG mode should be selected if the HDG switch

is pressed while HDG mode is cleared can be written as shown in Figure 106.

Since HDG mode is a non-arming mode, to complete the verification of its functional behavior

we need to specify all ways in which HDG mode can be selected and all ways in which HDG

mode can be cleared. HDG mode can only be selected by the pilot pressing the HDG switch, but

there are three ways in which HDG mode can be cleared. These are shown in Figure 110.

--
-- HDG mode shall be cleared if the HDG switch is pressed while HDG mode is selected.
--
 HDG_Switch_Pressed_Clears_HDG =
 pre HDG_Selected and RISING(HDG_Switch)
 and No_Higher_Event_Than_HDG_Switch_Pressed => not HDG_Selected;

 check HDG_Switch_Pressed_Clears_HDG;

--
-- HDG mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_HDG =
 pre HDG_Selected and CHANGED(Pilot_Flying_Side) => not HDG_Selected;

 check Pilot_Flying_Transfer_Clears_HDG;

--
-- HDG mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_HDG =
 pre HDG_Selected and not Modes_On => not HDG_Selected;

 check Modes_Off_Clears_HDG;

Figure 110 – Functional Requirements for Clearing HDG Mode (Lustre)

146

The functional requirements for arming modes such as NAV, LAPPR, ALTSEL, and VAPPR

must include properties describing how an armed mode becomes active. Our first attempt at

formalizing a property specifying how NAV mode can become active is shown in Figure 111.

--
-- NAV mode shall become active if the NAV capture condition is met
-- while NAV mode is armed.
--
 NAV_Active_When_Capture_Cond_Met = true ->
 pre NAV_Selected and not pre NAV_Active
 and NAV_Capture_Cond_Met
 and No_Higher_Event_Than_NAV_Capture_Cond_Met => NAV_Active;

 check NAV_Active_When_Capture_Cond_Met;

Figure 111 – Initial Functional Requirements for Activating NAV Mode (Lustre)

This property specifies that NAV mode is armed by stating that it is selected but not active in the

previous step. There is also no need to look for the rising edge of NAV_Capture_Cond_Met since

the mode logic transitions from armed to active whenever the NAV capture condition is true, not

just on its rising edge. However, attempting to prove this property identifies several conditions

under which it is not true. The correct property is shown in Figure 112.

--
-- NAV mode shall become active if the NAV capture condition is met
-- while NAV mode is armed.
--
 NAV_Active_When_Capture_Cond_Met = true ->
 pre NAV_Selected and not pre NAV_Active
 and NAV_Capture_Cond_Met
 and not Selected_NAV_Source_Changed
 and not Selected_NAV_Frequency_Changed
 and not CHANGED(Pilot_Flying_Side)
 and Modes_On
 and No_Higher_Event_Than_NAV_Capture_Cond_Met => NAV_Active;

 check NAV_Active_When_Capture_Cond_Met;

Figure 112 – Correct Functional Requirements for Activating NAV Mode (Lustre)

For most arming modes it is possible for the mode to be either activated or cleared while armed,

depending on external events. NAV mode will be cleared if the selected navigation source is

changed (e.g. selecting a different type of navigation beacon), the frequency is changed, the

Transfer switch is pressed (causing a change in the pilot flying side) or the mode annunciations

are turned off. All of these conditions must be incorporated into the antecedent of the property.

This illustrates one of the most important benefits of formal specification – it forces a precise

enumeration of the exceptions to the normal case. Note that we have not gone back and revised

147

the textual informal specification of the requirement to include these exceptions. Instead, we

have chosen to leave the informal specification the way it was originally written since this

captures the requirement’s original intent. The exceptions are then documented in the formal

specification.

4.4.2.2 Debugging False Properties in Kind
One of the most important benefits of formal verification is its ability to find errors that

traditional verification approaches such as reviews or testing would miss. For example, sixteen

errors were found when verifying the MATLAB Simulink/Stateflow model of the mode logic

using the Kind model checker (see Appendix C). Even though this example had been specified

previously in RSML-e [4] and formally verified using the NuSMV model checker, the process of

rewriting it in Simulink/Stateflow was sufficient to introduce new errors. This section discusses

a few of the errors listed in Appendix C and describes the process of understanding why a

property is false and correcting the problem.

4.4.2.2.1 VGA Clear Error
Our first example is a simple naming error that was found by the Kind model checker in a few

seconds. While this error would probably have been found through testing, it was simpler and

faster to find it through model checking. It is also a good first example because of its simplicity.

The error was made in the specification of the VGA mode and is shown in Figure 113.

ACTIVE
en: VGA_Active = true

ex: LGA_Active = false

SELECTED
en: VGA_Selected = true

ex: VGA_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

VGA

Figure 113 – VGA Clear Error

The output variable LGA_Active, rather than VGA_Active, was being set to false on exiting

ACTIVE mode. This error was detected while trying to prove that at least one lateral mode is

148

always active (Figure 99). The counterexample produced by the Kind model checker is shown in

Figure 114.

 Step 1 Step 2 Step 3
Input Signals
ALTSEL_Capture_Cond_Met false false false
ALTSEL_Target_Changed false false false
ALTSEL_Track_Cond_Met false false false
ALT_Switch false false false
APPR_Switch false false false
FD_Switch true false true
FLC_Switch false false false
GA_Switch false true false
HDG_Switch false true false
Is_AP_Engaged true false false
Is_Offside_VAPPR_Active false false false
Is_Offside_VGA_Active false false true
LAPPR_Capture_Cond_Met false false false
NAV_Capture_Cond_Met false false false
NAV_Switch true false false
Offside_FD_On false false false
Overspeed false false false
Pilot_Flying_Side true false false
SYNC_Switch true true false
Selected_NAV_Frequency_Changed false false false
Selected_NAV_Source_Changed false false false
VAPPR_Capture_Cond_Met false false false
VS_Pitch_Wheel_Rotated false false true
VS_Switch false false false

Output Signals
HDG_Active false false false
LAPPR_Active false false false
LGA_Active false true false
NAV_Active false false false
ROLL_Active true false false

Figure 114 –Counterexample for Clearing VGA Error

The counterexample is three steps long with the values of the relevant inputs and outputs shown

for each step (Kind does not generate values for inputs and outputs that do not affect the

property). Values that have not changed from the previous step are shown in grey text. The most

149

significant values have had their enclosing box shaded in grey by the authors to help in

understanding the counterexample.

In the initial step ROLL mode is active as expected. In the second step, the GA switch is pressed,

activating LGA mode. This also activates VGA mode, though VGA_Active is not included in the

counterexample since its value is not directly relevant to the property. In step 3, the VS Pitch

Wheel is rotated, which clears VGA mode. This does not actually clear LGA mode in step 3

(though LGA mode would be cleared in step 4), but due to the naming error, the output variable

LGA_Active is incorrectly set to false, making it appear that LGA mode has been cleared.

This example illustrates several important points about model checking. First, the model checker

will produce a counterexample if it can invalidate a property, but it may not be the best

counterexample for human comprehension. In understanding a counterexample, changes in

values are often important clues (for example the GA switch being pressed in step 2), but the

model checker may also change values that have no impact on outputs. For example, the HDG

switch is pressed in step 2, but this is not relevant since it is masked due to event prioritization by

the pressing of the GA switch. Finally, though not demonstrated here, if the model can be

simulated it may be even more helpful to step through the simulation using the input values

provided by the counterexample.

4.4.2.2.2 FLC Select Error
Our second example is a much more subtle design error that probably would not have been found

through testing. It also would have allowed two vertical modes to be active while an overspeed

condition existed. The error was made in the specification of the selection logic for FLC mode

and is shown in Table 48.

Table 48 – FLC Select Error

Condition 1 2 3
FLC_Switch_Pressed T - -
VAPPR_Active F - -
Overspeed - T -
ALT_Active - F -
ALTSEL_Active - F -
 TRUE TRUE FALSE

150

The error was detected while trying to prove that no more than one vertical mode is ever active.

The counterexample produced by the Kind model checker is shown in Figure 115.

 Step 1 Step 2
Input Signals
ALTSEL_Capture_Cond_Met false false
ALTSEL_Target_Changed false false
ALTSEL_Track_Cond_Met false false
ALT_Switch false true
APPR_Switch false false
FD_Switch false true
FLC_Switch false true
GA_Switch true false
HDG_Switch false false
Is_AP_Engaged false true
Is_Offside_VAPPR_Active false false
Is_Offside_VGA_Active false false
LAPPR_Capture_Cond_Met false false
NAV_Capture_Cond_Met false false
NAV_Switch false false
Offside_FD_On false false
Overspeed false true
Pilot_Flying_Side true true
SYNC_Switch true false
Selected_NAV_Frequency_Changed false false
Selected_NAV_Source_Changed false false
VAPPR_Capture_Cond_Met false false
VS_Pitch_Wheel_Rotated false true
VS_Switch false true

Output Signals
ALTSEL_Active false false
ALT_Active false true
FLC_Active false true
PITCH_Active true false
VAPPR_Active false false
VGA_Active false false
VS_Active false false

Figure 115 – Counterexample for FLC Select Error

In the initial step PITCH mode is active as expected. In the second step, the ALT switch is

pressed, activating ALT mode. However, an overspeed condition also occurs in the second step,

activating FLC mode. This occurred because of a design decision to never mask an overspeed

condition in the Event_Prioritization logic of Section 4.3.2.1.

151

In this situation, precedence should be given to the pilot’s selection of ALT mode to hold the

aircraft at the current altitude. To enforce this, the FLC selection logic of Table 48 must be

modified to return false if ALT will become active in this step and not just if it is already active.

A similar change must be made if ALTSEL will become active in this step. The correct logic for

FLC Select is shown in Table 29 on page 123.

It is worth noting that this error would have been very difficult to detect through testing since it

depends on two events (the pilot pressing the ALT switch and the start of an overspeed

condition) on the exact same step. It also would have been very difficult to find through

inspection since very few reviewers would catch a corner condition such as this. The error also

has an unknown impact on safety since it’s not clear what the behavior of the aircraft would be

with two flight control laws active at the same time.

4.4.2.2.3 ALTSEL Select Error
The last error illustrates how execution order can affect the behavior of a Stateflow model in

subtle ways. As discussed in Section 4.3.1.4.4, ALTSEL mode is to be cleared when ALT,

VAPPR or VGA are active and selected when none of them are active. This requirement is

captured in the property of Figure 116 below.

--
-- If the mode annunciations are on, ALTSEL mode shall be selected if
-- none of ALT, VAPPR, or VGA mode are active.
--
 ALTSEL_Selected_If_Not_ALT_VAPPR_VGA_Active = true ->
 Modes_On and not (ALT_Active or VAPPR_Active or VGA_Active) => ALTSEL_Selected;

 check ALTSEL_Selected_If_Not_ALT_VAPPR_VGA_Active;

Figure 116 – ALTSEL Select Error (Lustre)

However, the Kind model checker was able to falsify this property in a few seconds, producing

the counterexample shown in Figure 117.

152

Input Signals
ALTSEL_Capture_Cond_Met true false false
ALTSEL_Target_Changed false false true
ALTSEL_Track_Cond_Met false false false
ALT_Switch false false true
APPR_Switch false false true
FD_Switch false false true
FLC_Switch false false true
GA_Switch false true false
HDG_Switch false false true
Is_AP_Engaged false false false
Is_Offside_VAPPR_Active false false false
Is_Offside_VGA_Active false false true
LAPPR_Capture_Cond_Met true false false
NAV_Capture_Cond_Met false false false
NAV_Switch false false true
Offside_FD_On true false false
Overspeed false false false
Pilot_Flying_Side false false false
SYNC_Switch false false true
Selected_NAV_Frequency_Changed false false false
Selected_NAV_Source_Changed false false false
VAPPR_Capture_Cond_Met false false false
VS_Pitch_Wheel_Rotated false true false
VS_Switch false false true

Output Signals
ALTSEL_Selected true true false
ALT_Active false false false
Modes_On false true true
VAPPR_Active false false false
VGA_Active false true false

Figure 117 – Counterexample for ALTSEL Select Error

In step 1 ALTSEL mode is selected with ALT, VAPPR, and VGA cleared as expected. In step 2,

the GA Switch is pressed, causing VGA mode to become active. However, ALTSEL mode does

not clear as expected. In step 3, the SYNC switch is pressed, clearing VGA mode. However,

ALTSEL mode now clears.

This unexpected behavior occurred because in the original model, ALTSEL mode was assigned

to execute immediately after ALT mode and before VAPPR and VGA mode. As a result, the

ALTSEL selection logic of Table 35 on page 127 referred to the value of ALT_Active after ALT

mode had executed and the values of VAPPR_Active and VGA_Active before VAPPR and VGA

mode had executed. As a result, there was a one-step delay in the reaction of ALTSEL mode to

153

changes in VAPPR and VGA mode while changes in ALT mode were processed in the same

step.

While this was not a particularly serious error, it does violate the original requirement. It could

lead to considerable confusion during debugging, and it would also be very difficult to find using

testing or reviews.

Fortunately, this error was easily fixed by assigning ALTSEL mode to execute after ALT,

VAPPR, and VGA modes but before PITCH mode. To make this clear, the position of ALTSEL

mode was changed so it was positioned immediately before PITCH mode.

4.4.3 Verification of the Mode Logic Using MATLAB Design Verifier

It is also possible to formally state and verify properties using MATLAB Design Verifier.

Properties can be specified either graphically as Simulink/Stateflow models or textually as

MATLAB function blocks. For example, the graphical specification of the requirement that at

least one lateral mode shall be active is shown in Figure 118.

Figure 118 – At Least One Lateral Mode Active (Design Verifier)

This Simulink block simply computes the OR of the output signals for each active mode. The

circular “P” icon is a proof objective block from the Design Verifier library. When Design

Verifier is invoked on the model, it will attempt to prove that its value is always true (or

whatever value has been specified in its dialog box).

At_Least_One_Lateral_Mode_Active:
 At least one lateral mode shall be active.

OR

OR

At_Least_One_Lateral_Mode_Active

5
LGA_Active

4
LAPPR_Active

3
NAV_Active

2
HDG_Active

1
ROLL_Active

154

The specification of the slightly more complex requirement that NAV mode shall become active

when the NAV capture condition is met is shown Figure 119.

Figure 119 – NAV Active When Capture Cond Met (Design Verifier)

The implication (A ==> B) block used in Figure 119 is also part of the Design Verifier library. It

returns true if the antecedent A is false or the consequent B is true. Note this property is true only

when the selected NAV source and frequency are not being changed and a pilot flying transfer is

not occurring and the mode annunciations are on and no higher priority event is masking the

capture condition.

To illustrate the textual specification of properties, the requirement that at least one vertical

mode is active is specified as a MATLAB function block in Figure 120.

function At_Least_One_Vertical_Mode_Active(PITCH_Active, VS_Active, FLC_Active,
 ALT_Active, ALTSEL_Active, VAPPR_Active, VGA_Active)
 % At least one vertical mode shall be active.
 P = (PITCH_Active || FLC_Active || ALT_Active ||
 ALTSEL_Active || VAPPR_Active || VGA_Active);

 sldv.prove(P);

Figure 120 – At Least One Vertical Mode Active (Design Verifier)

NAV_Active_When_Capture_Cond_Met:
 NAV mode shall become active if the NAV capture condition is met while NAV mode is armed.

z

1

z

1

AND

NOT

NOT

NOT

NOT

NAV_Active_When_Capture_Cond_Met

7
NAV_Active1

A

B

A ==> B

CHG

8
Modes_On

7
NAV_Active

6
NAV_Selected

5
No_Higher_Event_Than_NAV_Capture_Cond_Met

4
NAV_Capture_Cond_Met

3
Selected_NAV_Frequency_Changed

2
Selected_NAV_Source_Changed

1
Pilot_Flying_Side

155

The command sldv.prove(P) behaves similar to the Proof Objective of Figure 118 and instructs

Design Verifier to attempt to prove that P is true for all combinations of inputs and outputs.

For convenience, we group both the graphical and textual properties into one or more subsystem

blocks as shown in Figure 121.

Figure 121 – Properties Subsystem (Design Verifier)

This block has bus input signal (Inputs) that contains all the inputs to the Mode Logic and a bus

output signal (Outputs) that contains all the outputs from the mode logic. The bus signals are

defined using the Simulink Bus Editor and bus selectors are used to extract individual signals

that are used to define each property. Note that either inputs or outputs for the Mode Logic can

be used as inputs for a specific property.

The No_Higher_Event block outputs a bus signal that contains signals such as

No_Higher_Event_Than_HDG_Switch_Pressed. These signals serve the same purpose they did

in the Lustre specification - to independently specify the event prioritization logic in a form that

I O

No_Higher_Event

Pilot_Flying_Side

Selected_NAV_Source_Changed

Selected_NAV_Frequency_Changed

NAV_Capture_Cond_Met

No_Higher_Event_Than_NAV_Capture_Cond_Met

NAV_Selected

NAV_Active

Modes_On

NAV_Active_When_Capture_Cond_Met

[Outputs][Inputs]

[Outputs]

[Outputs]

[Inputs]

[Outputs]

[Outputs]

[Outputs]

PITCH_Active

VS_Active

FLC_Active

ALT_Active

ALTSEL_Active

VAPPR_Active

VGA_Active

At_Most_One_Vertical_Mode_Active

At_Most_One_Vertical_Mode_Active

ROLL_Active

HDG_Active

NAV_Active

LAPPR_Active

LGA_Active

At_Most_One_Lateral_Mode_Active

PITCH_Active

VS_Active

FLC_Active

ALT_Active

ALTSEL_Active

VAPPR_Active

VGA_Active

At_Least_One_Vertical_Mode_Active

At_Least_One_Vertical_Mode_Active

ROLL_Active

HDG_Active

NAV_Active

LAPPR_Active

LGA_Active

At_Least_One_Lateral_Mode_Active

2
Outputs

1
Inputs

<ROLL_Activ e>

<HDG_Activ e>

<NAV_Activ e>

<LAPPR_Activ e>

<LGA_Activ e>

<ROLL_Activ e>

<HDG_Activ e>

<NAV_Activ e>

<LAPPR_Activ e>

<LGA_Activ e>

<PITCH_Activ e>

<VS_Activ e>

<FLC_Activ e>

<ALT_Activ e>

<ALTSEL_Activ e>

<VAPPR_Activ e>

<VGA_Activ e>

<PITCH_Activ e>

<VS_Activ e>

<FLC_Activ e>

<ALT_Activ e>

<ALTSEL_Activ e>

<VAPPR_Activ e>

<VGA_Activ e>

<Pilot_Fly ing_Side>

<Selected_Nav_Source_Changed>

<Selected_Nav_Frequency _Changed>

<NAV_Capture_Cond_Met>

<No_Higher_Event_Than_NAV_Capture_Cond_Met>

<NAV_Selected>

<NAV_Activ e>

<Modes_On>

156

supports the succinct specification of mode logic properties. In this example, the signal

No_Higher_Event_Than_NAV_Capture_Cond_Met is being selected from the bus signal and

input to the property specified in Figure 119.

The actual model that is analyzed with Design Verifier is shown in Figure 122. This model

contains the Mode Logic model itself and the property subsystem block of Figure 121. It only

has one input, the bus signal for the Mode Logic inputs. The individual inputs for the Mode

Logic are extracted using bus selector blocks and input to the Mode Logic. The outputs from the

Mode Logic are collected into a bus signal using a bus creator block. The Mode Logic input and

output bus signals are then fed into the property subsystem block. If desired, several property

subsystem blocks with different subsets of the Mode Logic properties could be created.

When the “Prove Properties” function of Design Verifier is invoked on this model, Design

Verifier attempts to prove each proof obligation identified with a Proof Objective block or a

sldv.prove command. Design Verifier will create a detailed analysis report of the results. The

user can also request that a harness model be created to support the more detailed analysis of

counterexamples.

The examples available with this report include Simulink specifications of ten of the 118 Mode

Logic properties. Development and verification of the other 108 properties are left as an exercise

for the reader.

157

Figure 122 – Top-Most Model (Design Verifier)

Inputs

Outputs

Requirements

Pilot_Flying_Side

Is_AP_Engaged

Overspeed

Offside_FD_On

Is_Offside_VAPPR_Active

Is_Offside_VGA_Active

SYNC_Switch

FD_Switch

HDG_Switch

NAV_Switch

APPR_Switch

GA_Switch

VS_Switch

FLC_Switch

ALT_Switch

VS_Pitch_Wheel_Rotated

ALTSEL_Target_Changed

NAV_Capture_Cond_Met

LAPPR_Capture_Cond_Met

ALTSEL_Capture_Cond_Met

ALTSEL_Track_Cond_Met

VAPPR_Capture_Cond_Met

Selected_NAV_Source_Changed

Selected_NAV_Frequency_Changed

Modes_On

FD_On

Independent_Mode

Active_Side

ROLL_Selected

ROLL_Active

HDG_Selected

HDG_Active

NAV_Selected

NAV_Active

LAPPR_Selected

LAPPR_Active

LGA_Selected

LGA_Active

PITCH_Selected

PITCH_Active

VS_Selected

VS_Active

FLC_Selected

FLC_Active

ALT_Selected

ALT_Active

ALTSEL_Selected

ALTSEL_Active

ALTSEL_Track

VAPPR_Selected

VAPPR_Active

VGA_Selected

VGA_Active

Mode_Logic

1
Inputs

<Pilot_Flying_Side>

<Is_AP_Engaged>

<Overspeed>

<Offside_FD_On>

<Is_Offside_VAPPR_Active>

<Is_Offside_VGA_Active>

<Selected_Nav_Frequency_Changed>

<Selected_Nav_Source_Changed>

<VAPPR_Capture_Cond_Met>

<ALTSEL_Track_Cond_Met>

<ALTSEL_Capture_Cond_Met>

<LAPPR_Capture_Cond_Met>

<NAV_Capture_Cond_Met>

<ALTSEL_Target_Changed>

<VS_Pitch_Wheel_Rotated>

<ALT_Switch>

<FLC_Switch>

<VS_Switch>

<GA_Switch>

<APPR_Switch>

<NAV_Switch>

<HDG_Switch>

<FD_Switch>

<SYNC_Switch>

158

5 Case Study: Abstract Interpretation
This section illustrates the use of abstract interpretation to verify the correctness of the source

code implementation of one of the flight control modes for the example system. The Heading

Control Law source code consists of C code generated from a Simulink model of the controller.

We will check a variety of non-functional properties related to the run-time behavior of the code

using the Polyspace and Astrée abstract interpretation tools.

The rest of the chapter is organized as follows. Section 5.1 provides an overview of the Heading

Control model and the source code generated from it. It also describes the kinds of properties

that will be checked by abstract interpretation. Section 5.2 describes the software verification

plan for the Heading Control source code, identifying the life-cycle data items to be produced,

the DO-178C objectives to be satisfied, and tool qualification issues. Sections 5.3 and 5.4

describe the formal verification results using Astrée and Polyspace, respectively.

5.1 Overview of the Heading Control Model

The Heading Control Law is one of the flight modes in the FGS that is selected by the mode

logic. It computes aileron, elevator, rudder, and throttle commands based on sensor inputs and

commanded aircraft heading, altitude, and speed. For this case study, we have used a publicly

available model provided by researchers at the University of Minnesota (UMN). A detailed

description of the model and its use in an Unmanned Aerial Vehicle (UAV) flight test platform

can be found in [3]. The complete flight software implemented by UMN consists of a sensor

data acquisition module, a navigation module, a guidance law, a main control law, and a number

of other modules associated with sensor faults and system identification. The heading control

law that we are using is one mode available in the main control law. It is comparable in many

ways to flight control laws that would be found in commercial aircraft. The other functions of

the UMN flight test platform would be carried out by other parts of our example system.

5.1.1 Heading Control Model and Code

The heading control software is implemented as a single thread that executes at 50Hz. The

design is implemented as a two-tiered structure with inner and outer control loops (Figure 123).

The inner loop controller (shown in blue) tracks the desired pitch (theta) and roll (phi) angles of

the aircraft while damping out oscillations present in the open-loop dynamics. It responds to

159

inputs produced by the three outer loop controllers. The Altitude Tracker produces a pitch angle

reference command, and the Velocity Tracker produces a throttle command. Both the Altitude

Tracker and Velocity Tracker use proportional-integral control and implement integrator anti-

windup logic to safely limit the commands provided to the inner loop control system. The

throttle command is constrained between 0 and 1, and the pitch angle reference is constrained to

±20º. The heading controller (Psi Tracker) uses proportional gain, and the roll angle reference is

constrained directly at ±45º. This limiting is required to prevent the aircraft from rolling over due

to large ground track angle step commands.

Figure 123 – Heading Control Law Model

The MATLAB Real-Time Workbench (RTW) was used to generate C code for the heading

control model. The target platform selected to generate the source code for the Simulink model

was the Embedded Real Time (ERT) target environment. RTW generated library files, header

files, the heading_control.c and ert_main.c. The heading_control.c and the ert_main.c were

included as the source files in the Polyspace project. The C header files also had to be included

in the project to run the verification successfully. RTW generates functions for each block in the

Simulink model. There are 856 lines of code in heading_control.c and 101 lines of code in

ert_main.c. A fragment of the C code for heading_control.c is shown in Figure 124.

1
control_cmd

[V_s]

[V_cmd]

[theta_cmd]

[psi_cmd]

[phi]

[theta]

[psi]

[r]

[phi_cmd]

[h_cmd]

[p]

[h]

[q]

0

flaps

theta_cmd [rad]

theta [rad]

q [rad/sec]

r [rad/sec]

phi_cmd [rad]

phi [rad]

p [rad/sec]

elevator [rad]

rudder [rad]

aileron [rad]

baseline control

V_cmd [m/s]

V_s [m/s]
Throttle

Velocity Tracker

psi_cmd [rad]

psi [rad]
phi_cmd [rad]

Psi Tracker-1

[V_cmd]

[V_s]

[r]
[psi_cmd]

[psi]
[phi]

[h_cmd]

[q]

[theta]

[p]

[h]

h_cmd [m/s]

h [m]
theta_cmd [rad]

Altitude Tracker

2
ref_cmds

1
feedback

160

/*
 * File: heading_control.c
 *
 * Code generated for Simulink model 'heading_control'.
 *
 * Model version : 1.153
 * Simulink Coder version : 8.1 (R2011b) 08-Jul-2011
 * TLC version : 8.1 (Jul 9 2011)
 * C/C++ source code generated on : Fri Mar 01 16:24:21 2013
 *
 * Target selection: ert.tlc
 * Embedded hardware selection: Generic->32-bit x86 compatible
 * Code generation objectives: Unspecified
 * Validation result: Not run
 */

#include "heading_control.h"
#include "heading_control_private.h"

/* user code (top of source file) */
#include "../../../Software/FlightCode/control/rtw_grt_control.c"

/* Block signals (auto storage) */
BlockIO_heading_control heading_control_B;

/* Block states (auto storage) */
D_Work_heading_control heading_control_DWork;

/* External inputs (root inport signals with auto storage) */
ExternalInputs_heading_control heading_control_U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs_heading_control heading_control_Y;

/* Real-time model */
RT_MODEL_heading_control heading_control_M_;
RT_MODEL_heading_control *const heading_control_M = &heading_control_M_;

/* Model step function */
void heading_control_step(void)
{
 real_T denAccum;
 real_T u;
 real_T u_0;

 /* DiscreteIntegrator: '<S3>/Discrete-Time Integrator' */
 heading_control_B.DiscreteTimeIntegrator =
 heading_control_DWork.DiscreteTimeIntegrator_DSTATE;

 /* Gain: '<S3>/Gain1' */
 heading_control_B.Gain1 = 0.04 * heading_control_B.DiscreteTimeIntegrator;

 /* DiscreteTransferFcn: '<S3>/Discrete Transfer Fcn' */
 denAccum = 0.0392 * heading_control_DWork.DiscreteTransferFcn_DSTATE;
 heading_control_B.DiscreteTransferFcn = denAccum;

Figure 124 – Fragment of Autogenerated C Code for Heading Control Model

161

5.1.2 Properties to Be Checked

Abstract interpretation is a technique which can be applied at the source code level in order to

prove the absence of runtime errors including division by zero, arithmetic overflow, and out-of-

bounds array indexing. This kind of non-functional requirement is in general difficult to verify

using testing, since runtime errors might only occur under certain very special circumstances that

are not exposed in any test case. In contrast, abstract interpretation can guarantee that certain

classes of runtime errors cannot occur under any circumstances.

Typical run-time errors that can be detected by abstract interpretation include:

• Unreachable code

• Out of bounds array index

• Division by zero

• Non-initialized variables

• Scalar and float overflows

• Uninitialized return value

• Shift operation errors

• Illegal pointer dereferencing

• Non-initialized pointers

• User assertions

• Non-termination of call

• Non-termination of loop

• Standard library function call error

Roughly speaking, abstract interpretation tools compute over-approximations of the set of all

possible executions of a given program. This means that the tool does not only consider program

executions which can really occur, but also executions which cannot occur because they would

not respect the relations which exist between certain variables of a program. This is often

referred to as the precision of an analysis: higher precision is more difficult to achieve, but

means that there are fewer impossible executions which are included in the analysis.

A low precision analysis is easier to achieve. However, in this case the analyzer might indicate

that a runtime error could happen at a certain point in a program, but none of the program

162

executions which can really occur will provoke this error. Such errors are called false alarms,

and if they occur, the precision of the analysis must be increased by user interaction. A tool that

produces a high number of false alarms not only results in an increased workload, but is

annoying to use and is likely to be rejected by developers.

5.2 Software Verification Plan

In this case study, we will use abstract interpretation to verify the outputs of the software coding

and integration process. In the example, this corresponds to verification that the source code

implementing the Heading Control Law is correct. Current abstract interpretation tools are best

suited to checking for run-time errors in the code rather than satisfaction of behavioral

requirements, so this is where we will focus our effort. The purpose of these verification

activities is to detect any errors that may have been introduced during the software coding

process.

Verification will be performed on source code generated from the Simulink control law model.

Our primary objective is to check the code for accuracy and consistency (DO-333 Section

6.3.4.f). We can also check for unreachable code. We assume that the code will be tested

against high and low level requirements-based test cases as part of a traditional test-based

verification process.

Astrée is a C code analysis tool which has been developed by the team of Professor Patrick

Cousot at the Ecole Normale Supérieure in Paris [2] in close cooperation with Airbus. Therefore,

Astrée provides some analysis capabilities which have been designed especially for real-time

control software such as the code generated from SCADE models. In recent years, Astrée has

been commercialized by the German company AbsInt, and features for the analysis of more

general programs have been added, as well as a powerful GUI [1].

An example of a feature which enables the proof of absence of overflow errors in control

applications is the so-called filter domain, which is able to express invariants of first and second

order filters implemented by the analyzed code. Typically, filters have invariants in the form of

ellipsoids, which cannot be described by linear expressions. Astrée tries to find patterns in the

code which correspond to filters, and then uses the filter domain to compute invariants, taking

into account that floating-point rounding errors can occur.

163

Polyspace is a commercial static analysis tool based on abstract interpretation and sold by

MathWorks. It verifies both C and C++ code. Polyspace identifies the potential for overflow,

divide by zero, out of bound array access, and other runtime errors. Polyspace provides some

support for automated analysis to check compliance with the Software Architecture. It also

supports compliance checking of the software against coding standards.

Since some runtime errors are dependent on the target CPU and operating system, the user must

specify the type of CPU and operating system used in the target environment before running a

verification. Other configuration parameters support tailoring of the precision of the analysis:

• Precision Level: This identifies the abstraction algorithm that is used to model the state of

the program that is to be verified. It provides a trade-off between precision and analysis

time.

• Verification Level: This indicates the Software Safety Analysis Level (0–4). This

specifies how many times the abstract interpretation algorithm passes through the code.

The deeper the verification goes the more precise it is. Each iteration results in a deeper

level of propagation of calling and called context.

Polyspace can perform verification against some coding standards, such as MISRA C. This

includes enforcing naming conventions checking for implicit type conversions, and detecting

other error-prone coding practices. The tool has features to select only some rules among the set

of all the available custom rules.

Polyspace provides some limited support to verify compliance with the software architecture. It

generates a call tree that must be manually checked to see if it preserves the software architecture

of the original model. It also determines the procedures and functions that have not been used.

There are also several open source abstract interpretation tools available, but which are outside

the scope of this case study. Frama-C [6] is a suite of static analysis tools for software written in

C. Its Value Analysis plugin uses abstract interpretation to compute a set of possible values for

each variable in a program, and operates in both automatic and user-guided modes. IKOS is a

C++ library designed to facilitate the development of sound static analyzers based on Abstract

Interpretation [16]. IKOS provides a generic and efficient implementation of state-of-the-art

Abstract Interpretation data structures and algorithms, such as control-flow graphs, fixpoint

iterators, numerical abstract domains, etc.

164

5.2.1 Life Cycle Data Items

Low-Level Software Requirements The low-level software requirements are specified as a

MATLAB Simulink model in the file heading_control.mdl, along with model libraries

Controller_Lib.mdl and Actuator_Lib.mdl, and a collection of associated scripts.

Source Code The source code to be analyzed is C code autogenerated from the Simulink Low-

Level Requirements using the MathWorks RTW. The code is contained in the files ert_main.c,

heading_control.c, and heading_control.h, along with several other header files.

No separate behavioral requirements are verified in this case study. Abstract interpretation is

being used to verify a standard set of run-time properties of C code.

5.2.2 Objectives to Be Satisfied

The DO-178C and DO-333 objectives to be satisfied through abstract interpretation are

summarized in Table 49. A more detailed discussion of how each objective is satisfied is

provided in this section.

165

Table 49 – Summary of Objectives Satisfied by Abstract Interpretation

Objective Description A B C D Notes

A-5.1 Source Code complies with
low level requirements.

 Not addressed

A-5.2 Source Code complies with
software architecture.

 Not addressed

A-5.3 Source Code is verifiable. □ □ This may be partially satisfied by demonstrating
that the code conforms to input restrictions for the
analysis tool.

A-5.4 Source Code conforms to
standards

□ □ □ This may be partially or fully satisfied by different
analysis tools, depending upon the coding
standards and tool qualification.

A-5.5 Source Code is traceable to
low-level requirements.

 Not addressed

A-5.6 Source Code is accurate and
consistent.

□ □ □ The absence of some classes of run-time errors is
established through analysis with abstract
interpretation tools.

A-5.7 Output of software integration
process is complete and
correct.

 Not addressed

A-5.8 Parametric Data Item File is
correct and complete.

 Not addressed

A-5.9 Verification of Parametric Data
Item File is achieved.

 Not addressed

FM.A-5.10 Formal analysis cases and
procedures are correct.

■ ■ ■ Established as part of tool qualification

FM.A-5.11 Formal analysis results are
correct and discrepancies
explained.

■ ■ ■ Established by review

FM.A-5.12 Requirements formalization is
correct.

■ ■ ■ Established as part of tool qualification

FM.A-5.13 Formal method is correctly
defined, justified, and
appropriate.

■ ■ ■ ■ Established by review

■ Full credit claimed □ Partial credit claimed Satisfaction of objective is at applicant’s discretion

Objective A-5.3 – Source Code is verifiable. This objective is met by demonstrating that the code

to be analyzed conforms to any input restrictions of the analysis tool, and that it was, in fact,

accepted by the tool. Any portion of the code that does not conform to the tool restrictions or

that is not processed by the tool for some other reason will have to be verified by some other

method.

Objective A-5.4 – Source Code conforms to standards. Some abstract interpretation tools will

check conformance to standard or user-defined coding rules. This may be used to fully or

166

partially satisfy the objective, depending upon the particular coding standards to be enforced.

Tool qualification for checking conformance to standards would also be required.

Objective A-5.6 – Source Code is accurate and consistent. This objective is met by verifying the

absence of run-time errors in the Source Code using an abstract interpretation tool. False alarms

generated by the tool must be justified by separate analysis or testing. Any portion of the code

for which the tool provides an “indeterminate” result must be verified through other methods.

Objective FM.A-5.10 Formal analysis cases and procedures are correct. This objective is met

through review to ensure that the analyses and procedures satisfy the objectives for which credit

is claimed. Since the properties to be checked are defined implicitly in the analysis tool, some

aspects of tool qualification will be used to satisfy this objective.

Objective FM.A-5.11 Formal analysis results are correct and discrepancies explained. This

objective is met through review of the analysis results to ensure that all of the code has been

analyzed, and that any false alarms or indeterminate results from the tool have been justified

through reviews or further analysis.

Objective FM.A-5.12 Requirements formalization is correct. This objective is met through tool

qualification since the properties to be checked are implicit in the tool itself.

Objective FM.A-5.13 Formal method is correctly defined, justified, and appropriate. This objective

is met through a review to ensure:

a. All notations used for formal analysis are verified to have precise, unambiguous,

mathematically defined syntax and semantics. Abstract interpretation methods are based

upon the formal semantics of the programming language to be analyzed.

b. The soundness of each formal analysis method is justified. Abstract interpretation tools

may return an “indeterminate” result for some portions of the code, meaning that the tool

was unable to conclusively determine that code to be error-free. Evidence of soundness

should be provided through citations to publications addressing basis of soundness for the

underlying analysis method.

c. Assumptions related to each formal analysis are described and justified. It is typical for

proof of the absence of over/underflow to hold only if the program inputs stay within

167

defined ranges. These bounds are assumptions that must be documented, as described in

the case study analysis.

In this case study, we have primarily demonstrated use of abstract interpretation for a specific

objective, the absence of runtime errors as required by objective A-5.6, Source Code is accurate

and consistent. The software tools we have used may also be used to partially satisfy a number

of other objectives, including objectives related to Executable Object Code (EOC). In general,

taking credit for EOC objectives in Table FM.A-6 based on activities performed on the source

code requires that the equivalence of EOC and source code be established (see DO-333

paragraph 6.7.f).

Abstract interpretation tools have also been used to compute worst case execution time and stack

usage. These analyses may be useful in satisfying other objectives such as those specified in

FM.6.7.e and FM.A-6.5, Executable Object Code is compatible with target computer. These

evaluations are outside the scope of the current case study.

5.2.3 Tool Qualification Issues

A DO-178C/DO-330 tool qualification kit is available for Polyspace from the vendor,

MathWorks. MathWorks provides artifacts and evidence to support qualification under Criteria

2 since they suggest that the tool may be used to reduce object code verification processes in

addition to automating source code verification processes. If this tool is being used to verify

Level A or B software, this would map to TQL-4, while for Level C or D software this would

map to TQL-5. The Polyspace qualification kit includes development artifacts and an extensive

list of TORs. Test cases are defined with input code for the errors that the tool is intended to

detect.

For Astrée, a Qualification Support Kit (QSK) is available from its vendor, AbsInt. The currently

available QSK can be used for qualification up to level A under DO-178B.

5.3 Analysis of the Heading Control Law Source Code with Astrée

Astrée can be used to prove that no overflow errors can occur during the execution of the control

code, but this is only possible if the user does some fine-tuning in order to eliminate false alarms.

This fine-tuning is done by indicating to Astrée that at certain points in the program, different

cases need to be distinguished, which is called partitioning in the terminology of Astrée. To find

168

the places in the code where partitioning is needed, and to determine the conditions which

distinguish the different cases in the partitioning, the user needs to have some understanding of

the implemented system.

Astrée initially reported four potential issues (or alarms) in the source code corresponding to C

statements which might cause floating-point overflow errors. The Astrée graphical user interface

allows one to find the code line which corresponds to an alarm easily by clicking on the alarm

message, as shown in Figure 125.

Figure 125 – Astrée Analysis Results

The alarms can be explained as follows: The code of the control law implements four integrators,

which are protected from overflow by anti-windup mechanisms. However, the abstraction made

by Astrée keeps the tool from detecting the effectiveness of the overflow prevention. To enable

Astrée to prove that these mechanisms are effective, the analysis needs to be guided by some

partitioning information provided by the user.

By analyzing the way the anti-windup-mechanism works, the necessary analysis partitions can

be found. For every integrator, case distinctions need to be done according to two criteria: firstly,

the case where the input value of the integrator is zero or positive must be distinguished from the

case where the value is negative. Secondly, three cases must be distinguished depending on the

169

internal value of the integrator: the case where the value is within a certain interval must be

distinguished from the case where it is above it and the case where it is below this interval.

__ASTREE_partition_control if (integrator > 25.01);
__ASTREE_partition_control if (integrator < -25.01);
__ASTREE_partition_control if (diff1 < 0.0);

sum1 = 0.04 * integrator + 0.15 * diff1;

Figure 126 – Astrée Directives to Define Partitions

Astrée is in general not able to provide direct feedback to show where the case partitions must be

done, but this must be determined by the user. However, an experienced user can find the

necessary fine-tuning relatively easily. Also, there is some hope that future versions of Astrée

will be able to handle this kind of program automatically, since new partitioning heuristics are

being developed by AbsInt. However, it is not always possible to fine-tune the analysis in such a

way that all false alarms disappear.

Astrée is also able to detect dead code, which is reported in the GUI by highlighting unreachable

code lines. Astrée has some powerful features to detect dead code by determining for example

that a given condition will always be evaluated to a constant value.

5.4 Analysis of the Heading Control Law Source Code with Polyspace

A summary of the results obtains from applying Polyspace to the Heading Control Law source

code is shown in Table 50.

Table 50 – Initial Polyspace Analysis Results

Run-Time Checks

Polyspace Verifier Enabled

Number of Result Sets x 1

Number of Red Run-Time Checks 0

Number of Gray Run-Time Checks 12

Number of Orange Run-Time Checks 13

Number of Green Run-Time Checks 478

Proven 97.4%

Pass/Fail -

170

Possible runtime errors were detected in two categories indicated by color coding: Gray checks

correspond to unreachable code and orange checks corresponding to unproven or potential

runtime errors. No proven runtime errors (reported in red) were detected.

For the unreachable code, Polyspace reports an error such as:

 if-condition always evaluates to false at line 779 (column 6)
 block ends at line 782 (column 2)

Upon further investigation, it was determined that all of the unreachable code was the result of

branch conditions in the anti-windup logic for the integrators which always evaluate to false.

The model constant ‘gain_sign’ is used to select a positive or negative value in the logic (see

Figure 127). Therefore, once this constant is set in the application, the unused branch of the

logic can be optimized away by either the code generator or the compiler, eliminating the

unreachable code.

Figure 127 – Anti-Windup Logic

The unproven orange checks all corresponded to potential floating-point overflow errors (Table

51). Polyspace reports an error of the form:

1
Out

gain_sign

gain_sign

gain_sign

gain_sign

-C-

min deflection limit

-C-

min deflection limit

-C-

max deflection limit

-C-

max deflection limit

<=

>=

<=

>=

DOC

Text
README

AND

AND

AND

OR

AND

OR

AND

up

u

lo

y

< 0

> 0

> 0

< 0 2
In

1
cmd

171

heading_control_B.Sum1 = heading_control_U.ref_cmds[1]

OVFL.10 Unproven : operation [-] on float may overflow (on MIN or MAX bounds of
FLOAT64)
 If appropriate, applying Data Range Specification (DRS) to initialization of
 heading_control_U by the main generator, may remove this orange.
 If appropriate, applying DRS to initialization of heading_control_DWork by the
 main generator, may remove this orange.
 operator - on type float 64
 left: full-range [-1.7977E+308 .. 1.7977E+308]
 right: [-7.047E+306 .. 7.047E+306]
 result: full-range [-1.7977E+308 .. 1.7977E+308]

For the variables indicated, this means that it is not possible to guarantee that their values will

not overflow unless some additional information about the system is provided. Polyspace

provides a mechanism to specify range limits on inputs to the system (Data Range Specification,

or DRS). These limits can then be used to more precisely compute the actual range of the

variables whose values are computed from these inputs. Once a DRS is set up for each of the

system inputs, the potential overflow errors are eliminated.

Table 51 – Unproven Runtime Checks

Check Function Line Col. Detail Jus. Class Status

 OVFL.10 heading_control_step() 65 57 Unproven : operation [-]
on float may overflow
(on MIN or MAX bounds
of FLOAT64)

No - -

Polyspace can also be used to check code for conformance to standards. This can include

standard coding rules (such as MISRA-C) or user-defined rules. This can be used to partially

satisfy objective A-5.4, Source Code conforms to standards. To demonstrate, the heading

control code was analyzed for conformance with the MISRA-C standard. The results are shown

in Table 52.

Table 52 – Coding Rules Analysis

File Warnings Errors Total

C:\rw_apps\polyspace_workspace\Heading_Control\source\heading_control.c 278 0 278

C:\rw_apps\polyspace_workspace\Heading_Control\include\rtwtypes.h 16 0 16

Total 294 0 294

172

6 Conclusion
The three case studies in this report illustrate the use of different formal methods tools to satisfy

the certification objectives defined in DO-178C and its accompanying formal methods

supplement, DO-333. These case studies provide a practical demonstration of theorem proving,

model checking, and abstract interpretation applied to a Flight Guidance System design that is

representative of systems deployed in commercial aircraft. The case studies show how the

evidence produced by these three techniques might be used in an actual certification effort. Each

technique has strengths and weaknesses and each could be applied to different life cycle data

items and different objectives from those described here.

Formal methods and tools have already been used to a limited extent in several actual aircraft

certification efforts. However, due to the proprietary nature of the models, code, and other

artifacts, it has not been possible to make these results public. We hope that by providing a

collection of publicly available examples, our case studies will be useful to industry and

government personnel in understanding both the new certification guidance in DO-333 and the

benefits that can be realized through the use of formal methods.

173

7 References
[1] AbsInt, Astrée Run-Time Error Analyzer, http://www.absint.com/astree/index.htm.

[2] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux & Xavier Rival. Design and Implementation of a Special-Purpose Static Program
Analyzer for Safety-Critical Real-Time Embedded Software, invited chapter in The Essence of
Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, T.
Mogensen and D.A. Schmidt and I.H. Sudborough (Editors). Lecture Notes in Computer Science,
vol. 2566, pp. 85-108, Springer.

[3] A. Dorobantu, W. Johnson, FAP. Lie, A. Murch, YC. Paw, D. Gebre-Egziabher, and G.J. Balas,
“An Airborne Experimental Test Platform: From Theory to Flight,” in Proceedings of the 2013
American Control Conference, Washington DC, June 2013.

[4] M. C. Escher, Relativity, http://en.wikipedia.org/wiki/Relativity_(M._C._Escher).

[5] Federal Aviation Administration, Joint Advisory Circular: Flight Guidance System Appraisal,
AC/ACJ 25.1329, 2001.

[6] Frama-C Software Analyzers, http://frama-c.com.

[7] Mike Gordon, Why Higher-Order Logic is a Good Formalism for Specifying and Verifying
Hardware, Technical Report 77, Computer Laboratory, The University of Cambridge, 1985.

[8] Mike Gordon and Tom Melham, Introduction to HOL: A theorem-proving environment for higher-
order logic, Cambridge University Press, 1993.

[9] George Hagen and Cesare Tinelli, Scaling up the formal verification of Lustre programs with SMT-
based techniques, in Proceedings of the 8th International Conference on Formal Methods in
Computer-Aided Design (FMCAD'08), Portland, Oregon. IEEE, 2008.

[10] George Hagen. Verifying safety properties of Lustre programs: an SMT-based approach. PhD
dissertation. Department of Computer Science. The University of Iowa. December 2008.

[11] John Harrison, HOL-Light: A Tutorial Introduction, Proceedings of the First International
Conference on Formal Methods in Computer-Aided Design (FMCAD'96), LNCS, vol. 1166,
pp. 265-269, Springer Verlag, 1996.

[12] HOL4, http://hol.sourceforge.net/.

[13] HOL Light, http://www.cl.cam.ac.uk/~jrh13/hol-light/.

[14] JKind, https://github.com/agacek/jkind.

[15] Joe Hurd, Composable packages for higher order logic theories, in Proceedings of the 6th
International Verification Workshop (VERIFY 2010) (M. Aderhold, S. Autexier, and H. Mantel,
eds.), July 2010, http://gilith.com/research/papers.

[16] IKOS: Inference Kernel for Open Static Analyzers, http://ti.arc.nasa.gov/opensource/ikos/.

[17] Isabelle/HOL, http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[18] Nancy Leveson, L. Denise Pinnel, Sean David Sandys, Shuichi Koga and Jon Damon Reese,
Analyzing Software Specifications for Mode Confusion Potential, in Proceedings of a Workshop on
Human Error and System Development, pages 132-146, 1997.

[19] MathWorks, DO Qualification Kit for Polyspace, http://www.mathworks.com/products/do-178/

174

[20] Thomas Melham, Higher Order Logic and Hardware Verification, Cambridge Tracts in Theoretical
Computer Science, Number 31, Cambridge University Press, 1993.

[21] Steven P. Miller, Alan C. Tribble, Timothy M. Carlson, Eric J. Danielson, Flight Guidance System
Requirement Specification, NASA Contractor Report CR-2003-212426, June 2003.

[22] Steven P. Miller, Elise A. Anderson, Lucas G. Wagner, and Michael W. Whalen. Mats P.E.
Heimdahl, Formal Verification of Flight Critical Software, in Proceedings of the AIAA Guidance,
Navigation and Control Conference and Exhibit, San Francisco, August 15-18, 2005.

[23] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer, Software Model Checking Takes Off,
Communications of the ACM, Vol. 33, ISS 2, February, 2010.

[24] M. Norrish and K. Slind, The HOL System: Logic, 1998-2013, http://hol.sourceforge.net/.

[25] M. Norrish and K. Slind, HOL-4 Manual, 1998-2013, http://hol.sourceforge.net/.

[26] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL—A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283, Springer, 2002.

[27] ProofPower, http://www.lemma-one.com/ProofPower/index/index.html.

[28] Steven Obua and Sebastian Skalberg, Importing HOL into Isabelle/HOL, IJCAR (Ulrich Furbach
and Natarajan Shankar, eds.), Lecture Notes in Computer Science, vol. 4130, Springer, 2006.

[29] S. Owre and N. Shankar, The Formal Semantics of PVS, NASA Technical Report CS-1999-209321,
May, 1999.

[30] S. Owre, N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert, PVS Language System Guide 2.4,
SRI International, November 2001.

[31] S. Owre, N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert, PVS Language Reference Version
2.4, SRI International, November 2001.

[32] S. Owre, N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert, Prover Guide Version 2.4, SRI
International, November 2001.

[33] RTCA DO-178C, Software Considerations in Airborne Software, December 2011.

[34] RTCA DO-330, Software Tool Qualification Considerations, December 2011.

[35] RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A, December 2011.

[36] Trusted Extensions of Interactive Theorem Provers (TEITP) Workshop Summary Document.
http://www.cs.utexas.edu/~kaufmann/itp-trusted-extensions-aug-2010/

175

Appendix A Acronyms
ADS Air Data System

AFDX Avionics Full-Duplex Switched Ethernet

AHRS Attitude Heading Reference System

ALT Altitude Hold Mode

ALTSEL Altitude Select Mode

APPR Approach

AP Autopilot

BDD Binary Decision Diagram

DCP Display Control Panel

DRS Data Range Specification

EOC Executable Object Code

ERT Embedded Real Time

FCP Flight Control Panel

FCS Flight Control System

FGS Flight Guidance System

FD Flight Director

FGS Flight Guidance System

FLC Flight Level Change Mode

FMS Flight Management System

GA Go Around

HDG Heading Hold Mode

HOL Higher Order Logic

IAS Indicated Airspeed

176

ILS Instrument Landing System

LAPPR Lateral Approach Mode

LGA Lateral Go Around Mode

NAV Lateral Navigation Mode

PFD Primary Flight Display

PITCH Pitch Hold Mode

QSK Qualification Support Kit

ROLL Roll Hold Mode

RTW Real-Time Workbench

SMT Satisfiability Modulo Theories

TCC Type-Correctness Condition

TOR Tool Operational Requirements

TQL Tool Qualification Level

TTA Time-Triggered Architecture

UAV Unmanned Aerial Vehicle

UMN University of Minnesota

VAPPR Vertical Approach Mode

VGA Vertical Go Around Mode

VS Vertical Speed Mode

177

Appendix B Mode Logic Properties

--==
-- SAFETY PROPERTIES
--==

--
-- At least one lateral mode shall always be active
-- when the FD is displayed or the AP is engaged.
--
 At_Least_One_Lateral_Mode_Active =
 ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active or LGA_Active;

 check At_Least_One_Lateral_Mode_Active;

--
-- At most one lateral mode shall be active
-- when the FD is displayed or the AP is engaged.
--
 At_Most_One_Lateral_Mode_Active =
 (ROLL_Active =>
 not (HDG_Active or NAV_Active or LAPPR_Active or LGA_Active)) and
 (HDG_Active =>
 not (ROLL_Active or NAV_Active or LAPPR_Active or LGA_Active)) and
 (NAV_Active =>
 not (ROLL_Active or HDG_Active or LAPPR_Active or LGA_Active)) and
 (LAPPR_Active =>
 not (ROLL_Active or HDG_Active or NAV_Active or LGA_Active)) and
 (LGA_Active =>
 not (ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active));

 check At_Most_One_Lateral_Mode_Active;

--
-- At least one vertical mode shall always be active
-- when the FD is displayed or the AP is engaged.
--
 At_Least_One_Vertical_Mode_Active =
 PITCH_Active or VS_Active or FLC_Active or ALT_Active or ALTSEL_Active or
 VAPPR_Active or VGA_Active;

 check At_Least_One_Vertical_Mode_Active;

--
-- At most one vertical mode shall be active
-- when the FD is displayed or the AP is engaged.
--
 At_Most_One_Vertical_Mode_Active =
 (PITCH_Active =>
 not (VS_Active or FLC_Active or ALT_Active or ALTSEL_Active or
 VAPPR_Active or VGA_Active)) and
 (VS_Active =>
 not (PITCH_Active or FLC_Active or ALT_Active or ALTSEL_Active or
 VAPPR_Active or VGA_Active)) and
 (FLC_Active =>
 not (PITCH_Active or VS_Active or ALT_Active or ALTSEL_Active or
 VAPPR_Active or VGA_Active)) and
 (ALT_Active =>
 not (PITCH_Active or VS_Active or FLC_Active or ALTSEL_Active or
 VAPPR_Active or VGA_Active)) and
 (ALTSEL_Active =>

178

 not (PITCH_Active or VS_Active or FLC_Active or ALT_Active or
 VAPPR_Active or VGA_Active)) and
 (VAPPR_Active =>
 not (PITCH_Active or VS_Active or FLC_Active or ALT_Active or ALTSEL_Active or
 VGA_Active)) and
 (VGA_Active =>
 not (PITCH_Active or VS_Active or FLC_Active or ALT_Active or ALTSEL_Active or
 VAPPR_Active));

 check At_Most_One_Vertical_Mode_Active;

--
-- VGA mode shall be active if LGA mode is active (except for one step).
--
 LGA_Active_Implies_VGA_Active =
 pre LGA_Active and LGA_Active => pre VGA_Active;

 check LGA_Active_Implies_VGA_Active;

--
-- LGA mode shall be active if VGA mode is active (except for one step).
--
 VGA_Active_Implies_LGA_Active =
 pre VGA_Active and VGA_Active => pre LGA_Active;

 check VGA_Active_Implies_LGA_Active;

--
-- VAPPR mode shall be active only if LAPPR mode is active (except for one step).
--
 VAPPR_Active_Implies_LAPPR_Active =
 pre VAPPR_Active and VAPPR_Active => pre LAPPR_Active;

 check VAPPR_Active_Implies_LAPPR_Active;

--
-- FLC, ALT, ALTSEL, or PITCH mode shall be active
-- while an overspeed condition exists.
--
 Overspeed_Implies_FLC_ALT_ALTSEL_PITCH =
 Overspeed => FLC_Active or ALT_Active or ALTSEL_Active or PITCH_Active;

 check Overspeed_Implies_FLC_ALT_ALTSEL_PITCH;

--
-- PITCH mode shall be active for only one step while an overspeed condition exists.
--
 Overspeed_and_PITCH_Transitiory = true ->
 pre PITCH_Active and Overspeed => not PITCH_Active;

 check Overspeed_and_PITCH_Transitiory;

179

--==
-- FUNCTIONAL PROPERTIES
--==

--==
-- MODE ANNUNCIATIONS
--==

--
-- The mode annunciations shall be off at system start up.
--
 Modes_Off_At_Startup =
 not Modes_On -> true;

 check Modes_Off_At_Startup;

--
-- The mode annunciations shall be on if the AP is engaged.
--
 AP_Engaged_Implies_Modes_On = true ->
 Is_AP_Engaged => Modes_On;

 check AP_Engaged_Implies_Modes_On;

-
-- The mode annunciations shall be on if the offside FD is on.
--
 Offside_FD_On_Implies_Modes_On = true ->
 Offside_FD_On => Modes_On;

 check Offside_FD_On_Implies_Modes_On;

--
-- The mode annunciations shall be on if the onside FD is on.
--
 Onside_FD_On_Implies_Modes_On =
 FD_On => Modes_On;

 check Onside_FD_On_Implies_Modes_On;

--
-- The mode annunciations shall be on if and only if the onside FD is on,
-- the offside FD is on, or the AP is engaged.
--
 Modes_On_Iff_FD_On_or_AP_Engaged = true ->
 Modes_On = (FD_On or Offside_FD_On or Is_AP_Engaged);

 check Modes_On_Iff_FD_On_or_AP_Engaged;

--==
-- FLIGHT DIRECTOR
--==

--
-- The onside FD shall be off at system start up
--
 FD_Off_At_Startup = (not FD_On -> true);

 check FD_Off_At_Startup;

--
-- The onside FD shall turn on when the FD switch is pressed.

180

--
 FD_Switch_Turns_FD_On =
 not pre FD_On and RISING(FD_Switch)
 and No_Higher_Event_Than_FD_Switch_Pressed => FD_On;

 check FD_Switch_Turns_FD_On;

--
-- The onside FD shall turn on when the AP is engaged.
--
 AP_Engaged_Turns_FD_On =
 RISING(Is_AP_Engaged) => FD_On;

 check AP_Engaged_Turns_FD_On;

--
-- The onside FD shall be on when an overspeed condition exists.
--
 Overspeed_Implies_FD_On = true ->
 Overspeed => FD_On;

 check Overspeed_Implies_FD_On;

--
-- The onside FD shall turn on when the HDG switch is pressed.
--
 HDG_Switch_Turns_FD_On =
 RISING(HDG_Switch) and No_Higher_Event_Than_HDG_Switch_Pressed => FD_On;

 check HDG_Switch_Turns_FD_On;

--
-- The onside FD shall turn on when the NAV switch is pressed.
--
 NAV_Switch_Turns_FD_On =
 RISING(NAV_Switch) and No_Higher_Event_Than_NAV_Switch_Pressed => FD_On;

 check NAV_Switch_Turns_FD_On;

--
-- The onside FD shall turn on when the APPR switch is pressed.
--
 APPR_Switch_Turns_FD_On =
 RISING(APPR_Switch) and No_Higher_Event_Than_APPR_Switch_Pressed => FD_On;

 check APPR_Switch_Turns_FD_On;

--
-- The onside FD shall turn on when the GA switch is pressed.
--
 GA_Switch_Turns_FD_On =
 RISING(GA_Switch) and No_Higher_Event_Than_GA_Switch_Pressed => FD_On;

 check GA_Switch_Turns_FD_On;

--
-- The onside FD shall turn on when the VS switch is pressed.
--
 VS_Switch_Turns_FD_On =
 RISING(VS_Switch)and No_Higher_Event_Than_VS_Switch_Pressed => FD_On;

 check VS_Switch_Turns_FD_On;

181

--
-- The onside FD shall turn on when the FLC switch is pressed.
--
 FLC_Switch_Turns_FD_On =
 RISING(FLC_Switch) and No_Higher_Event_Than_FLC_Switch_Pressed => FD_On;

 check FLC_Switch_Turns_FD_On;

--
-- The onside FD shall turn on when the ALT switch is pressed.
--
 ALT_Switch_Turns_FD_On =
 RISING(ALT_Switch) and No_Higher_Event_Than_ALT_Switch_Pressed => FD_On;

 check ALT_Switch_Turns_FD_On;

--
-- The onside FD shall turn on when the VS Pitch Wheel is rotated
-- while this side is active and VS and VAPPR mode are not active
-- and an overspeed condition does not exist.
--
 VS_Pitch_Wheel_Rotated_Turns_FD_On =
 RISING(VS_Pitch_Wheel_Rotated)
 and pre Active_Side
 and not pre VS_Active and not pre VAPPR_Active
 and not Overspeed
 and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated => FD_On;

 check VS_Pitch_Wheel_Rotated_Turns_FD_On;

--
-- The onside FD shall turn on when the ALTSEL target altitude is changed
-- while this side is active and ALTSEL mode is active.
--
 ALTSEL_Target_Changed_Turns_FD_On =
 RISING(ALTSEL_Target_Changed)and pre Active_Side and pre ALTSEL_Active
 and No_Higher_Event_Than_ALTSEL_Target_Changed => FD_On;

 check ALTSEL_Target_Changed_Turns_FD_On;

--
-
-- The onside FD shall turn on when there is a pilot flying transfer
-- to this side of the aircraft while the mode annunciations are on.
--
 Pilot_Flying_Transfer_While_Modes_On_Turns_FD_On =
 pre not FD_On and pre Modes_On and RISING(Pilot_Flying_Side) => FD_On;

 check Pilot_Flying_Transfer_While_Modes_On_Turns_FD_On;

--
-
-- The onside FD shall turn off when the FD switch is pressed
-- while an overspeed condition does not exist.
--
 FD_Switch_Turns_FD_Off =
 pre FD_On and RISING(FD_Switch) and not Overspeed
 and No_Higher_Event_Than_FD_Switch_Pressed => not FD_On;

 check FD_Switch_Turns_FD_Off;

--
-

182

-- Disengaging the AP shall not turn off the FD unless the FD switch is pressed
--
 FD_Stays_On_When_AP_Disengaged = true ->
 pre FD_On and not FALLING(Is_AP_Engaged) and not RISING(FD_Switch) => FD_On;

 check FD_Stays_On_When_AP_Disengaged;

--
-
-- The onside FD shall not turn off unless the FD switch is pressed.
--
 FD_Stays_On_Unless_FD_Switch_Pressed = true ->
 pre FD_On and not RISING(FD_Switch) => FD_On;

 check FD_Stays_On_Unless_FD_Switch_Pressed;

--==
-- INDEPENDENT MODE
--==

--
-
-- Independent mode shall be active when VAPPR mode is active on both sides.
--
 Both_Sides_VAPPR_Active_Implies_Independent_Mode = true ->
 pre VAPPR_Active and Is_Offside_VAPPR_Active => Independent_Mode;

 check Both_Sides_VAPPR_Active_Implies_Independent_Mode;

--
-
-- Independent mode shall be active when VGA mode is active on both sides.
--
 Both_Sides_VGA_Active_Implies_Independent_Mode = true ->
 pre VGA_Active and Is_Offside_VGA_Active => Independent_Mode;

 check Both_Sides_VGA_Active_Implies_Independent_Mode;

--
-
-- Independent mode shall imply either VAPPR or VGA is active on both sides.
--
 Independent_Mode_Implies_Both_VAPPR_or_VGA_Active =
 Independent_Mode =>
 (pre VAPPR_Active and Is_Offside_VAPPR_Active) or
 (pre VGA_Active and Is_Offside_VGA_Active);

 check Independent_Mode_Implies_Both_VAPPR_or_VGA_Active;

--==
-- ACTIVE SIDE
--==

--
-- This side shall be active iff it is in independent mode or the pilot flying side.
--
 Active_iff_Independent_or_Pilot_Flying =
 Active_Side = Independent_Mode or Pilot_Flying_Side;

 check Active_iff_Independent_or_Pilot_Flying;

--==
-- ROLL MODE

183

--==

--
-- ROLL mode shall be active if and only if ROLL mode is selected.
--
 ROLL_Selected_Iff_ROLL_Active =
 (ROLL_Active = ROLL_Selected);

 check ROLL_Selected_Iff_ROLL_Active;

--
-- ROLL mode shall be active iff no other lateral mode is active.
--
 Default_Lateral_Mode_Is_ROLL = true ->
 ROLL_Active =
 not (HDG_Active or NAV_Active or LAPPR_Active or LGA_Active);

 check Default_Lateral_Mode_Is_ROLL;

--
-- ROLL mode shall be active if the mode annunciations are off.
--
 Modes_Off_Implies_ROLL_Active = true ->
 not Modes_On => ROLL_Active;

 check Modes_Off_Implies_ROLL_Active;

--
-- ROLL mode shall be active if the FD switch is pressed
-- while the mode annunciations are off.
--
 FD_Switch_Pressed_Modes_Off_Implies_ROLL_Active =
 not Modes_On and RISING(FD_Switch)
 and No_Higher_Event_Than_FD_Switch_Pressed => ROLL_Active;

 check FD_Switch_Pressed_Modes_Off_Implies_ROLL_Active;

--
-- ROLL mode shall be active if the AP is engaged
-- while the mode annunciations are off.
--
 AP_Engaged_Modes_Off_Implies_ROLL_Active =
 not Modes_On and RISING(Is_AP_Engaged) => ROLL_Active;

 check AP_Engaged_Modes_Off_Implies_ROLL_Active;

--==
-- HDG MODE
--==

--
-- HDG mode shall be selected if and only if HDG mode is active.
--
 HDG_Selected_Iff_HDG_Active =
 HDG_Active = HDG_Selected;

 check HDG_Selected_Iff_HDG_Active;

--
-- HDG mode shall be selected if the HDG switch is pressed while HDG mode is cleared.
--
 HDG_Switch_Pressed_Selects_HDG =
 not pre HDG_Selected and RISING(HDG_Switch)

184

 and No_Higher_Event_Than_HDG_Switch_Pressed => HDG_Selected;

 check HDG_Switch_Pressed_Selects_HDG;

--
-- HDG mode shall be cleared if the HDG switch is pressed while HDG mode is selected.
--
 HDG_Switch_Pressed_Clears_HDG =
 pre HDG_Selected and RISING(HDG_Switch)
 and No_Higher_Event_Than_HDG_Switch_Pressed => not HDG_Selected;

 check HDG_Switch_Pressed_Clears_HDG;

--
-- HDG mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_HDG =
 pre HDG_Selected and CHANGED(Pilot_Flying_Side) => not HDG_Selected;

 check Pilot_Flying_Transfer_Clears_HDG;

--
-- HDG mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_HDG =
 pre HDG_Selected and not Modes_On => not HDG_Selected;

 check Modes_Off_Clears_HDG;

--==
-- NAV MODE
--==

--
-- NAV mode shall be selected if NAV mode is active.
--
 NAV_Selected_If_NAV_Active =
 NAV_Active => NAV_Selected;

 check NAV_Selected_If_NAV_Active;

--
-- NAV mode shall be selected if the NAV switch is pressed while NAV mode is cleared.
--
 NAV_Switch_Pressed_Selects_NAV =
 not pre NAV_Selected and RISING(NAV_Switch)
 and No_Higher_Event_Than_NAV_Switch_Pressed => NAV_Selected;

 check NAV_Switch_Pressed_Selects_NAV;

--
-- NAV mode shall become active if the NAV capture condition is met
-- while NAV mode is armed.
--
-- NAV_Active_When_Capture_Cond_Met = true ->
-- pre NAV_Selected and not pre NAV_Active
-- and NAV_Capture_Cond_Met
-- and not Selected_NAV_Source_Changed
-- and not Selected_NAV_Frequency_Changed
-- and not CHANGED(Pilot_Flying_Side)
-- and Modes_On
-- and No_Higher_Event_Than_NAV_Capture_Cond_Met => NAV_Active;

185

-- check NAV_Active_When_Capture_Cond_Met;

--
-- NAV mode shall be cleared if the NAV switch is pressed while NAV mode is selected.
--
 NAV_Switch_Pressed_Clears_NAV =
 pre NAV_Selected and RISING(NAV_Switch)
 and No_Higher_Event_Than_NAV_Switch_Pressed => not NAV_Selected;

 check NAV_Switch_Pressed_Clears_NAV;

--
-- NAV mode shall be cleared if the selected NAV source is changed.
--
 Selected_NAV_Source_Changed_Clears_NAV =
 pre NAV_Selected
 and Selected_NAV_Source_Changed => not NAV_Selected;

 check Selected_NAV_Source_Changed_Clears_NAV;

--
-- NAV mode shall be cleared if the selected NAV frequency is changed.
--
 Selected_NAV_Frequency_Changed_Clears_NAV =
 pre NAV_Selected
 and Selected_NAV_Frequency_Changed => not NAV_Selected;

 check Selected_NAV_Frequency_Changed_Clears_NAV;

--
-- NAV mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_NAV =
 pre NAV_Selected and CHANGED(Pilot_Flying_Side) => not NAV_Selected;

 check Pilot_Flying_Transfer_Clears_NAV;

--
-- NAV mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_NAV =
 pre NAV_Selected and not Modes_On => not NAV_Selected;

 check Modes_Off_Clears_NAV;

--==
-- LAPPR MODE
--==

--
-- LAPPR mode shall be selected if LAPPR mode is active.
--
 LAPPR_Selected_If_LAPPR_Active =
 LAPPR_Active => LAPPR_Selected;

 check LAPPR_Selected_If_LAPPR_Active;

--
-- LAPPR mode shall be selected if the APPR switch is pressed
-- while LAPPR mode is cleared.
--
 APPR_Switch_Pressed_Selects_LAPPR =
 not pre LAPPR_Selected and RISING(APPR_Switch)

186

 and No_Higher_Event_Than_APPR_Switch_Pressed => LAPPR_Selected;

 check APPR_Switch_Pressed_Selects_LAPPR;

--
-- LAPPR mode shall become active if the LAPPR capture condition is met
-- while LAPPR mode is armed.
--
-- LAPPR_Active_When_Capture_Cond_Met = true ->
-- pre LAPPR_Selected and not pre LAPPR_Active
-- and LAPPR_Capture_Cond_Met
-- and not Selected_NAV_Source_Changed
-- and not Selected_NAV_Frequency_Changed
-- and not CHANGED(Pilot_Flying_Side)
-- and Modes_On
-- and No_Higher_Event_Than_LAPPR_Capture_Cond_Met => LAPPR_Active;

-- check LAPPR_Active_When_Capture_Cond_Met;

--
-- LAPPR mode shall be cleared if the APPR switch is pressed
-- while LAPPR mode is selected.
--
 APPR_Switch_Pressed_Clears_LAPPR =
 pre LAPPR_Selected and RISING(APPR_Switch)
 and No_Higher_Event_Than_APPR_Switch_Pressed => not LAPPR_Selected;

 check APPR_Switch_Pressed_Clears_LAPPR;

--
-- LAPPR mode shall be cleared if the selected NAV source is changed.
--
 Selected_NAV_Source_Changed_Clears_LAPPR =
 pre LAPPR_Selected
 and Selected_NAV_Source_Changed => not LAPPR_Selected;

 check Selected_NAV_Source_Changed_Clears_LAPPR;

--
-- LAPPR mode shall be cleared if the selected NAV frequency is changed.
--
 Selected_NAV_Frequency_Changed_Clears_LAPPR =
 pre LAPPR_Selected
 and Selected_NAV_Frequency_Changed => not LAPPR_Selected;

 check Selected_NAV_Frequency_Changed_Clears_LAPPR;

--
-- LAPPR mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_LAPPR =
 pre LAPPR_Selected and CHANGED(Pilot_Flying_Side) => not LAPPR_Selected;

 check Pilot_Flying_Transfer_Clears_LAPPR;

--
-- LAPPR mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_LAPPR =
 pre LAPPR_Selected and not Modes_On => not LAPPR_Selected;

 check Modes_Off_Clears_LAPPR;

187

--==
-- LGA MODE
--==

--
-- LGA mode shall be selected if and only if LGA mode is active.
--
 LGA_Selected_Iff_LGA_Active =
 LGA_Active = LGA_Selected;

 check LGA_Selected_Iff_LGA_Active;

--
-- LGA mode shall be selected if the GA switch is pressed while LGA mode is cleared
-- and an overspeed condition does not exist.
--
 GA_Switch_Pressed_Selects_LGA =
 not pre LGA_Selected and RISING(GA_Switch) and not Overspeed
 and No_Higher_Event_Than_GA_Switch_Pressed => LGA_Selected;

 check GA_Switch_Pressed_Selects_LGA;

--
-- LGA mode shall be cleared when the AP is engaged.
--
 AP_Engaged_Clears_LGA =
 pre LGA_Selected and RISING(Is_AP_Engaged) => not LGA_Selected;

 check AP_Engaged_Clears_LGA;

--
-- LGA mode shall be cleared when VGA mode is cleared.
--
 VGA_Cleared_Clears_LGA =
 pre LGA_Selected and not pre VGA_Selected => not LGA_Selected;

 check VGA_Cleared_Clears_LGA;

--
-- LGA mode shall be cleared when the SYNC switch is pressed
-- while LGA mode is selected.
--
 SYNC_Switch_Pressed_Clears_LGA =
 pre LGA_Selected and RISING(SYNC_Switch) => not LGA_Selected;

 check SYNC_Switch_Pressed_Clears_LGA;

-
-- LGA mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_LGA =
 pre LGA_Selected and CHANGED(Pilot_Flying_Side) => not LGA_Selected;

 check Pilot_Flying_Transfer_Clears_LGA;

--
-- LGA mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_LGA =
 pre LGA_Selected and not Modes_On => not LGA_Selected;

 check Modes_Off_Clears_LGA;

188

--==
-- PITCH MODE
--==

--
-- PITCH mode shall be active iff no other vertical mode is active.
--
 Default_Vertical_Mode_Is_PITCH = true ->
 PITCH_Active = not (VS_Active or FLC_Active or ALT_Active or
 ALTSEL_Active or VAPPR_Active or VGA_Active);

 check Default_Vertical_Mode_Is_PITCH;

--
-- PITCH mode shall be active if the mode annunciations are off.
--
 Modes_Off_Implies_PITCH_Active = true ->
 not Modes_On => PITCH_Active;

 check Modes_Off_Implies_PITCH_Active;

--
-- PITCH mode shall be active if the FD switch is pressed
-- while the mode annunciations are off.
--
 FD_Switch_Pressed_Modes_Off_Implies_PITCH_Active =
 not Modes_On and RISING(FD_Switch)
 and No_Higher_Event_Than_FD_Switch_Pressed => PITCH_Active;

 check FD_Switch_Pressed_Modes_Off_Implies_PITCH_Active;

--
-- PITCH mode shall be active if the AP is engaged
-- while the mode annunciations are off.
--
 AP_Engaged_Modes_Off_Implies_PITCH_Active =
 not Modes_On and RISING(Is_AP_Engaged) => PITCH_Active;

 check AP_Engaged_Modes_Off_Implies_PITCH_Active;

--==
-- VS MODE
--==

--
-- VS mode shall be selected if and only if VS mode is active.
--
 VS_Selected_Iff_VS_Active =
 (VS_Active = VS_Selected);

 check VS_Selected_Iff_VS_Active;

--
-- VS mode shall be selected if the VS switch is pressed while VS mode is cleared
-- if VAPPR mode is not active and an overspeed condition does not exist.
--
 VS_Switch_Pressed_Selects_VS =
 not pre VS_Selected and RISING(VS_Switch)
 and not pre VAPPR_Active and not Overspeed
 and No_Higher_Event_Than_VS_Switch_Pressed => VS_Selected;

 check VS_Switch_Pressed_Selects_VS;

189

--
-- VS mode shall be cleared if the VS switch is pressed while VS mode is selected.
--
 VS_Switch_Pressed_Clears_VS =
 pre VS_Selected and RISING(VS_Switch)
 and No_Higher_Event_Than_VS_Switch_Pressed => not VS_Selected;

 check VS_Switch_Pressed_Clears_VS;

--
-- VS mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_VS =
 pre VS_Selected and CHANGED(Pilot_Flying_Side) => not VS_Selected;

 check Pilot_Flying_Transfer_Clears_VS;

--
-- VS mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_VS =
 pre VS_Selected and not Modes_On => not VS_Selected;

 check Modes_Off_Clears_VS;

--==
-- FLC MODE
--==

--
-- FLC mode shall be selected if and only if FLC mode is active.
--
 FLC_Selected_Iff_FLC_Active =
 (FLC_Active = FLC_Selected);

 check FLC_Selected_Iff_FLC_Active;

--
-- FLC mode shall be selected if the FLC switch is pressed while FLC mode is cleared
-- if VAPPR mode is not active.
--
 FLC_Switch_Pressed_Selects_FLC =
 not pre FLC_Selected and RISING(FLC_Switch)
 and not pre VAPPR_Active
 and No_Higher_Event_Than_FLC_Switch_Pressed => FLC_Selected;

 check FLC_Switch_Pressed_Selects_FLC;

--
-- FLC mode shall be activated if an overspeed condition occurs
-- while neither ALT or ALTSEL are active.
--
 Overspeed_Activates_FLC = true ->
 not pre FLC_Active
 and Overspeed
 and not pre ALT_Active and not ALT_Active
 and not pre ALTSEL_Active and not ALTSEL_Active => FLC_Selected;

 check Overspeed_Activates_FLC;

--
-- FLC mode shall be cleared if the FLC switch is pressed while FLC mode is selected

190

-- and an overspeed condition does not exist.
--
 FLC_Switch_Pressed_Clears_FLC =
 pre FLC_Selected and RISING(FLC_Switch)
 and not Overspeed
 and No_Higher_Event_Than_FLC_Switch_Pressed => not FLC_Selected;

 check FLC_Switch_Pressed_Clears_FLC;

--
-- FLC mode shall be cleared if the VS Pitch Wheel is rotated while
-- an overspeed condition does not exist.
--
 VS_Pitch_Wheel_Rotated_Clears_FLC =
 pre FLC_Selected
 and RISING(VS_Pitch_Wheel_Rotated)
 and not Overspeed
 and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated => not FLC_Selected;

 check VS_Pitch_Wheel_Rotated_Clears_FLC;

--
-- FLC mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_FLC =
 pre FLC_Selected and CHANGED(Pilot_Flying_Side) => not FLC_Selected;

 check Pilot_Flying_Transfer_Clears_FLC;

--
-- FLC mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_FLC =
 pre FLC_Selected and not Modes_On => not FLC_Selected;

 check Modes_Off_Clears_FLC;

--==
-- ALT MODE
--==

--
-- ALT mode shall be selected if and only if ALT mode is active.
--
 ALT_Selected_Iff_ALT_Active =
 (ALT_Active = ALT_Selected);

 check ALT_Selected_Iff_ALT_Active;

--
-- ALT mode shall be selected if the ALT switch is pressed while ALT mode is cleared
-- while VAPPR mode is not active.
--
 ALT_Switch_Pressed_Selects_ALT =
 not pre ALT_Selected and RISING(ALT_Switch) and not pre VAPPR_Active
 and No_Higher_Event_Than_ALT_Switch_Pressed => ALT_Selected;

 check ALT_Switch_Pressed_Selects_ALT;

--
-- ALT mode shall be selected if the ALTSEL target is changed
-- while in ALTSEL Track mode.
--

191

 ALTSEL_Target_Changed_Selects_ALT =
 pre ALTSEL_Track and RISING(ALTSEL_Target_Changed)
 and No_Higher_Event_Than_ALTSEL_Target_Changed => ALT_Selected;

 check ALTSEL_Target_Changed_Selects_ALT;

--
-- ALT mode shall be cleared if the ALT switch is pressed while ALT mode is selected.
--
 ALT_Switch_Pressed_Clears_ALT =
 pre ALT_Selected and RISING(ALT_Switch)
 and No_Higher_Event_Than_ALT_Switch_Pressed => not ALT_Selected;

 check ALT_Switch_Pressed_Clears_ALT;

--
-- ALT mode shall be cleared if the VS Pitch Wheel is rotated
-- while ALT mode is selected.
--
 VS_Pitch_Wheel_Rotated_Clears_ALT =
 pre ALT_Selected and RISING(VS_Pitch_Wheel_Rotated)
 and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated => not ALT_Selected;

 check VS_Pitch_Wheel_Rotated_Clears_ALT;

--
-- ALT mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_ALT =
 pre ALT_Selected and CHANGED(Pilot_Flying_Side) => not ALT_Selected;

 check Pilot_Flying_Transfer_Clears_ALT;

--
-- ALT mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_ALT =
 pre ALT_Selected and not Modes_On => not ALT_Selected;

 check Modes_Off_Clears_ALT;

--==
-- ALTSEL MODE
--==

--
-- ALTSEL mode shall be selected if ALTSEL mode is active.
--
 ALTSEL_Selected_If_ALTSEL_Active =
 (ALTSEL_Active => ALTSEL_Selected);

 check ALTSEL_Selected_If_ALTSEL_Active;

--
-- ALTSEL mode shall be active if ALTSEL is tracking the target altitude.
--
 ALTSEL_Active_If_ALTSEL_Track =
 (ALTSEL_Track => ALTSEL_Active);

 check ALTSEL_Active_If_ALTSEL_Track;

--
-- If the mode annunciations are on, ALTSEL mode shall be selected if

192

-- none of ALT, VAPPR, or VGA mode are active.
--
 ALTSEL_Selected_If_Not_ALT_VAPPR_VGA_Active = true ->
 Modes_On and not (ALT_Active or VAPPR_Active or VGA_Active) => ALTSEL_Selected;

 check ALTSEL_Selected_If_Not_ALT_VAPPR_VGA_Active;

--
-- ALTSEL mode shall become active if the ALTSEL capture condition is met
-- while ALTSEL mode is armed
--
-- ALTSEL_Active_When_Capture_Cond_Met = true ->
-- pre ALTSEL_Selected and not pre ALTSEL_Active
-- and ALTSEL_Capture_Cond_Met
-- and not (ALT_Active or VAPPR_Active or VGA_Active)
-- and Modes_On
-- and No_Higher_Event_Than_ALTSEL_Capture_Cond_Met => ALTSEL_Active;

-- check ALTSEL_Active_When_Capture_Cond_Met;

--
-- ALTSEL mode shall start tracking if the ALTSEL track condition is met
-- while ALTSEL
-- capturing the target altitude
--
-- ALTSEL_Track_When_Track_Cond_Met = true ->
-- pre ALTSEL_Active and not pre ALTSEL_Track
-- and ALTSEL_Track_Cond_Met
-- and not ALTSEL_Target_Changed
-- and not VS_Pitch_Wheel_Rotated
-- and not CHANGED(Pilot_Flying_Side)
-- and ALTSEL_Active
-- and not (ALT_Active or VAPPR_Active or VGA_Active)
-- and Modes_On
-- and No_Higher_Event_Than_ALTSEL_Track_Cond_Met => ALTSEL_Track;

-- check ALTSEL_Track_When_Track_Cond_Met;

--
-- ALTSEL mode shall revert to armed mode if the ALTSEL target is changed
-- while in capture mode.
--
 ALTSEL_Deactivated_When_Target_Changed =
 pre ALTSEL_Active and not pre ALTSEL_Track
 and RISING(ALTSEL_Target_Changed)
 and not (ALT_Active or VAPPR_Active or VGA_Active)
 and Modes_On
 and No_Higher_Event_Than_ALTSEL_Target_Changed
 => (ALTSEL_Selected and not ALTSEL_Active);

 check ALTSEL_Deactivated_When_Target_Changed;

--
-- ALTSEL mode shall revert to armed mode if the VS Pitch Wheel is rotated
-- while in capture mode.
--
 ALTSEL_Deactivated_When_VS_Pitch_Wheel_Rotated =
 pre ALTSEL_Active and not pre ALTSEL_Track
 and RISING(VS_Pitch_Wheel_Rotated)
 and not (ALT_Active or VAPPR_Active or VGA_Active)
 and Modes_On
 and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated
 => (ALTSEL_Selected and not ALTSEL_Active);

193

 check ALTSEL_Deactivated_When_VS_Pitch_Wheel_Rotated;

--
-- ALTSEL mode shall revert to armed mode if there is a pilot flying transfer
-- while in capture mode.
--
 ALTSEL_Deactivated_When_Pilot_Flying_Transfer =
 pre ALTSEL_Active and not pre ALTSEL_Track
 and CHANGED(Pilot_Flying_Side)
 and not (ALT_Active or VAPPR_Active or VGA_Active)
 and Modes_On => (ALTSEL_Selected and not ALTSEL_Active);

 check ALTSEL_Deactivated_When_Pilot_Flying_Transfer;

--
-- ALTSEL mode shall revert to armed mode if a new vertical mode becomes active
-- while in capture mode.
--
 ALTSEL_Deactivated_When_New_Active_Vertical_Mode =
 pre ALTSEL_Active and not pre ALTSEL_Track
 and not ALTSEL_Active
 and not (ALT_Active or VAPPR_Active or VGA_Active)
 and Modes_On => (ALTSEL_Selected and not ALTSEL_Active);

 check ALTSEL_Deactivated_When_New_Active_Vertical_Mode;

--
-- If the mode annunciations are on, ALTSEL mode shall be cleared if
-- any of ALT, VAPPR, or VGA mode become active.
--
 ALTSEL_Cleared_If_ALT_VAPPR_VGA_Active =
 Modes_On and (ALT_Active or VAPPR_Active or VGA_Active) => not ALTSEL_Selected;

 check ALTSEL_Cleared_If_ALT_VAPPR_VGA_Active;

--==
-- VAPPR MODE
--==

--
-- VAPPR mode shall be selected if VAPPR mode is active.
--
 VAPPR_Selected_If_VAPPR_Active =
 (VAPPR_Active => VAPPR_Selected);

 check VAPPR_Selected_If_VAPPR_Active;

--
-- VAPPR mode shall be selected if the APPR switch is pressed
-- while VAPPR mode is cleared.
--
 APPR_Switch_Pressed_Selects_VAPPR =
 not pre VAPPR_Selected and RISING(APPR_Switch)
 and No_Higher_Event_Than_APPR_Switch_Pressed => VAPPR_Selected;

 check APPR_Switch_Pressed_Selects_VAPPR;

--
-- VAPPR mode shall become active if the VAPPR capture condition is met
-- while VAPPR mode is armed and LAPPR mode is active and
-- an overspeed condition does not exist.

194

--
-- VAPPR_Active_When_Capture_Cond_Met = true ->
-- pre VAPPR_Selected and not pre VAPPR_Active
-- and VAPPR_Capture_Cond_Met
-- and LAPPR_Active and
-- and not Overspeed
-- and not Selected_NAV_Source_Changed
-- and not Selected_NAV_Frequency_Changed
-- and not CHANGED(Pilot_Flying_Side)
-- and Modes_On
-- and No_Higher_Event_Than_VAPPR_Capture_Cond_Met => VAPPR_Active;

-- check VAPPR_Active_When_Capture_Cond_Met;

--
-- VAPPR mode shall be cleared if the APPR switch is pressed
-- while VAPPR mode is selected.
--
 APPR_Switch_Pressed_Clears_VAPPR =
 pre VAPPR_Selected and RISING(APPR_Switch)
 and No_Higher_Event_Than_APPR_Switch_Pressed => not VAPPR_Selected;

 check APPR_Switch_Pressed_Clears_VAPPR;

--
-- VAPPR mode shall be cleared if LAPPR mode is cleared.
--
 LAPPR_Cleared_Clears_VAPPR =
 pre VAPPR_Selected and not pre LAPPR_Selected => not VAPPR_Selected;

 check LAPPR_Cleared_Clears_VAPPR;

--
-- VAPPR mode shall be cleared if the selected NAV source is changed.
--
 Selected_NAV_Source_Changed_Clears_VAPPR =
 pre VAPPR_Selected and Selected_NAV_Source_Changed => not VAPPR_Selected;

 check Selected_NAV_Source_Changed_Clears_VAPPR;

--
-- VAPPR mode shall be cleared if the selected NAV frequency is changed.
--
 Selected_NAV_Frequency_Changed_Clears_VAPPR =
 pre VAPPR_Selected and Selected_NAV_Frequency_Changed => not VAPPR_Selected;

 check Selected_NAV_Frequency_Changed_Clears_VAPPR;

--
-- VAPPR mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_VAPPR =
 pre VAPPR_Selected and CHANGED(Pilot_Flying_Side) => not VAPPR_Selected;

 check Pilot_Flying_Transfer_Clears_VAPPR;

--
-- VAPPR mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_VAPPR =
 pre VAPPR_Selected and not Modes_On => not VAPPR_Selected;

 check Modes_Off_Clears_VAPPR;

195

--==
-- VGA MODE
--==

--
-- VGA mode shall be selected if and only if VGA mode is active.
--
 VGA_Selected_Iff_VGA_Active =
 (VGA_Active = VGA_Selected);

 check VGA_Selected_Iff_VGA_Active;

--
-- VGA mode shall be selected if the GA switch is pressed
-- while VGA mode is cleared and an overspeed condition does not exist.
--
 GA_Switch_Pressed_Selects_VGA =
 not pre VGA_Selected and RISING(GA_Switch) and not Overspeed
 and No_Higher_Event_Than_GA_Switch_Pressed => VGA_Selected;

 check GA_Switch_Pressed_Selects_VGA;

--
-- VGA mode shall be cleared when the AP is engaged.
--
 AP_Engaged_Clears_VGA =
 pre VGA_Selected and RISING(Is_AP_Engaged) => not VGA_Selected;

 check AP_Engaged_Clears_VGA;

--
-- VGA mode shall be cleared when LGA mode is cleared.
--
 LGA_Cleared_Clears_VGA =
 pre VGA_Selected and not pre LGA_Selected => not VGA_Selected;

 check LGA_Cleared_Clears_VGA;

--
-- VGA mode shall be cleared when the SYNC switch is pressed
-- while VGA mode is selected.
--
 SYNC_Switch_Pressed_Clears_VGA =
 pre VGA_Selected and RISING(SYNC_Switch) => not VGA_Selected;

 check SYNC_Switch_Pressed_Clears_VGA;

--
-- VGA mode shall be cleared when the VS Pitch Wheel is rotated VGA mode is selected.
--
 VS_Pitch_Wheel_Rotated_Clears_VGA =
 pre VGA_Selected and RISING(VS_Pitch_Wheel_Rotated)
 and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated => not VGA_Selected;

 check VS_Pitch_Wheel_Rotated_Clears_VGA;

--
-- VGA mode shall be cleared when there is a pilot flying transfer.
--
 Pilot_Flying_Transfer_Clears_VGA =
 pre VGA_Selected and CHANGED(Pilot_Flying_Side) => not VGA_Selected;

196

 check Pilot_Flying_Transfer_Clears_VGA;

--
-- VGA mode shall be cleared when the mode annunciations are turned off.
--
 Modes_Off_Clears_VGA =
 pre VGA_Selected and not Modes_On => not VGA_Selected;

 check Modes_Off_Clears_VGA;

--==
-- Auxilliary signals used to simplify statement of properties.
--==
 No_Higher_Event_Than_SYNC_Switch_Pressed = true;

 No_Higher_Event_Than_GA_Switch_Pressed =
 (not RISING(SYNC_Switch) and No_Higher_Event_Than_SYNC_Switch_Pressed);

 No_Higher_Event_Than_APPR_Switch_Pressed =
 (not RISING(GA_Switch) and No_Higher_Event_Than_GA_Switch_Pressed);

 No_Higher_Event_Than_HDG_Switch_Pressed =
 (not RISING(APPR_Switch) and No_Higher_Event_Than_APPR_Switch_Pressed);

 No_Higher_Event_Than_NAV_Switch_Pressed =
 (not RISING(HDG_Switch) and No_Higher_Event_Than_HDG_Switch_Pressed);

 No_Higher_Event_Than_AP_Engaged = true;

 No_Higher_Event_Than_ALTSEL_Target_Changed =
 (not RISING(APPR_Switch) and No_Higher_Event_Than_APPR_Switch_Pressed);

 No_Higher_Event_Than_ALT_Switch_Pressed =
 (not RISING(ALTSEL_Target_Changed) and No_Higher_Event_Than_ALTSEL_Target_Changed);

 No_Higher_Event_Than_FLC_Switch_Pressed =
 (not RISING(ALT_Switch) and No_Higher_Event_Than_ALT_Switch_Pressed);

 No_Higher_Event_Than_VS_Switch_Pressed =
 (not RISING(FLC_Switch) and No_Higher_Event_Than_FLC_Switch_Pressed);

 No_Higher_Event_Than_VS_Pitch_Wheel_Rotated =
 (not RISING(VS_Switch) and No_Higher_Event_Than_VS_Switch_Pressed);

 No_Higher_Event_Than_FD_Switch_Pressed =
 ((not RISING(NAV_Switch) and No_Higher_Event_Than_NAV_Switch_Pressed)
 and (not RISING(Is_AP_Engaged) and No_Higher_Event_Than_AP_Engaged)
 and (not RISING(VS_Pitch_Wheel_Rotated) and
 No_Higher_Event_Than_VS_Pitch_Wheel_Rotated));

 No_Higher_Event_Than_LAPPR_Capture_Cond_Met =
 (not RISING(FD_Switch) and No_Higher_Event_Than_FD_Switch_Pressed);

 No_Higher_Event_Than_NAV_Capture_Cond_Met =
 (not LAPPR_Capture_Cond_Met and No_Higher_Event_Than_LAPPR_Capture_Cond_Met);

 No_Higher_Event_Than_VAPPR_Capture_Cond_Met =
 (not RISING(FD_Switch) and No_Higher_Event_Than_FD_Switch_Pressed);

 No_Higher_Event_Than_ALTSEL_Track_Cond_Met =
 (not VAPPR_Capture_Cond_Met and No_Higher_Event_Than_VAPPR_Capture_Cond_Met);

 No_Higher_Event_Than_ALTSEL_Capture_Cond_Met =

197

 (not ALTSEL_Track_Cond_Met and No_Higher_Event_Than_ALTSEL_Track_Cond_Met);

tel;

--
-- RISING - returns true when signal s changes from false to true
--
node RISING (s : bool) returns (p : bool);
let
 p = false -> (not pre s and s);
tel;

--
-- FALLING - returns true when signal s changes from true to false
--
node FALLING (s : bool) returns (p : bool);
let
 p = false -> (pre s and not s);
tel;

--
-- CHANGED - returns true when signal s changes value
--
node CHANGED (s : bool) returns (p : bool);
let
 p = false -> (not (s = pre s));
tel;

198

Appendix C Mode Logic Error Log

Date Location Classification Description How Resolved Notes

10/4/2012
Event
Processing Minor

Incorrect inhibiting of input events. The inhibit_In of the
When_Switch_Pressed_Seen block was wired to the
output of the next higher priority block.

Modified the
When_Switch_Pressed_Seen block to
output an Inhbit_Out that was the OR of
the Inhibit_In and the output indicating if
the event was seen.

Checking that at least one lateral
mode is active.

10/4/2012 Event
Processing

Minor LGA_Active being set to false when VGA exits the active
state.

Corrected copy and paste error. Checking that at least one lateral
mode is active.

10/16/2012
Flight
Modes Moderate

Incorrectly predicting if a lateral or vertical mode would be
activated on a step. Failed to account for the case where
LNAV, LAPPR, ALTSEL, or VAPPR could be cleared at
the same time the capture condition is met.

Updated Will_MODEX_Be_Activated to
take into account the simultaneous
occurrence of being cleared at the same
time as the capture condition is met.

Checking that at least one lateral
mode is active and that at least one
vertical mode is active.

10/16/2012 Event
Processing

Minor

Incorrect inhibiting of input conditions. The inhibit_In of
the If_Condition_Seen block was wired to the output of
the next higher priority block.

Modified the If_Condition_Seen block to
output an Inhbit_Out that was the OR of
the Inhibit_In and the output indicating if
the condition was seen.

Checking that at most one vertical
mode is active.

10/16/2012
Flight
Modes Major

Two vertical modes active at the same time caused by
an Overspeed condition selecting FLC mode at the same
time the ALT switch is pressed.

Modified the condition for selecting FLC
mode so that FLC mode is not selected
if ALT or ALTSEL are already active or
will become active on this step.

Checking that at most one vertical
mode is active.

10/16/2012
Flight
Modes Moderate

Two vertical modes active at the same time caused by
pressing the FLC swtich while ALTSEL Capture is active.

Fixed the definition of
Will_FLC_Be_Active by removing the
condition that Clear_FLC be false.

Checking that at most one vertical
mode is active.

11/20/2012 Mode Logic Minor
NAV_Switch input incorrectly named NAV_Swiitch. Changed the name of input to

NAV_Switch.
Checking definition of
No_Higher_Event_Than_FD_Switch_
Pressed.

11/28/2012
Flight
Modes Moderate

Execution sequence of Independent and Active mode
machines was incorrect - Independent was assigned an
execution order of 5 and Active was assigned an
exectuion order of 6. This placed their execution after
Lateral and Vertical had executed.

Changed the execution order of
Independent to 3 and the execution order
of Active to 4.

Checking that onside and offside
VAPPR active implies the FGS is in
Independent mode.

11/29/2012
Flight
Modes Moderate

A pilot flying transfer did not make PITCH mode active
while ALTSEL was active.

Added a deactivate transition from
ALTSEL.Active to ALTSEL.Armed mode.

Checking that a Pilot Flying Transfer
should make PITCH mode active.

11/29/2012 Flight
Modes

Major

ROLL mode was not active while the mode annunciations
were off.

Simplified definition of
Lateral_Mode_Manually_Selected and
Veritical_Mode_Manually_Selected to
not test if mode annunciations were off in
the previous step or if this side is active.

Checking that ROLL mode is active
while the mode annunications are
off.

11/29/2012
Flight
Modes Major

PITCH mode was not active while the mode
annunciations were off.

Changed definition of
Vertical_Mode_Manually_Selected to not
if this side is active when the ALTSEL
target altitude is changed while ALTSEL
mode is tracking.

Checking that PITCH mode is active
while the mode annunciations are
off.

12/7/2012 Mode Logic Minor

Selected_NAV_Source_Changed and
Selected_NAV_Frequency_Changed incorrectly named
Selected_Nav_Source_Changed and
Selected_Nav_Frequency_Changed.

Changed spelling to
Selected_NAV_Source_Changed and
Selected_NAV_Frequency_Changed.

Checking that NAV mode becomes
active when the NAV capture
condition is met.

12/13/2012
Flight
Modes Moderate

Truth table for ALT Select was overspecified. Stated that
ALT mode should be selected if the ALTSEL target was
changed while in ALTSEL Track mode and not in VAPPR
Active mode. The dependence on VAPPR Active mode
was not needed since ALTSEL Track is an active mode
and only one vertical mode can be active at a time.

Changed the dependence on VAPPR
Active to a don't care in ALT Select truth
table.

Checking that ALT mode is selected
when the ALTSEL target is changed
while in ALTSEL Track mode.

12/17/2012 Flight
Modes

Major

Transitions between ALTSEL Clear and ALTSEL
Selected would occur on the current step if ALT mode
became active/inactive and on the next step if VAPPR or
VGA became active/inactive. This occurred since the
order of executing these state machines was ALT,
ATLSEL, VAPRR, followed by VGA.

Changed the order of execution of
ALTSEL to follow execution of ALT,
VAPPR, and VGA modes.

Found checking that ALTSEL mode
is selected iff none of ALT, VAPPR,
or VGA modes are active. While the
error was not serious (the necessary
transition would occur in the current
or next step), it would be difficult to
detect through testing.

12/17/2012
Flight
Modes Moderate

Turning the mode annunciations off only deactivated
ALTSEL mode (i.e. took it from ACTIVE to ARMED
mode). Turning the mode annunciation off should clear
ALTSEL mode (i.e. take it from SELECTED to
CLEARED mode).

Moved column enabling a transition when
the modes are turned off from the
ALTSEL Deactivate truth table to the
ATLSEL Clear truth table.

Found checking that ALTSEL mode
is selected iff none of ALT, VAPPR,
or VGA modes are active.

12/18/2012 Flight
Modes

Major

Possible to have two modes active at the same time if an
overspeed condition occurs (activating FLC) at the same
time as the ALTSEL capture condition is met (activating
ALTSEL Capture).

Strengthened the ALTSEL Capture() truth
table to not capture ALTSEL mode while
an overspeed condition exists.

Checking at most one vertical mode
active while adding Active Side
logic.

Classification
Trivial 0 Spelling or Punctuation
Minor 5 Likely to be detected by traditional verification.
Moderate 6 Potential to not be detected by traditional verification.
Major 5 Unlikely to be detected by traditional verification.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Contractor Report
 4. TITLE AND SUBTITLE

Formal Methods Case Studies for DO-333

5a. CONTRACT NUMBER

NNL06AA04B

 6. AUTHOR(S)

Cofer, Darren; Miller, Steven P.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
Work performed by Rockwell Collins, Inc., for The Boeing Company and NASA Langley Research Center, under Contract NNL06AA04B,
NNL12AB85T.
Langley Technical Monitor: Benedetto L. Di Vito

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 64
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A provides guidance for software developers wishing
to use formal methods in the certification of airborne systems and air traffic management systems. The supplement identifies
the modifications and additions to DO-178C and DO-278A objectives, activities, and software life cycle data that should be
addressed when formal methods are used as part of the software development process. This report presents three case studies
describing the use of different classes of formal methods to satisfy certification objectives for a common avionics example – a
dual-channel Flight Guidance System. The three case studies illustrate the use of theorem proving, model checking, and
abstract interpretation. The material presented is not intended to represent a complete certification effort. Rather, the purpose is
to illustrate how formal methods can be used in a realistic avionics software development project, with a focus on the evidence
produced that could be used to satisfy the verification objectives found in Section 6 of DO-178C.

15. SUBJECT TERMS

Avionics software; Certification; Formal methods; Verification

18. NUMBER
 OF
 PAGES

203

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

NNL12AB85T
5f. WORK UNIT NUMBER

534723.02.02.07.40

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2014-218244

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

04 - 201401-

