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Abstract 
RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A provides guidance for 

software developers wishing to use formal methods in the certification of airborne systems and 

air traffic management systems.  The supplement identifies the modifications and additions to 

DO-178C and DO-278A objectives, activities, and software life cycle data that should be 

addressed when formal methods are used as part of the software development process.  This 

report presents three case studies describing the use of different classes of formal methods to 

satisfy certification objectives for a common avionics example – a dual-channel Flight Guidance 

System.  The three case studies illustrate the use of theorem proving, model checking, and 

abstract interpretation.  The material presented is not intended to represent a complete 

certification effort.  Rather, the purpose is to illustrate how formal methods can be used in a 

realistic avionics software development project, with a focus on the evidence produced that could 

be used to satisfy the verification objectives found in Section 6 of DO-178C.   
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1 Introduction 
RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A [35] provides guidance 

for software developers wishing to use formal methods in the certification of airborne systems 

and air traffic management systems.  The supplement identifies the modifications and additions 

to DO-178C [33] objectives, activities, and software life cycle data that should be addressed 

when formal methods are used as part of the software development process.  This includes 

artifacts that would be expressed using some formal notation and the verification evidence that 

could be derived from them.   

This report presents three case studies describing the use of different classes of formal methods 

to satisfy DO-178C certification objectives.  The material presented is not intended to represent a 

complete certification effort.  Rather, the purpose is to illustrate how formal methods can be used 

in a realistic avionics software development project, with a focus on the evidence produced that 

could be used to satisfy the verification objectives found in Section 6 of DO-178C.   

The case studies examine different aspects of a common avionics example – a dual-channel 

Flight Guidance System (FGS) shown in Figure 1. While not intended as a complete example, it 

is representative of the issues encountered in actual avionics development projects and includes 

design artifacts specified using PVS, MATLAB Simulink/Stateflow®, and C source code.  These 

files are available for download and use without restriction from the same site where this report 

is posted.  A description of this example is provided in Section 2.   

The three case studies illustrate the use of theorem proving, model checking, and abstract 

interpretation.  Each of these techniques has strengths and weaknesses, and each could be applied 

to different life cycle data items and different objectives than those described here.  The purpose 

here is to illustrate a reasonable application of each of these techniques for satisfying 

certification objectives.  

DO-333 provides general guidance that is applicable to the overall verification process when 

formal methods are used.  This includes requirements for the use of formal notations with 

unambiguous, mathematically defined syntax and semantics, soundness of the  formal analysis 

methods used, and justification of all assumptions used in each formal analysis. Specific 

guidance is provided to describe how formal methods can be applied within each of the 

verification activities and objectives defined in DO-178C.  This is illustrated in Figure 2 for 
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Level A software, the highest criticality level defined in DO-178C.  These include compliance 

with requirements, accuracy and consistency of requirements, compatibility with the target 

computer, verifiability of requirements, conformance to standards, traceability between life cycle 

data items, and algorithmic correctness.  Some of the objectives do not need to be satisfied for 

the less critical Level C or Level D software.   
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Figure 1 – Relationship of Elements of the Dual-channel FGS Example 
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As shown in Figure 2, theorem proving was applied to the verification of the High-Level 

Requirements, model-checking was applied to verification of the Low-Level Requirements and 

Software Architecture, and abstract interpretation was applied to verification of the Source Code. 
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Figure 2 – Relationship of Case Studies to DO-178C Objectives 

Theorem proving was applied to the verification of the High-Level Requirements for the 

synchronization of the two channels of the FGS, focusing on the objectives of DO-333 Table 

FM.A-3.  Theorem proving is generally considered the most powerful and versatile class of 

formal methods, but it is also the least automated, and usually requires the significant expertise 

and user training.  This case study is described in Section 3. 
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Model checking was applied to the verification of the Low-Level Requirements for the mode 

logic of a single FGS channel, focusing on the objectives of DO-333 Table FM.A-4.  Current 

model checking tools are very powerful and provide much more automation than theorem 

provers.  In general, less user expertise is required, but the user must be able to specify 

requirements to be analyzed in a formal language.  These tools are relatively mature and (in our 

opinion) the benefits of using formal methods are greatest at this level.  This case study is 

described in Section 4. 

Abstract interpretation was applied to the Source Code implementing one of the control laws of 

the FGS, focusing on the objectives of DO-333 Table FM.A-5.  Abstract interpretation is the 

most automated of the three techniques, at least as used in currently available commercial tools, 

and typically require the least expertise from users.  Part of this is due to the use of abstract 

interpretation to check non-functional requirements, eliminating the need to formally specify 

requirements.  We should note, however, that more powerful versions of abstract interpretation 

tools exist which require much more expertise to specify and check user-defined abstract 

domains.  This case study is described in Section 5. 

Each case study includes: 

• A general description of the portion of the example system to be verified 

• A description of the verification approach used, including the life cycle data items 

produced and the tools used, roughly corresponding to some of the information that 

should be included in a Software Verification Plan 

• The objectives to be satisfied and the evidence produced  

• Tool qualification issues relevant for the formal methods tools used 

• A detailed description of the verification effort that was performed 

As a result of the tools and objectives we have chosen for these case studies, there are some parts 

of DO-333 that are not covered.  In particular, we do not address the verification of Executable 

Object Code (Table FM.A-6 objectives), nor do we address the replacement of coverage testing 

by formal analysis (Table FM.A-7 objectives). 
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2 Example: Dual-Channel Flight Guidance System 
We will illustrate the use of formal methods to satisfy DO-178C objectives with three case 

studies built around a common avionics example, a dual-channel Flight Guidance System (FGS). 

In this chapter, we provide a high level description of the FGS and how it interacts with the other 

avionics systems and with the flight crew. 

An FGS is a component of the overall Flight Control System (FCS). It compares the measured 

state of an aircraft (position, speed, and attitude) to the desired state and generates pitch and roll 

guidance commands to minimize the difference between the measured and desired state.  An 

overview of an FCS that emphasizes the role of the FGS is shown in Figure 3. 
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Figure 3 – Overview of the Flight Guidance System 

As shown in Figure 3 the FGS subsystem accepts input about the aircraft's state from the 

Attitude Heading Reference System (AHRS), the Air Data System (ADS), the Flight 

Management System (FMS), and the Navigation Radios. Using this information, it computes 

pitch and roll guidance commands that are provided to the autopilot (AP).  When engaged, the 
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AP translates these commands into movement of the aircraft's control surfaces necessary to 

achieve the commanded changes about the lateral and vertical axes.   

The flight crew interacts with the FGS primarily through the Flight Control Panel (FCP), shown 

in Figure 4. The FCP includes switches for turning the Flight Director (FD) on and off, switches 

for selecting the different flight modes such as vertical speed (VS), lateral navigation (NAV), 

heading select (HDG), altitude hold (ALT),  and approach (APPR), the Vertical Speed/Pitch 

Wheel, and the AP disconnect bar. The FCP also supplies feedback to the crew, indicating 

selected modes by lighting lamps on either side of a selected mode's button.  

	
   FD VS FLC NAV HDG APPR AP ENG FD

ALT AP DISC

ALT

HDGSPEEDCRS1 CRS2

DOWN

UP

VNAV

 

Figure 4 – Flight Control Panel 

A few key controls, such as the Go Around button, the AP Disengage switch, and the SYNC 

switch are provided on the control yokes and throttles and routed through the FCP to the FGS. 

Navigation sources are selected through the Display Control Panel (DCP), with the selected 

navigation source routed through the PFD to the FGS. 

As shown in Figure 3, the FGS has two physical sides, or channels, one on the left side and one 

on the right side of the aircraft. These provide redundant implementations that communicate with 

each other over a cross-channel bus. Each channel of the FGS can be further broken down into 

the mode logic and the flight control laws. The flight control laws accept information about the 

aircraft's current and desired state and compute the pitch and roll guidance commands. A flight 

control law is active if its guidance commands are being used to control the aircraft or to provide 

visual cues to the flight crew. A flight control law that is operational but that is not yet active is 

armed. The mode logic determines which lateral and vertical modes of operation are active (e.g. 

controlling the aircraft or providing visual guidance cues to the flight crew) and armed (e.g. 

operational but not yet active) at any given time. These in turn determine which flight control 

laws are active and armed. These are annunciated, or displayed, on the Primary Flight Displays 

(PFD) along with a graphical depiction of the flight guidance commands generated by the FGS.  



   

 
19 

A simplified image of a Primary Flight Display (PFD) is shown in Figure 5. The PFDs display 

essential information about the aircraft, such as airspeed, vertical speed, attitude, the horizon, and 

heading. The active lateral and vertical modes are displayed (annunciated) at the top of the 

display. The annunciations in Figure 5 indicate that the current active lateral mode is Roll Hold 

(ROLL), the active vertical mode is Pitch Hold (PITCH), and that the Altitude Select (ALTSEL) 

mode is armed. 
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Figure 5 – Primary Flight Display 

The large sphere in the center of the PFD is the attitude indicator. The horizontal line across its 

middle is the artificial horizon. The current pitch and roll of the aircraft is indicated by a white 

wedge representing the aircraft in the middle of the attitude indicator.  Figure 5 depicts an 

aircraft in level flight with zero degrees of roll and zero degrees of pitch. 

The graphical presentation of the pitch and roll guidance commands on the PFD are referred to 

as the Flight Director (FD)1. The pitch and roll guidance commands are shown as a grey wedge 

in the sky/ground ball. When the AP is not engaged, these are interpreted as guidance to the 

pilot.  When the AP is engaged, these indicate the direction the aircraft is being steered by the 
                                                

1 The term Flight Director is also commonly used to refer to the logic that computes the pitch and roll guidance 
commands. 
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AP. Engagement of the AP is indicated by the letters AP displayed directly under the mode 

annunciations. Figure 5 depicts an aircraft in which the AP is engaged and the FD is 

commanding the pilot to pitch up 7.5 degrees. 

In most flight modes, the FGS operates in dependent mode where only one FGS channel is active 

and provides guidance to the FD and the AP. The other side serves as a hot spare and sets its 

modes to match those of the active side. This is indicated by the Pilot Flying indicator displayed 

directly below the mode annunciations which points to the pilot flying (active) side. In some of 

the more critical modes such as Approach, Takeoff, and Go Around, the FGS operates in 

independent mode where both channels are active and independently computing guidance 

commands that must agree for the AP to be engaged. 
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3 Case Study: Theorem Proving 
This section illustrates the use of theorem proving to verify important system properties of the 

dual-channel FGS. We demonstrate the use of two different interactive theorem proving tools:  

PVS and HOL4.  The majority of the case study is carried out using PVS, and then repeated (on 

a part of the example) using HOL4 to illustrate the differences in the approaches.    

The rest of this section is organized as follows. Section 3.1 provides an overview of the FGS 

system and the functionality that we will be verifying in this case study.  Section 3.2 describes 

the software verification plan, identifying the life-cycle data items to be produced, the DO-178C 

objectives to be satisfied, and tool qualification issues. Section 3.3 describes the synchronous 

example, including how the components are specified in PVS, how the entire system is 

composed from the components, and how the system requirements are verified.  Section 3.4 

extends the synchronous example to the asynchronous case by introducing independent clocks 

for each component and repeats the verification. Finally, Section 3.5 presents an alternative 

specification and verification of the synchronous example using HOL4.   

3.1 Overview of FGS System 

The overall FGS system has two physical sides, or channels, one on the left side and one on the 

right side of the aircraft. These provide redundant implementations that communicate with each 

other over a cross-channel bus as shown in Figure 6.  

Left
FGS

Right
FGSCross	
  Channel	
  Bus

Transfer
Switch

 

Figure 6 – FGS System Function 

Most of the time, the FGS operates in dependent mode where only one FGS channel is active and 

provides guidance to the FD and the AP. In this mode, the flight crew can choose whether the 

left or the right FGS is the active or pilot flying side by pressing the Transfer Switch located 
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above the FCP. The other side serves as a hot spare and sets its modes to agree with those of the 

active side. In some of the more critical modes such as Approach, Takeoff, and Go Around, the 

FGS operates in independent mode where both channels are active and independently compute 

guidance commands that must agree for the AP to be engaged, regardless of which side is the 

current pilot flying side. 

In this example, there are five system level requirements related to the synchronization of the 

pilot flying side. Stated informally, these are: 

R1. At least one side shall be the pilot flying side. 

R2.  At most one side shall be the pilot flying side. 

R3.  Pressing the Transfer Switch shall always change the pilot flying side. 

R4.  The system shall start with the Primary Side as the pilot flying side. 

R5.  The system shall not change the pilot flying side unless the Transfer Switch is pressed. 

Note that these requirements are system-level requirements that encompass the two sides of the 

FGS and the cross-channel bus between them. 

The overview of Figure 6 provides no indication whether the two FGS execute synchronously or 

asynchronously. In some designs, such as in a Time-Triggered Architecture (TTA), all 

components are driven off of a single master clock and execute synchronously. In other 

architectures, such as Avionics Full-Duplex Switched Ethernet (AFDX), each component is 

driven by its own local clock and the components execute asynchronously relative to each other. 

In this case study we first develop a synchronous design in which all components are driven from 

single master clock. We develop a set of high-level requirements for each FGS side and the 

cross-channel bus that are completely free of design detail. Using theorem proving, we show that 

these high-level requirements are consistent (i.e. do not contradict each other) by proving that 

there is at least one concrete implementation that satisfies the high-level component 

requirements. We then show that the system architecture and the high-level requirements of the 

components comply with the system requirements by proving that the system requirements are 

satisfied by the synchronous design instantiated with any components that satisfy the high-level 

component requirements. We then extend this example to the more complex asynchronous case 

by introducing independent clocks for each component.  
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3.2 Software Verification Plan 

In this case study, we will use theorem proving to verify the outputs of the software requirements 

process (DO-178C Section 5.1) focusing on the objectives of Table A-3 in DO-178C and Table 

FM.A-3 in DO-333.  The purpose of these verification activities is to detect any errors that may 

have been introduced during the software requirements process.  Specifically, this case study will 

verify the high-level software requirements for the synchronization of the pilot flying side of the 

FGS and show that the system architecture, the high-level software requirements, and the high-

level hardware requirements comply with the system requirements. 

3.2.1 Formal Specification and Verification Tools 

The PVS formal specification language will be used to specify the system architecture, system 

requirements, high-level software and hardware requirements of the system components, and 

candidate low-level software and hardware requirements of the system components. Verification 

of all formal properties will be performed using the PVS theorem proving system. 

3.2.2  Life Cycle Data Items 

Life cycle data items are provided for both the synchronous and asynchronous examples using 

the PVS formal specification language. To facilitate comparison of the two examples, the same 

names are used for comparable data items in each example.  

System Architecture The system architecture is captured in the PVS theory Pilot_Flying_System.  

This theory describes how the system components interact in the overall system.  

System Requirements The system requirements are stated formally as theorems in the PVS 

theory Pilot_Flying_System_Requirements.  Machine checked proofs are developed in 

PVS to prove that these requirements are satisfied by the system architecture and the 

high-level requirements for the system components.  

High-Level Software Requirements The high-level software requirements are specified for each 

FGS side in the Side_HLR theory. This theory uses axioms and uninterpreted types, 

constants, and functions to eliminate design detail from the requirements. The axioms are 

proven consistent by demonstrating that at least one concrete implementation exists that 

satisfies the axioms. 
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Low-Level Software Requirements Candidate low-level requirements are specified for an FGS 

side in the Side_LLR theory. This theory uses interpreted types, constants, and functions 

to define a specification that is consistent-by-construction. The Side_Interpretation 

theory is used to prove that the low-level requirements comply with (i.e. implement) the 

high-level requirements, proving that the high-level requirements are consistent.  

High-Level Hardware Requirements The high-level hardware requirements are specified for the 

cross-channel bus in the Bus_HLR theory. This theory uses axioms and uninterpreted 

types, constants, and functions to eliminate all design detail from the requirements. The 

axioms are proven consistent by demonstrating that at least one concrete implementation 

exists that satisfies the axioms. 

Low-Level Hardware Requirements Candidate low-level requirements are specified for the cross-

channel bus in the Bus_LLR theory. This theory uses interpreted types, constants, and 

functions to define a specification that is consistent-by-construction. The 

Bus_Interpretation theory is used to prove that the low-level requirements comply with 

(i.e. implement) the high-level requirements, proving that the high-level requirements are 

consistent.  

The low-level requirements for each FGS side and the cross-channel bus exist primarily to prove 

that the high-level requirements are consistent. While they could be used as the actual low-level 

requirements for a development, a more likely scenario is that more detailed low-level 

requirements would be developed and proven to comply with (i.e. implement) the high-level 

requirements. So long as the more detailed requirements maintain the same interface and are 

proven to satisfy the high-level requirements, they can be substituted for the low-level 

requirements without invalidating the verification of the system requirements.   

3.2.3 Objectives to Be Satisfied 

The DO-178C and DO-333 objectives to be satisfied through theorem proving are summarized in 

Table 1. Columns A through D in the table indicate for each DO-178C software level whether 

that objective must be satisfied, and if the objective has been fully or partially satisfied in the 

case study using formal methods.  A more detailed discussion of how each objective is satisfied 
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is provided in this section.  The discussion here is focused on the PVS version of the 

specification.   

Table 1 – Summary of Objectives Satisfied by Theorem Proving 

Objective Description A B C D Notes 

A-3.1 High-level requirements 
comply with system 
requirements. 

■ ■ ■ ■ Established by proof the system requirements are 
implemented by the high-level requirements and the 
system architecture. 

A-3.2 High-level requirements are 
accurate and consistent. 

■ ■ ■ ■ Accuracy is established by formalization of the high-
level requirements.  Consistency is established by 
proving the absence of logical conflicts.   

A-3.3 High-level requirements are 
compatible with target 
computer. 

    Not addressed 

A-3.4 High-level requirements are 
verifiable. 

■ ■ ■  Established by formalizing the requirements and 
completion of the proof. 

A-3.5 High-level requirements 
conform to standards. 

□ □ □  Partially established by specifying the high-level 
requirements as formal properties. 

A-3.6 High-level requirements are 
traceable to system 
requirements. 

■ ■ ■ ■ Established by verification of the system requirements, 
and by demonstrating the necessity of each high-level 
requirement for satisfying some system requirement. 

A-3.7 Algorithms are accurate. ■ ■ ■  Correctness of the pilot flying selection logic is 
established by proof. 

FM.A-3.8 Formal analysis cases and 
procedures are correct. 

■ ■ ■  Established by review. 

FM.A-3.9 Formal analysis results are 
correct and discrepancies 
explained. 

■ ■ ■  Established by review. 

FM.A-3.10 Requirements formalization 
is correct. 

■ ■ ■  Established by review. 

FM.A-3.11 Formal method is correctly 
defined, justified, and 
appropriate. 

■ ■ ■ ■ Established by review. 

■  Full credit claimed □  Partial credit claimed             Satisfaction of objective is at applicant’s discretion 

Objective A-3.1 – High-level requirements comply with system requirements. This objective is 

demonstrated by proving with the PVS theorem prover that the system level requirements 

specified as theorems in theory Pilot_Flying_System_Requirements are implemented by the 

system architecture defined in theory Pilot_Flying_System, the high-level software requirements 

specified as axioms in theory Side_HLR and the high-level hardware requirements specified as 

axioms in theory Bus_HLR. 

Objective A-3.2 High-level requirements are accurate and consistent. Accuracy is demonstrated by 

formalizing the high-level software requirements as axioms in the PVS theory Side_HLR. 
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Consistency is demonstrated by proving that the concrete implementation defined in Side_LLR 

implements the axioms of Side_HLR. This is done by mapping in theory Side_Interpretation 

each uninterpreted type, constant, and function in Side_HLR to its interpreted counterpart in 

Side_LLR and proving that the axioms of Side_HLR are implemented by Side_LLR.  

Objective A-3.4 High-level requirements are verifiable. This objective is demonstrated by 

formalizing the high-level software requirements as axioms in the PVS theory Side_HLR and 

proving that axioms are satisfied by the concrete implementation defined in Side_LLR.  

Objective A-3.5 High-level requirements conform to standards. This objective is partially 

demonstrated by formalizing the high-level software requirements as axioms in the PVS theory 

Side_HLR, establishing that the requirements conform to the PVS specification language. 

Additional standards, such as naming standards or the presence of comments providing rationale 

for the requirement, are verified by review.  

Objective A-3.6 High-level requirements are traceable to system requirements. This objective is 

demonstrated by the proof that the high-level requirements comply with the system requirements 

(objective A-3.1) and by commenting out the high-level requirements one at a time and showing 

that the proof of the system requirements fail without each high-level requirement. 

Objective A-3.7 Algorithms are accurate. This objective is demonstrated by proving that the 

system-level requirements specified in theory Pilot_Flying_System_Requirements are 

implemented by the system architecture specified in the theory Pilot_Flying_System when 

instantiated with the high-level requirements specified in theory Side_HLR and Bus_HLR. 

Objective FM.A-3.8 Formal analysis cases and procedures are correct. This objective is met 

through review to ensure that the analyses and procedures satisfy the objectives A-3.1 through 

A-3.7 for which credit is claimed. The soundness of the proofs is ensured by the PVS verification 

system once the consistency of all axioms is verified and all types are shown to be non-empty. 

The remaining reviews consist of validating any assumptions. This includes:  

• Confirming that the resolution of cyclic dependencies in the theory Pilot_Flying_System 

is correct and can be implemented.  

• Confirming that the addition of asynchronous clocks conservatively models the behavior 

of the asynchronous system. 
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• Confirming that assumption that the Transfer Switch is observed by both sides in the 

same step is acceptable. 

Objective FM.A-3.9 Formal analysis results are correct and discrepancies explained. This objective 

is met through review to ensure that all theorems or lemmas are proven. The PVS verification 

system will identify any proofs that cannot be completed or that depend on a proof that cannot be 

completed. Many of the properties had to be revised before they could be proved. Typically, 

these were due to omissions in the original requirements or oversights introduced by the 

informality of textual requirements.  For example, the requirement R2 “At most one side shall be 

the pilot flying side” had to be changed to “At most one side shall be the pilot flying side except 

while the system is switching sides.” Each such discrepancy was explained and fed back into the 

safety assessment process for review. 

Objective FM.A-3.10 Requirements formalization is correct. This objective is met through review to 

ensure that the formal statement of a requirement is a conservative representation of the informal 

requirement.    

Objective FM.A-3.11 Formal method is correctly defined, justified, and appropriate. This objective 

is met through a review to ensure: 

a. All notations used for formal analysis are verified to have precise, unambiguous, 

mathematically defined syntax and semantics. Only the PVS language was used which 

provides a formal syntax and semantics.  

b. The soundness of each formal analysis method is normally demonstrated by citing 

research papers that discuss the soundness of the method(s) implemented in a given tool.  

In the case of PVS, it may be necessary to restrict the use of certain proof strategies for 

which evidence of soundness is not available.  At a minimum, it must be shown that all 

axioms are consistent and all types are non-empty. Soundness of both PVS and HOL4 is 

discussed further in the next section in the context of tool qualification.   

c. Assumptions related to each formal analysis are described and justified. The one 

assumption described above that both sides observe the Transfer Switch in the same step 

is shown to be acceptable since only the pilot not flying side listens for the Transfer 

Switch. Since this example contains only Boolean and enumerated types and no other 
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relationships are assumed about its inputs, no assumptions related to the formal analysis 

(e.g., approximating floating-point numbers as reals) were necessary. 

3.2.4 Tool Qualification Issues 

Tool qualification is the process necessary to obtain certification credit for the use of a software 

tool within the context of a specific airborne system.  It is likely that any formal methods tool 

used for verification as described in DO-333 will require qualification.   

According to DO-178C, qualification of a tool is needed when:  

1. DO-178C processes are eliminated, reduced, or automated through the use of the tool, 

and  

2. The output of the tool is used without being verified.   

The purpose of qualification is to ensure that the tool provides confidence at least equivalent to 

that of the process which is eliminated, reduced, or automated.   

DO-178C specifies that tool qualification should be performed in accordance with DO-330, 

Software Tool Qualification Considerations [34]. DO-330 specifies five different Tool 

Qualification Levels (TQLs) that define what activities must be performed to qualify a particular 

software tool. DO-178C, in turn defines three criteria to determine to determine which TQL 

should apply to a particular tool in a given context.   

Criteria 1:  A tool whose output is part of the airborne software and thus could insert an error.   

Criteria 2:  A tool that automates verification processes and thus could fail to detect an error, and 

whose output is used to justify the elimination or reduction of either verification processes other 

than those automated by the tool, or development processes that could have an impact on the 

airborne software.   

Criteria 3:  A tool that, within the scope of its intended use, could fail to detect an error (in other 

words, a tool that automates verification processes).   

Once the criteria are applied, DO-178C provides a table in section 12.2.2 to map software level 

and qualification criteria to the required TQL.  For the certification objectives and tool use that 

we are considering in this case study, Criteria 3 applies.  This means that for all airborne 
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software levels the theorem provers would need to be qualified to TQL-5 (if their results are not 

independently checked).   

Depending on the tool, qualification of a theorem prover may be a difficult task.  Even at the 

lowest qualification level (TQL-5) there are a number of development artifacts that must be 

produced as part of the qualification process.  The largest part of the effort is focused on defining 

operational requirements for the tool (what the tool claims to do – the processes eliminated, 

reduced, or automated), and then developing a comprehensive test suite to show that those 

requirements are satisfied over an appropriate range of tool inputs.   

An alternative approach is to avoid the need to qualify the theorem prover itself by providing an 

independent check of the proof it produces.  This may be more or less feasible depending on the 

nature of the proof artifacts generated by a particular theorem prover.   

The PVS proof engine is built from a small set of primitive inference steps. Most of the inference 

steps are small, but a few involve deep combinations of decision procedures and rewriting. 

Larger proof strategies can be defined using the primitive ones. Several external proof tools for 

Binary Decision Diagram (BDD)-based simplification and model checking, monadic second-

order reasoning, nonlinear arithmetic, and predicate abstraction have been added to PVS.   

PVS is based on a classical strongly-typed higher-order logic and the theorem prover itself is a 

based on a sequent calculus for this logic. Standard references for the PVS language are [29], 

[30], [31] and [32]. However, not all aspects of the language are described. For example, the 

formal semantics of recursive functions and their termination is not described.  This would likely 

present some challenges to qualification and the requirement to demonstrate soundness of the 

analysis method. 

Unlike Isabelle/HOL or Coq, PVS does not normally emit a proof that could be checked by a 

separate (qualified) proof checking tool, though this option is available. We have expanded one 

of our proofs down to the primitive proof rules to demonstrate that this is feasible. Depending 

upon the nature of the proof rules used, this expansion could in principle be independently 

checked by a separate tool.  However, we are not aware of this having been done in practice and 

development of an appropriate independent checker for PVS is still a research topic.   
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Extant implementations of HOL follow the so-called “LCF approach” to designing theorem 

provers. This methodology implements the logic by a small trusted kernel, which encapsulates 

just the primitive inference rules, axioms, and definition mechanisms of the logic. The logic 

kernel is an abstract data type, having the property that the only way a theorem can be obtained 

is ultimately by making primitive inference steps, which are very close in granularity to those in 

the mathematical definition of the logic. For example, the introduction and elimination rules for 

the logical connectives constitute the bulk of the implementation of the HOL4 kernel, and these 

are very simple to implement. In contrast, basic inference steps in systems like PVS tend to be 

much larger, amounting to invocation of complex combinations of simplifiers and powerful 

decision procedures. 

 As a consequence, it is straightforward to instrument HOL kernels so that they produce formal 

proofs. This has been done in a variety of research projects [28], [15]. Programs that check the 

correctness of such proofs are small and relatively easy to verify.  

Another approach to theorem prover correctness is to verify the kernel once and for all. This has 

been done for the implementations of the primitive inferences of HOL Light, with respect to an 

abstract, set-theoretic specification of the logic. 

A more extensive overview of the issues for PVS and HOL4, as well as other popular theorem 

proving environments, can be found in the summary document for the “Trusted Extensions of 

Interactive Theorem Provers” workshop [36]. 
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3.3 The Synchronous Pilot Flying Example 

The synchronous Pilot Flying example consists of four main components, the Left_Side FGS, the 

Right_Side FGS, an LR_Bus and an RL_Bus connecting the two sides as shown in Figure 7. 

Left_Side

FGS

Right_Side

FGS

LR_Bus

RL_Bus

Left_Pilot_Flying_Side

Right_Pilot_Flying_Side

Transfer_Switch Transfer_Switch

C1 C2

C3C4

TRUE

Primary_Side

FALSE
Primary_Side

 

Figure 7 – Synchronous Pilot Flying System 

All four components are assumed to be driven by the same master clock and to execute 

synchronously. Each FGS produces a Pilot_Flying_Side Boolean output indicating if it believes 

itself to be the current pilot flying side. The two buses pass the value produced by one side to the 

other side, introducing a one-step delay in the process. Each FGS accepts as inputs a Boolean 

value representing the current value of the Transfer_Switch2 and the Pilot_Flying_Side value 

passed across the bus from the other side. Each FGS also accepts a single Boolean constant 

indicating if it is the Primary_Side that is to be the initial pilot flying side. The constant for the 

Left_Side is set to true to make it the initial pilot flying side while the input to the Right_Side is 

set to false. The intermediate connections C1, C2, C3, and C4 are also labeled on the diagram to 

facilitate discussion of the formal specification and the proofs. 

3.3.1 High-Level Requirements for the Synchronous Bus  

Each bus in the synchronous Pilot Flying example transfers its input to its output with a one-step 

delay. The PVS theory specifying this behavior is shown in Figure 8.  

                                                

2 Note that there is an implied assumption in this model that the Transfer Switch arrives at both sides on the same 
step. The subsequent discussion shows that this assumption can be safely made since only the pilot not flying side 
listens for the Transfer Switch and no more than one side is ever the pilot not flying side. 
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Bus_HLR[Init: bool]: THEORY 
BEGIN 
 
    %———————————————————————————————————————————————————————————————————– 
    % State defined as an uninterpreted, non-empty type 
    %———————————————————————————————————————————————————————————————————– 
    State: TYPE+  
 
    Initial_State: State 
 
    %———————————————————————————————————————————————————————————————————– 
    % Next state defined as an uninterpreted function 
    %———————————————————————————————————————————————————————————————————– 
    next_state: [State, bool -> State] 
     
    %———————————————————————————————————————————————————————————————————– 
    % Output of the bus 
    %———————————————————————————————————————————————————————————————————– 
    output: [State -> bool] 
 
    %———————————————————————————————————————————————————————————————————– 
    % High level requirements 
    %———————————————————————————————————————————————————————————————————– 
    HLR1: AXIOM 
       output(Initial_State) = Init 
 
    HLR2: AXIOM 
       forall (s: State, i: bool) : 
          output(next_state(s, i)) = i 
 
 
 END Bus_HLR 
 

Figure 8 – High-Level Requirements for the Synchronous Bus 

Since the bus introduces a one-step delay in conveying its inputs to its outputs, the initial output 

value of the bus must be specified. This is done by parameterizing the theory with the Init 

Boolean value.  To be able to compose all the components of the Pilot Flying System in a 

consistent fashion, we adopt the convention of defining a State type for each component 

representing its internal state. Since we want the high-level requirements to be as free of design 

decisions as possible, we define the type State for the synchronous bus to be an uninterpreted 

type that provides no information about how the state is implemented. Since an empty type can 

lead to an unsound proof system, we do specify that the type must have at least one value by 

defining it to PVS as a TYPE+. We also define an uninterpreted constant Initial_State to be an 

element of this type. As its name implies, Initial_State will represent the initial state of the bus at 

start-up. 
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While the type of the internal state of a component can be defined in PVS, PVS does not provide 

a mechanism for persisting state as might be done in an object-oriented system. Instead, the 

current state is passed in as an argument of each function that manipulates it.  We adopt the 

convention of defining for each component a next_state function that compute the component’s 

next state from its current state and its inputs and an output function that returns the outputs of 

the component from its current state. For the synchronous bus, the next_state function takes a 

state s of the bus and a Boolean input, and returns the next internal state of the bus. The output 

function takes a state s and returns a Boolean value. 

The high-level requirements for the synchronous bus are specified as two PVS axioms. The first 

requirement, HLR1, simply states that the output of the Initial_State is the Boolean value Init 

specified as the theory parameter. The second requirement, HLR2, states that the output of the 

next_state of any state s and any input i is i.  

These axioms were defined through use of a well-known heuristic for writing axiomatic, or 

declarative, specifications. We first identify all constructors that generate new values of the type 

State and all extractors that extract values from elements of the type State. For the synchronous 

bus, the constructors are Initial_State and next_state and the only extractor is output. We then 

write one or more axioms that describe the result of applying each extractor to each constructor.  

For the synchronous bus, this results in the two axioms shown in Figure 8. 

Writing requirements as axioms allows us to specify the required behavior of a component 

without committing to a specific design or implementation.  Note that these axioms only specify 

the functionality of a component. In particular, we have not stated whether they are system, 

software, or hardware requirements. They could be viewed as the high-level functional system 

requirements for the bus. If the bus is to be implemented primarily in software, they could also 

be used as the high-level functional software requirements. If the bus is to be implemented 

primarily in hardware, they could be used as the high-level functional hardware requirements. 

Such axiomatic or declarative specifications are formal versions of the informal “shall” 

statements typically written in requirements documents. In fact, they share two common 

concerns with such requirements, completeness and consistency. 

Completeness refers to whether the axioms (requirements) fully specify what needs to be built. 

We address this issue in two ways. First, we used the heuristic described earlier to define the 
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effect of each extractor on each constructor, giving us a systematic way of developing the 

axioms. More importantly, we prove in Section 3.3.6 that the requirements for the overall Pilot 

Flying system will be satisfied using any bus that satisfies these axioms, showing that the axioms 

are sufficiently complete to ensure the required system behavior. 

Consistency refers to whether the axioms contradict each other. In an informal development 

process, inconsistent requirements are typically discovered during development when it becomes 

apparent that the specified system cannot be built. In the same way, inconsistent axioms cannot 

be implemented. Even worse, inconsistent axioms introduce unsoundness into a proof system 

allowing false theorems to be proven. For this reason, whenever axioms are used in a 

specification, it is important to prove that they are consistent. The standard way of doing this is 

to demonstrate that an implementation exists that satisfies all the axioms. In the next section, we 

define a set of low-level requirements for the bus that are consistent by construction and prove 

that the implementation satisfies the high-level axioms. 
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3.3.2 Low-Level Requirements for the Synchronous Bus  

A PVS theory for an implementation of the synchronous bus is shown in Figure 9.  

 
Bus_LLR[Init:bool]: THEORY 
BEGIN 
 
    %———————————————————————————————————————————————————————————————————– 
    % Define the bus state and initial state 
    %———————————————————————————————————————————————————————————————————– 
    State: TYPE = bool 
 
    Initial_State: State = Init 
 
    %———————————————————————————————————————————————————————————————————– 
    % Next state function 
    %———————————————————————————————————————————————————————————————————– 
    next_state(s: State, i: bool): State = i 
     
    %———————————————————————————————————————————————————————————————————– 
    % Output of the bus 
    %———————————————————————————————————————————————————————————————————– 
    output(s: State): bool = s 
 
 END Bus_LLR 
 

Figure 9 – Low-Level Requirements for the Synchronous Bus 

As with the high-level requirements, the theory is parameterized with the initial output value of 

the bus. We also introduce a type State and a constant Initial_State of that type. However, this 

time we give each of these a concrete interpretation. We define the State of the bus to be of type 

Boolean and we assign the theory parameter Init to be the value of Initial_State. We also provide 

a concrete interpretation for each function. We define the next_state function to return the value 

of its input i and we define the output of the bus to be its current state s. 

Note that this specification does not include any axioms. It is constructed using only the base 

types of PVS and functions. The PVS type system will ensure that such a constructive 

specification is consistent by generating type-correctness conditions (TCCs) that must be proven 

using the PVS theorem prover. 

This specification is notable in that is actually shorter than the high-level bus requirements. 

However, it is also more concrete in that it makes the design decision to represent the state of the 

channel as a single Boolean variable. We could have also chosen to implement the bus using an 

integer rather than a Boolean or using a queue of size one providing the constructor and extractor 



   

 
36 

functions were defined appropriately. So long as an implementation provides the same types, 

constants, and functions and satisfies the two axioms of the high-level requirements of Figure 8, 

it would be an acceptable implementation of the synchronous bus.  

To prove that the low-level bus requirements of Figure 9 implement, or comply with, the high-

level bus requirements of Figure 8, we use the theory interpretation capability of PVS. This is 

shown in Figure 10. The Bus_Interpretation theory first imports the Bus_LLR theory using the 

same Boolean theory parameter, Init. It then imports the Bus_HLR theory, but provides an 

interpretation for each uninterpreted type, constant, and function based on the Bus_LLR 

specification. For example, it defines the State type of the Bus_HLR theory to be the State type 

of the Bus_LLR theory. In fact, it defines each uninterpreted type, constant and function in 

Bus_HLR to be the corresponding type, constant, or function in Bus_LLR. When this theory is 

typechecked using PVS, it generates the two TCCs shown in Figure 11. 

 
Bus_Interpretation[Init : bool] : THEORY 
  
BEGIN 
 
  %———————————————————————————————————————————————————————————————————– 
  % Import low-level requirements (LLR) for a bus 
  %———————————————————————————————————————————————————————————————————– 
  IMPORTING Bus_LLR[Init] 
 
  %———————————————————————————————————————————————————————————————————– 
  % Import high-level (HLR) requirements for a bus and 
  % define the LLR as an interpretation of the HLR 
  %———————————————————————————————————————————————————————————————————– 
  IMPORTING Bus_HLR[Init] {{ 
                    State         := Bus_LLR.State, 
                    Initial_State := Bus_LLR.Initial_State, 
                    next_state    := Bus_LLR.next_state, 
                    output        := Bus_LLR.output 
    }} 
 
  END Bus_Interpretation 
 

Figure 10 – Theory Interpretation for Synchronous Bus 

A careful examination of these TCCs reveals that they are the axioms of the Bus_HLR theory 

instantiated with the types, constants, and functions defined in the Bus_LLR theory. These TCCs 

can easily be proved using the typecheck-prove (M-x tcp) command of PVS, proving that the 

Bus_LLR theory implements the axioms of the Bus_HLR theory. 
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% Mapped-axiom TCC generated (at line 14, column 12) for 
    % Bus_HLR[Init] 
    %     {{ State := Bus_LLR.State, 
    %        Initial_State := Bus_LLR.Initial_State, 
    %        next_state := Bus_LLR.next_state, 
    %        output := Bus_LLR.output }} 
  % proved - complete 
IMP_Bus_HLR_HLR1_TCC1: OBLIGATION 
  Bus_LLR[Init].output(Bus_LLR[Init].Initial_State) = Init; 
 
% Mapped-axiom TCC generated (at line 14, column 12) for 
    % Bus_HLR[Init] 
    %     {{ State := Bus_LLR.State, 
    %        Initial_State := Bus_LLR.Initial_State, 
    %        next_state := Bus_LLR.next_state, 
    %        output := Bus_LLR.output }} 
  % proved - complete 
IMP_Bus_HLR_HLR2_TCC1: OBLIGATION 
  FORALL (s: State[Init], i: bool): 
    Bus_LLR[Init].output(Bus_LLR[Init].next_state(s, i)) = i; 
 

Figure 11 – TCCs Generated from Theory Interpretation for the Synchronous Bus 

In this way, we have shown that at least one concrete implementation of the Bus_HLR theory 

exists and that the axioms of the Bus_HLR are consistent, allowing us to safely use it as the high-

level functional requirements for the synchronous bus. The Bus_LLR theory can be used as the 

low-level requirements for the bus or a more detailed set of low-level requirements can be 

developed and proven to implement the high-level requirements. 

3.3.3 High-level Requirements for the Synchronous FGS Side 

In this section we develop the high-level requirements for the synchronous FGS side just as we 

did for the synchronous bus.  For the synchronous system, each side executes the simple state 

machine shown in Figure 12 to determine which side is the current pilot flying side.  
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Pilot_Flying Not_Pilot_Flying

[rise(Other_Side_Pilot_Flying)]

[rise(Transfer_Switch)]

[Primary_Side] [NOT	
  Primary_Side]

 

Figure 12 – Synchronous Pilot Flying Side Logic 

If a side believes itself to be the Not_Pilot_Flying side, it will become the Pilot_Flying side 

when it sees the Transfer_Switch pressed (i.e. a rising edge). If a side is the Pilot_Flying side, it 

will become the Not_Pilot_Flying side when it sees the other side become the pilot flying side. 

Thus, it is always the Not_Pilot_Flying side that responds to the Transfer Switch, and the current 

Pilot_Flying side always yields when it sees the other side become the Pilot_Flying side. The 

PVS specification of the high-level requirements for a synchronous FGS side is shown in Figure 

13 and Figure 14. 

The theory is parameterized with whether this side is the Primary_Side. Just as with the bus, we 

introduce an uninterpreted State type, an uninterpreted Initial_State constant and an 

uninterpreted next_state function. Since each side needs to be able to observe a rising edge of the 

Transfer_Switch and of the other side’s Pilot_Flying value, each side saves the previous value of 

the Transfer_Switch and the other side’s Pilot_Flying value passed across the bus.  
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Side_HLR[Primary_Side : bool] : THEORY 
 
BEGIN 
  
    %———————————————————————————————————————————————————————————————————– 
    % State defined as an uninterpreted, non-empty type 
    %———————————————————————————————————————————————————————————————————– 
    State: TYPE+           
 
    Initial_State: State 
 
    %———————————————————————————————————————————————————————————————————– 
    % Next state defined as an uninterpreted function 
    %———————————————————————————————————————————————————————————————————– 
    next_state: [State, bool, bool -> State] 
 
    %———————————————————————————————————————————————————————————————————– 
    % Extractor functions for this side 
    %———————————————————————————————————————————————————————————————————– 
    pre_TS   : [State -> bool] 
    pre_OSPF : [State -> bool] 
 
    %———————————————————————————————————————————————————————————————————– 
    % Pilot flying output for this side 
    %———————————————————————————————————————————————————————————————————– 
    pilot_flying : [State -> bool]  
 
    %———————————————————————————————————————————————————————————————————– 
    % Auxiliary definitions for stating axioms 
    %———————————————————————————————————————————————————————————————————– 
    rise_ospf(s:State, ospf:bool) : bool = NOT pre_OSPF(s) AND ospf 
    rise_ts  (s:State, ts  :bool) : bool = NOT pre_TS  (s) AND ts  
 

Figure 13 – High-Level Requirements for the Synchronous Side (Part 1) 

We specify uninterpreted extractor functions pre_TS and pre_OSPF that extract these values 

from the side’s state. We also define an extractor pilot_flying for the single output of the side. To 

provide a convenient shorthand for writing axioms, we also define (interpreted) auxiliary 

functions rise_ospf and rise_ts as shown. The completion of the theory is shown in Figure 14 

where the axioms specifying the side’s required behavior are given. 
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    %———————————————————————————————————————————————————————————————————– 
    % High level requirements 
    %———————————————————————————————————————————————————————————————————– 
    HLR1: AXIOM 
       pilot_flying(Initial_State) = Primary_Side 
 
    HLR2: AXIOM 
       pre_TS(Initial_State) 
 
    HLR3: AXIOM 
       pre_OSPF(Initial_State) = NOT Primary_Side 
 
    HLR4: AXIOM 
       forall (s:State, ts, ospf: bool) : 
         pilot_flying(s) AND rise_ospf(s, ospf) =>  
            NOT pilot_flying(next_state(s, ts, ospf)) 
    
    HLR5: AXIOM 
       forall (s:State, ts, ospf: bool) : 
          pilot_flying(s) AND NOT rise_ospf(s, ospf) =>  
             pilot_flying(next_state(s, ts, ospf)) 
 
    HLR6: AXIOM 
       forall (s:State, ts, ospf: bool) : 
          NOT pilot_flying(s) AND rise_ts(s, ts) =>   
             pilot_flying(next_state(s, ts, ospf)) 
 
    HLR7: AXIOM 
       forall (s:State, ts, ospf: bool) : 
          NOT pilot_flying(s) AND NOT rise_ts(s, ts) =>  
             NOT pilot_flying(next_state(s, ts, ospf)) 
 
    HLR8: AXIOM 
       forall (s:State, ts, ospf: bool) : 
          pre_TS(next_state(s, ts, ospf)) = ts 
 
    HLR9: AXIOM 
       forall (s:State, ts, ospf: bool) : 
          pre_OSPF(next_state(s, ts, ospf)) = ospf 
 
END Side_HLR 
 

Figure 14 – High-Level Requirements for the Synchronous Side (Part 2) 

Axioms HLR1 through HLR3 define the result of applying each of the three extractors to the 

Initial_State constructor. HLR4 through HLR7 define the result of applying the pilot_flying 

extractor to the next_state constructor. HLR4 defines the case when this side is the pilot flying 

side and the other side is observed to become the pilot flying side.3 HLR5 defines the case where 

                                                

3 The “=>” operator is the implication operator (read “A implies B”), where A => B states that if A is true, B must 
also be true. It is logically equivalent to not A or B. 
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this side is the pilot flying side and the other side is not observed to become the pilot flying side. 

HLR 6 and HLR7 define the two cases when this side is not the pilot flying side.  Note that 

axioms HLR4 through HLR7 are disjoint in that only one of their antecedents can be true at a 

time. Finally, HLR8 and HLR9 define the effect of applying the pre_TS and pre_OSPF 

extractors to the next_state constructor.  

3.3.4 Low-level Requirements for the Synchronous FGS Side 

In this section, we show that the axioms of Section 3.3.3 are consistent by developing a 

constructive implementation of the synchronous FGS side and proving that it satisfies these 

axioms. The PVS theory Side_LLR shown in Figure 15 and Figure 16 defines a constructive 

implementation of a synchronous Side by providing a concrete interpretation for each type, 

constant, and function. 

Just as for the high-level requirements, the theory is parameterized with whether it is the 

Primary_Side. The two possible values of the state machine of Figure 12, Pilot_Flying and 

Not_Pilot_Flying, are specified as the PVS enumeration type Pilot_Flying_Side. The 

Initial_Pilot_Flying_Side is a constant whose value is determined by the Primary_Side theory 

parameter 

The State of a side is stored in a PVS record structure consisting of three fields – the current 

value of the Pilot_Flying_Side state machine (st), the previous value of Transfer_Switch (pre_ts), 

and the previous value of Other_Side_Pilot_Flying input (pre_ospf). The last two values are used 

in the next state function to determine whether a rising edge of the Transfer Switch or the other 

side’s pilot flying output has occurred. The initial value of pre_ts is set to true to ensure that a 

rising edge of the Transfer Switch is not detected in the initial state. The initial value of pre_ospf 

is set to match the initial value of the pilot flying output from the other side.  

 



   

 
42 

 
Side_LLR[Primary_Side : bool] : THEORY 
 
BEGIN 
 
    %———————————————————————————————————————————————————————————————————– 
    % Pilot flying state machine values 
    %———————————————————————————————————————————————————————————————————– 
    Pilot_Flying_Side : TYPE =  {PilotFlying, NotPilotFlying} 
 
    Initial_Pilot_Flying_Side : Pilot_Flying_Side =  
            IF Primary_Side THEN  PilotFlying 
            ELSE NotPilotFlying ENDIF 
 
    %———————————————————————————————————————————————————————————————————– 
    % Definition of state and initial state for this side 
    %———————————————————————————————————————————————————————————————————– 
    State :TYPE+          = [# st       : Pilot_Flying_Side,  
                               pre_ts   : bool,  
                               pre_ospf : bool               #] 
 
    Initial_State: State  = (# st       := Initial_Pilot_Flying_Side, 
                               pre_ts   := TRUE, 
                               pre_ospf := NOT Primary_Side  #) 
 
    %———————————————————————————————————————————————————————————————————– 
    % Extractor functions for this side 
    %———————————————————————————————————————————————————————————————————– 
    pre_TS  (s: State) : bool = pre_ts(s) 
    pre_OSPF(s: State) : bool = pre_ospf(s) 
 
    %———————————————————————————————————————————————————————————————————– 
    % Auxiliary functions for defining next state function 
    %———————————————————————————————————————————————————————————————————– 
    rise_ts  (s:State, ts  : bool) : bool = NOT pre_ts  (s) AND ts  
    rise_ospf(s:State, ospf: bool) : bool = NOT pre_ospf(s) AND ospf 
     

Figure 15 – Low-Level Requirements for the Synchronous Side (Part 1) 

To maintain consistency with the high-level requirements, extractor functions pre_TS and 

pre_OSPF are defined that simply extract the relevant fields from the state record. Auxiliary 

functions rise_ts and rise_ospf are also defined to simplify defining the next_state function. The 

next_state function (shown in Figure 16) computes the next state of a side given its current state 

and inputs.   

The next state is computed by first computing the next Pilot_Flying_Side value next_pfs. For 

example, transition 1 is taken if the Pilot_Flying_Side of the current state, st(s), is Pilot_Flying 

and the other side is observed to become the pilot flying side, setting next_pfs to 

Not_Pilot_Flying.  In similar fashion, if the Transfer_Switch is pressed while this side is the 
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Not_Pilot_Flying side, transition 2 is taken setting next_pfs to Pilot_Flying. If neither transition 

is taken, next_pfs is left unchanged as st(s).  The next state is then composed from the computed 

value of next_pfs and current input values of the Transfer_Switch and Other_Side_Pilot_Flying.  

    
    %———————————————————————————————————————————————————————————————————– 
    % Next state function 
    %———————————————————————————————————————————————————————————————————– 
    next_state(s: State, ts:bool, ospf:bool) : State = 
     LET 
        next_pfs =  
          %————————————————————————————————————————————————————————————– 
          % Transition 1 - Other side becomes the pilot flying side 
          %————————————————————————————————————————————————————————————– 
          IF PilotFlying?(st(s)) AND rise_ospf(s, ospf) 
             THEN NotPilotFlying 
          %————————————————————————————————————————————————————————————– 
          % Transition 2 - Transfer switch is pressed 
          %————————————————————————————————————————————————————————————– 
          ELSIF NotPilotFlying?(st(s)) AND rise_ts(s,ts) 
             THEN PilotFlying 
          %————————————————————————————————————————————————————————————– 
          % No transition taken 
          %————————————————————————————————————————————————————————————– 
          ELSE  
             st(s)             
          ENDIF 
       IN (# st:= next_pfs, pre_ts := ts, pre_ospf := ospf #)    
 
    %———————————————————————————————————————————————————————————————————– 
    % Pilot flying output 
    %———————————————————————————————————————————————————————————————————– 
    pilot_flying(s: State):bool = PilotFlying?(st(s)) 
  
  
  END Side_LLR 
 

Figure 16 – Low-Level Requirements for the Synchronous Side (Part 2) 

Finally, the output function extracts a Boolean value from the current state indicating if this side 

believes it is the pilot flying side. 

Just as for the synchronous bus, we prove that the low-level requirements of Figure 15 and 

Figure 16 implement the high-level requirements of Figure 13 and Figure 14 by defining a theory 

interpretation of the high-level requirements based on the low-level requirements. This is shown 

in Figure 17. 



   

 
44 

 
Side_Interpretation[Primary_Side : bool] : THEORY 
  
BEGIN 
 
  %———————————————————————————————————————————————————————————————————– 
  % Import low-level requirements (LLR) for a side 
  %———————————————————————————————————————————————————————————————————– 
  IMPORTING Side_LLR[Primary_Side] 
 
  %———————————————————————————————————————————————————————————————————– 
  % Import high-level (HLR) requirements for a side and 
  % define the LLR as an interpretation of the HLR 
  %———————————————————————————————————————————————————————————————————– 
  IMPORTING Side_HLR[Primary_Side] {{ 
                    State         := Side_LLR.State, 
                    Initial_State := Side_LLR.Initial_State, 
                    next_state    := Side_LLR.next_state, 
                    pre_TS        := Side_LLR.pre_TS, 
                    pre_OSPF      := Side_LLR.pre_OSPF, 
                    pilot_flying  := Side_LLR.pilot_flying 
    }} 
 
  END Side_Interpretation 
 

Figure 17 – Theory Interpretation for the Synchronous Side 

When this theory is typechecked using PVS, it generates nine TCCs, one for each axiom 

specified in the high-level requirements shown in Figure 14. These TCCS are easily proven 

using the typecheck-prove (M-x tcp) command of PVS, proving that the Side_LLR requirements 

are an implementation of the Side_HLR requirements and that the axioms of the Side_HLR 

requirements are consistent. Just as for the synchronous bus, the Side_LLR theory can be used as 

the low-level requirements for the side or a more detailed set of low-level requirements can be 

developed and proven to satisfy the Side_HLR requirements. 
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3.3.5 PVS Specification of the Synchronous Pilot Flying System 

The PVS specification for the entire synchronous Pilot_Flying_System of Figure 7 is shown in 

Figure 18 and Figure 19. 

 
Pilot_Flying_System : THEORY 
BEGIN 
 
  %———————————————————————————————————————————————————————————————————– 
  % Importing the sytem componenets 
  %———————————————————————————————————————————————————————————————————– 
  IMPORTING Side_HLR [TRUE]  AS Left_Side; 
  IMPORTING Bus_HLR  [TRUE]  AS LR_Bus; 
  IMPORTING Side_HLR [FALSE] AS Right_Side; 
  IMPORTING Bus_HLR  [FALSE] AS RL_Bus; 
 
  %———————————————————————————————————————————————————————————————————– 
  % Defining the system state 
  %———————————————————————————————————————————————————————————————————– 
  State : Type         = [# Left_Side  : Left_Side.State, 
                            LR_Bus     : LR_Bus.State, 
                            Right_Side : Right_Side.State, 
                            RL_Bus     : RL_Bus.State, 
                            pre_TS     : bool               #] 
 
  %———————————————————————————————————————————————————————————————————– 
  % Defining the initial system state 
  %———————————————————————————————————————————————————————————————————– 
  Initial_State: State = (# Left_Side  := Left_Side.Initial_State, 
                            LR_Bus     := LR_Bus.Initial_State, 
                            Right_Side := Right_Side.Initial_State, 
                            RL_Bus     := RL_Bus.Initial_State, 
                            pre_TS     := TRUE              #) 
 

Figure 18 – PVS Specification of the Synchronous Pilot Flying System (Part 1) 

The theory begins by importing the four components instantiated with the appropriate 

parameters. The Left_Side is instantiated with the Primary_Side parameter set to true and the 

Right_Side set to false. The LR_Bus is initiated with its initial output set to true to match the 

initial output of the Left_Side and the RL_Bus is instantiated with its output set to false to match 

the initial output Right_Side. The internal State of the system is defined to be a record structure 

containing the internal state of each of its four components and the previous value of the Transfer 

Switch. The Initial_State of the system is simply a record containing the initial state of each 

component with the previous value of the Transfer Switch initialized to true. 

The next_state function for the system shown in Figure 19 merits careful examination. As shown 

in Figure 7, the Left_Side provides an input to the LR_Bus which provides an input to the 
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Right_Side which provides an input to the RL_Bus which provides an input to Left_Side. This 

circular dependency (also known as an algebraic loop) is only possible if some component 

depends only on the previous value of its predecessor. Like an Escher print (e.g. Relativity) [4], a 

circular dependency in which every component depends on the current value of its predecessor is 

an illusion that cannot be implemented.   

  
 %———————————————————————————————————————————————————————————————————– 
  % Next state function 
  %———————————————————————————————————————————————————————————————————– 
  next_state(s: State, TS: bool): State = 
    LET  
        %—————————————————————————————————————————————————————————————— 
        % Compute next state of LR Bus and Right Side 
        %—————————————————————————————————————————————————————————————— 
        C1      = Left_Side.Pilot_flying(Left_Side(s)), 
        next_LR = LR_Bus.next_state(LR_Bus(s), C1), 
        C2      = LR_Bus.output(next_LR), 
        next_RS = Right_Side.next_state(Right_Side(s), TS, C2), 
 
        %—————————————————————————————————————————————————————————————— 
        % Compute next state of RL Bus and Left Side 
        %—————————————————————————————————————————————————————————————— 
        C3      = Right_Side. Pilot_flying(Right_Side(s)), 
        next_RL = RL_Bus.next_state(RL_Bus(s), C3), 
        C4      = RL_Bus.output(next_RL), 
        next_LS = Left_Side.next_state(Left_Side(s), TS, C4) 
    IN  
       (# Left_Side  := next_LS, 
          LR_Bus     := next_LR, 
          Right_Side := next_RS, 
          RL_Bus     := next_RL, 
          pre_TS     := TS       #) 
 
  %———————————————————————————————————————————————————————————————————– 
  % Outputs of the system 
  %———————————————————————————————————————————————————————————————————– 
  Left_Pilot_Flying_Side(s: State) : bool = pilot_flying(Left_Side(s)) 
 
  Right_Pilot_Flying_Side(s: State): bool = pilot_flying(Right_Side(s)) 
 
  END Pilot_Flying_System 
 

Figure 19 – PVS Specification of the Synchronous Pilot Flying System (Part 2)  

We choose to resolve this cyclic dependency by having each bus read the current value of its 

input (i.e. the previous value form the side inputting to the bus) and have each side read the new 

value computed by its inputting bus. The next_state function of Figure 19  defines this precisely. 

It states that output of the Left_Side in the current state (C1) is used as an input in computing the 
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next state of the LR_Bus. The output of the LR_Bus after its state is updated (C2) is then used in 

computing the next state of the Left_Side. In similar fashion, the output of the Right_Side in the 

current state (C3) is used as an input in computing the next state of the RL_Bus. The output of 

the RL_Bus after its state is updated (C4) is then used in computing the next state of the 

Right_Side. The next state of the entire system is composed from the new state computed for 

each component and by updating the previous value of the Transfer Switch.  

Finally, the theory defines the two outputs of the Pilot Flying system, the Boolean functions 

Left_Pilot_Flying_Side and Right_Pilot_Flying_Side indicating whether each side believes it is 

the pilot flying side. 
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3.3.6 Formal Verification of the Synchronous Pilot Flying Example 

This section shows that the system architecture and high-level component requirements comply 

with the system requirements by proving that the five system requirements are satisfied by the 

system design and high-level requirements for each component.   Stated informally, the five 

system requirements are: 

R1. At least one side shall be the pilot flying side. 

R2.  At most one side shall be the pilot flying side. 

R3.  Pressing the Transfer Switch shall always change the pilot flying side. 

R4.  The system shall start with the Primary Side as the pilot flying side. 

R5.  The system shall not change the pilot flying side unless the Transfer Switch is pressed. 

The first requirement R1 can be stated formally in PVS as shown in Figure 20. 

 
s:  VAR Pilot_Flying_System.State 
 
R1: THEOREM 
    Left_Pilot_Flying_Side(s) or Right_Pilot_Flying_Side(s) 

 

Figure 20 – Incorrect Statement of Synchronous Requirement R1 in PVS 

Unfortunately, this property cannot be proven. This is because the type State does not explicitly 

exclude system states where neither side is the pilot flying side. However, for our system the 

only states of interest are those that can be reached in some number of steps from the Initial 

State. The step in proving requirement R1 is restating it so that it only applies to reachable states. 

The first part of the Pilot_Flying_System_Requirements theory shown in Figure 21 defines what 

it means for a state to be reachable. 
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Pilot_Flying_System_Requirements: THEORY 
 
  BEGIN 
 
    IMPORTING Pilot_Flying_System 
 
    s:  VAR Pilot_Flying_System.State 
    ts: VAR bool 
 
    %———————————————————————————————————————————————————————————————————– 
    % Definition of a reachable state 
    %———————————————————————————————————————————————————————————————————– 
    Reachable_State(s): INDUCTIVE bool =  
        s = Initial_State OR  
            (EXISTS (r: Pilot_Flying_System.State, t: bool) : 
                        Reachable_State(r) AND s = next_state(r,t)) 
 
    %———————————————————————————————————————————————————————————————————– 
    % Definition of a valid state 
    %———————————————————————————————————————————————————————————————————– 
    Pre_TS_Consistency(s): bool =  
        pre_TS(Left_Side(s))  = pre_TS(s) and  
        pre_TS(Right_Side(s)) = pre_TS(s) 
 
    Pre_OSPF_Consistency(s): bool = 
        pre_OSPF(Right_Side(s)) = LR_Bus.output(LR_Bus(s)) and 
        pre_OSPF(Left_Side(s))  = RL_Bus.output(RL_Bus(s)) 
 
    At_Least_One_Side_Flying(s): bool =  
        Left_Pilot_Flying_Side(s) OR Right_Pilot_Flying_Side(s) 
 
    Buses_Differ_When_Sides_Same(s): bool = 
        pilot_flying(Left_Side(s)) = pilot_flying(Right_Side(s)) => 
            LR_Bus.output(LR_Bus(s)) /= RL_Bus.output(RL_Bus(s)) 
 
    Valid_State(s): bool =   
        At_Least_One_Side_Flying(s) AND 
        Pre_TS_Consistency(s) AND 
        Pre_OSPF_Consistency(s) AND 
        Buses_Differ_When_Sides_Same(s) 
 
    %———————————————————————————————————————————————————————————————————– 
    % Proof that every reachable state is a valid state 
    %———————————————————————————————————————————————————————————————————– 
    Reachable_States_Valid: THEOREM 
        Reachable_State(s) => Valid_State(s) 
 

Figure 21 – Synchronous Pilot Flying System Requirements (Part 1) 

The predicate Reachable_States in Figure 21 inductively defines a reachable state to be either the 

Initial_State or any state that can be reached through application of the next_state function from 

a reachable state. With this definition, we can restate the theorem for requirement R1 as shown in 

Figure 22. 
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    R1: THEOREM 
        Reachable_State(s) =>  
           Left_Pilot_Flying_Side(s) or Right_Pilot_Flying_Side(s) 
 

Figure 22 – Correct Statement of Requirement R1 in PVS 

This theorem can be proven, but the proof is complicated and it needs to be repeated in proving 

the other requirements.  To keep our proofs manageable, we first shall define a set of predicates 

describing the relationships between the system components that the system will maintain during 

its execution and then prove that those predicates are true of every reachable state.  

The Pre_TS_Consistency predicate of Figure 21 states that the previous value of the Transfer 

Switch stored in the left and right sides must be the same as that stored in the system state.  The 

Pre_OSPF_Consistency predicate states that the previous value of the other side’s pilot flying 

indication stored in each side (pre_OSPF) agrees with the output of the bus that passed it that 

value. The At_Least_One_Side_Flying predicate states that at least one side is the pilot flying 

side. The Buses_Differ_When_Both_Sides_Flying predicate states that when both sides are the 

pilot flying side, the buses must contain different Boolean values.  These predicates are collected 

together as a single conjunction in the Valid_State predicate shown in Figure 21. 

Since Valid_State contains many of the relationships between system components necessary to 

prove the system requirements and since it is not defined recursively, it is much easier to use in 

the proofs than Reachable_States. Unfortunately, development of the Valid_State predicate is not 

always obvious. Some of the constraints, such as At_Least_One_Side_Flying and 

Pre_TS_Consistency are intuitive. The others were developed by trying to prove the system 

requirements and carefully studying the proof obligations produced by PVS. For example, the 

Buses_Differ_When_Both_Sides_Flying predicate is not obvious and was added in the process of 

proving requirements R1 through R5. However, in retrospect it is clear that if it were not true, the 

system would either deadlock with both sides as the pilot flying side or immediately transition to 

a state where neither side is the pilot flying side. 

The next step is to prove that every reachable state is also a valid state.  The 

Reachable_States_Valid theorem is stated at the bottom of Figure 21 and its proof is shown in 

Figure 23. 
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;;; Proof Reachable_States_Valid-2 for formula 
Pilot_Flying_System_Requirements.Reachable_States_Valid 
;;; developed with shostak decision procedures 
("" 
 (auto-rewrite-theories "Left_Side" "LR_Bus" "Right_Side" "RL_Bus") 
 (rule-induct "Reachable_State") 
 (skosimp) 
 (case "s!2 = Initial_State") 
 (("1" (grind)) 
  ("2" 
   (assert) 
   (hide 1) 
   (grind) 
   (("1" 
     (case "Right_Side.pilot_flying(Right_Side(r!1))") 
     (("1" (grind)) ("2" (grind)))) 
    ("2" 
     (case "Right_Side.pilot_flying(Right_Side(r!1))") 
     (("1" (grind)) ("2" (grind)))) 
    ("3" 
     (case "Left_Side.pilot_flying(Left_Side(r!1))") 
     (("1" (grind)) ("2" (grind)))) 
    ("4" 
     (case "Left_Side.pilot_flying(Left_Side(r!1))") 
     (("1" (grind)) ("2" (grind)))))))) 
 

Figure 23 – PVS Proof of Synchronous Reachable States Valid Theorem 

The auto-rewrite-theories command installs the axioms stated in the high-level requirements for 

each side and each bus as automatic rewrite rules. The rule-induct command adds the inductive 

definition of Reachable_States to the proof tree as the rule shown in Figure 24. 

 
FORALL (s): 
        (s = Initial_State OR 
          (EXISTS (r: Pilot_Flying_System.State, t: bool): 
             Valid_State(r) AND s = next_state(r, t))) 
         IMPLIES Valid_State(s) 
 

Figure 24 – Inductive Sequent for Reachable States 

The skosimp command replaces the universal quantification over s with an unspecified constant 

s!2 and simplifies the proof obligation.  The case command splits the proof into two sub-goals. 

The first sub-goal, in which s!2 is the Initial_State, is easily discharged with the PVS grind 

command. The second sub-goal, in which s!2 is any state other than the Initial_State, is reduced 

through application of the assert, hide, and grind commands to four sub-goals. Each of these can 

be discharged by case splitting on the value of the Pilot_Flying output of either the left or right 



   

 
52 

side of state r!1 (introduced by the grind command to instantiate the existential quantification 

over r)  followed by application of grind to each of the two resulting sub-goals. 

With the proof that every reachable state is a valid state, the proof of requirements R1 through 

R5 is straightforward. The formal statement of requirements R1 and R2 are shown in Figure 25. 

To make the requirements more readable, we define two predicates over the system state. The 

predicate switching_sides identifies the system states in which the system is in the process of 

changing the pilot flying side, i.e. where one side has become the pilot flying side but that 

change has not reached the other side. The predicate pressed provides a convenient way of 

identifying a rising edge of the Transfer Switch.   

 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % The Transfer Switch is pressed in state s when its value rises. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    pressed(ts, s) : bool = not pre_TS(s) and ts 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % The system is switching sides when either side has become the 
    % pilot flying side and that change has not reached the other side 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    switching_sides(s) : bool =  
         pilot_flying(Left_Side(s))  AND NOT output(LR_Bus(s)) OR 
         pilot_flying(Right_Side(s)) AND NOT output(RL_Bus(s)) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R1. At least one side shall be the pilot flying side. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R1: THEOREM 
        Reachable_State(s) =>  
           Left_Pilot_Flying_Side(s) or Right_Pilot_Flying_Side(s) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R2. At most one side shall be the pilot flying side 
    %     except while the system is switching sides. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R2: THEOREM 
        Reachable_State(s) AND NOT switching_sides(s) =>  
           Left_Pilot_Flying_Side(s) /= Right_Pilot_Flying_Side(s)   
  

Figure 25 – Synchronous Pilot Flying System Requirements (Part 2) 

The proof of requirement R1 is shown in Figure 26. 
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;;; Proof R1-1 for formula Pilot_Flying_System_Requirements.R1 
;;; developed with shostak decision procedures 
("" (use "Reachable_States_Valid") (grind)) 
 

Figure 26 – PVS Proof of Requirement R1 for Synchronous Pilot Flying System 

The proof of R1 is immediate since all of the real work was done in proving that every reachable 

state is a valid state. The proof invokes the Reachable_States_Valid theorem with the PVS use 

command followed by a PVS grind command. 

Trying to prove requirement R2 (at most one side shall be the pilot flying side) reveals that this 

requirement cannot hold for all reachable states. In particular, in a state in which one side has 

just become the pilot flying side but this information has not been transmitted to the other side, 

both sides will be the pilot flying side for one step.  However, a safety analysis shows that it is 

acceptable to have both sides be the pilot flying side for a single step and we modify R2 to be 

required for only reachable states while the system is not switching sides. Requirement R2 can 

be proven with the same proof shown in Figure 26 used to prove requirement R1. 
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    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R3. Pressing the Transfer Switch shall always change pilot 
    %     pilot flying side. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R3a: THEOREM 
        Reachable_State(s)  =>  
           (not Left_Pilot_Flying_Side(s) and pressed(ts,s) =>  
                Left_Pilot_Flying_Side(next_state(s,ts)))  
 
    R3b: THEOREM 
         Reachable_State(s) => 
            (not Right_Pilot_Flying_Side(s) and pressed(ts,s) => 
                 Right_Pilot_Flying_Side(next_state(s,ts))) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R4. The system shall start with the Primary Side as the pilot 
    %     flying side. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R4: THEOREM 
        Left_Pilot_Flying_Side(Initial_State) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R5. The system shall not change the pilot flying side if it is 
    %     not switching sides and the Transfer Switch is not pressed. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R5a: THEOREM 
        Reachable_State(s) AND  
           NOT switching_sides(s) AND NOT pressed(ts, s) => 
               (Left_Pilot_Flying_Side(next_state(s, ts)) =  
                   Left_Pilot_Flying_Side(s)) 
 
    R5b: THEOREM 
       Reachable_State(s) AND  
          NOT switching_sides(s) AND NOT pressed(ts, s) => 
              (Right_Pilot_Flying_Side(next_state(s, ts)) = 
                   Right_Pilot_Flying_Side(s)) 
 
  END Pilot_Flying_System_Requirements 
 

Figure 27 – PVS Specification of the Pilot Flying System Requirements (Part 3) 

Requirement R3 (pressing the Transfer Switch shall always change the pilot flying side) is 

broken down into two smaller requirements. R3a states that for a reachable system state, if the 

left side is not the pilot flying side and the Transfer Switch is pressed, then the left side will 

become the pilot flying side in the next state. R3b states the same property for the right side. 

Both of these requirements can be proven with the proof shown in Figure 28. 
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;;; Proof R3a-1 for formula Pilot_Flying_System_Requirements.R3a 
;;; developed with shostak decision procedures 
("" 
 (use "Reachable_States_Valid") 
 (auto-rewrite-theories "Left_Side" "LR_Bus" "Right_Side" "RL_Bus") 
 (grind)) 
 

Figure 28 – PVS Proof of Requirement R3a/b for Synchronous Pilot Flying System  

This proof first invokes the Reachable_States_Valid theorem with the PVS use command, then 

installs the axioms stated in the high-level requirements for each side and each bus as automatic 

rewrite rules using the PVS auto-rewrite-theories command, and finally completes the proof 

with a PVS grind command. 

The proof of requirement R4 (the system shall start with the Primary Side as the pilot flying side) 

is equally straightforward. It is discharged by using the auto-rewrite-theories command to install 

the axioms for the high-level requirements as automatic rewrite rules followed by a grind 

command. 

Finally, the proof of requirement R5 (the system shall not change the pilot flying side unless the 

Transfer Switch is pressed) requires a slight modification. First, it is broken down into two 

smaller requirements, R5a and R5b, as was done for requirement R3. Trying to prove these 

reveal that they only hold if the system is not already in the process of switching sides. We revise 

the original requirement to include this caveat as shown in Figure 27. Both requirements can then 

be proven using the same proof used to prove requirements R3a and R3b (Figure 28). 

While this completes the proof of the original five requirements, the current definition of 

Valid_State may not be sufficient to prove additional useful properties about the Pilot Flying 

system. This is because while we proved that every reachable state is a valid state, we have not 

proven that every valid state is reachable. In other words, there may be states that are valid but 

that cannot be reached. In fact this is exactly the situation. The definition of Valid_State does not 

include all the relationships between system components that the system will maintain, ensuring 

that there are valid states that are not reachable. This is demonstrated in the theory 

Pilot_Flying_System_Requirements2 shown in Figure 29. 
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Pilot_Flying_System_Requirements2: THEORY 
 
  BEGIN 
 
    IMPORTING Pilot_Flying_System_Requirements 
 
    s:  VAR Pilot_Flying_System.State 
    ts: VAR bool 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Enhanced definition of a valid state 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    At_Least_One_Bus_High(s): bool =  
       output(LR_Bus(s)) OR output(RL_Bus(s)) 
 
    Quiescent(s): bool = 
        (output(LR_Bus(s)) /= output(RL_Bus(s)) AND  
         pilot_flying(Left_Side(s)) /= pilot_flying(Right_Side(s))) => 
        (output(LR_Bus(s)) = pilot_flying(Left_Side(s)) AND 
         output(RL_Bus(s)) = pilot_flying(Right_Side(s))) 
 
    Valid_State2(s) : bool =   
        Valid_State(s) AND  
        At_Least_One_Bus_High(s) AND 
        Quiescent(s)  
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Every reachable state is a valid (2) state 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    Reachable_States_Valid2: THEOREM 
        Reachable_State(s) => Valid_State2(s) 
    
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % The system only switches sides for one step 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    Switching_Transient: THEOREM 
        Reachable_State(s) AND switching_sides(s) =>  
           NOT switching_sides(next_state(s, ts)) 
 
  END Pilot_Flying_System_Requirements2 
 

Figure 29 – Pilot Flying System Requirements 2 

This theory imports the Pilot_Flying_System_Requirements theory so that it contains the current 

definition of Valid_State. It also includes the Switching_Transient theorem which states that if 

the system is switching sides in one state, it is not switching sides in the next state. This theorem 

cannot be easily proven using the definition of Valid_State, but it can be proven using the 

definition Valid_State2 that adds two additional constraints to Valid_State. The first, 

At_Least_One_Bus_High, states that the output of at least one of the two buses is always true. 

The second, Quiescent, states that in a quiescent state where the output of both sides and both 
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buses differ, the output of the left bus will be equal to the output of the left side and the output of 

the right bus will be equal to the output of the right side. 

It is easily proven that all reachable states are Valid_State2 states using a proof similar to that of 

Figure 23. The Switching_Transient theorem is then easily proven using the proof of Figure 30 

which invokes Reachable_States_Valid2 rather than Reachable_States_Valid. 

 
;;; Proof Switching_Transient-2 for formula 
Pilot_Flying_System_Requirements2.Switching_Transient 
;;; developed with shostak decision procedures 
("" 
 (auto-rewrite-theories "Left_Side" "LR_Bus" "Right_Side" "RL_Bus") 
 (use "Reachable_States_Valid2") 
 (grind)) 
 

Figure 30 – PVS Proof of Switching Transient  
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3.4 The Asynchronous Pilot Flying Example 

Designing and verifying the Pilot Flying System is considerably more difficult in the 

asynchronous case when the components are not driven by a single master clock. Values may be 

missed entirely by a component if they arrive while it is not executing, leading to race and 

deadlock conditions. If no assumptions are made about the individual component clocks, the 

Pilot Flying System can be implemented correctly only through the use of a hand-shaking 

protocol. This section describes how the fully asynchronous case can be specified and verified in 

PVS. 

To model asynchrony, we introduce for each component a single Boolean valued clock signal. 

When its clock is true, a component will take a step just as in the synchronous case. When its 

clock is false, the component makes no change to its internal state or outputs. While this model 

assumes an underlying discrete model of time where each component clock can tick only when 

the global clock ticks, we make no other assumptions about the clocks. The global clock may 

tick at any rate and the component clocks may tick or not tick at any time the global clock ticks. 

This model of time is sufficient to generate the conditions we are interested in verifying. The top 

level diagram for the asynchronous Pilot Flying example is shown in Figure 31. 
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CLK1

CLK2
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Figure 31 – Asynchronous Pilot Flying System 

The asynchronous system diagram differs from the synchronous diagram only in the addition of 

the four clocks, CLK1 through CLK4. However, there are several other changes needed to the 

underlying components to produce a correct implementation. These are described in the 

following sections. 
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3.4.1 Specification of the Asynchronous Bus Messages 

To implement the hand-shaking protocol necessary in the asynchronous case, each FGS will 

generate both its pilot flying status and a Boolean acknowledgement. Since these will be 

produced and conveyed across the bus together we define a single Message type as shown Figure 

32. A bus Message is a record type with two fields, pfs for the pilot flying status and ack for the 

acknowledgement. We also define a Msg constructor function which constructs a new message 

from values for pfs and ack.  

 
Message: THEORY 
BEGIN 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % A bus message consists of the Pilot Flying Status and an Ack 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    Message: TYPE = [# pfs: bool, ack :bool #]  
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Message constructor 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    Msg(pfs, ack : bool) : Message = (# pfs := pfs, ack := ack #) 
 
 END Message 
 

Figure 32 – PVS Specification of a Bus Message 

3.4.2 High-Level Requirements for the Asynchronous Bus  

The PVS theory for the high-level requirements for the asynchronous bus is shown in Figure 33.   
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Bus_HLR[INIT_PFS: bool, INIT_ACK: bool]: THEORY 
BEGIN 
 
    Importing Message 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Define the state and initial state 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    State: TYPE+ 
 
    Initial_State: State 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Next state function 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    next_state: [State, bool, Message -> State] 
     
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Output of the bus 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    output: [State -> Message] 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % High level requirements 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    HLR1: AXIOM 
      output(Initial_State) = Msg(INIT_PFS, INIT_ACK) 
 
    HLR2: AXIOM 
      forall (s: State, clk: bool, input: Message) : 
          output(next_state(s, clk, input)) =  
              IF NOT clk THEN output(s) ELSE input ENDIF 
 
 END Bus_HLR 
 

Figure 33 – High-Level Requirements for the Asynchronous Bus 

The theory is parameterized with the INIT_PFS and INIT_ACK values specifying the initial 

output values of the bus. Just as with the high-level requirements for the synchronous bus, 

uninterpreted values are provided for the type State, the Initial_State, and the next_state and 

output functions. Two axioms, HR1 and HR2, specify the high level requirements of the bus. 

The other major change from the synchronous case is that HR2 specifies that the output of the 

bus changes only when its clock value is true.  

 

3.4.3 Low-Level Requirements for the Asynchronous Bus 

The low-level requirements for the asynchronous bus are shown in Figure 34. 
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Bus_LLR[INIT_PFS: bool, INIT_ACK: bool]: THEORY 
BEGIN 
 
    Importing Message 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Define the state and initial state 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    State: TYPE+ = Message 
 
    Initial_State: State = Msg(INIT_PFS, INIT_ACK) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Next state function 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    next_state(s: State, clk: bool, input: Message): State =  
       IF NOT clk THEN s ELSE input ENDIF 
     
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Output of the bus 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    output(s: State): Message = s 
 
 END Bus_LLR 
 

Figure 34 – Low-Level Requirements for the Asynchronous Bus 

In the low-level requirements, a concrete interpretation has been assigned to each uninterpreted 

type, constant, and function of the high-level requirements. The type State has been defined to be 

a record structure of the type Message. The Initial_State is a message constructed from the 

theory parameters. The next_state function is defined to return the current state when its clock is 

false and its input message when its clock is true. The output function returns the current state of 

the bus. 

Just as with the synchronous bus, we demonstrate that the axioms of the high-level bus 

requirements are consistent with a theory interpretation as shown in Figure 35.  
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Bus_Interpretation[INIT_PFS: bool, INIT_ACK: bool]: THEORY 
  
BEGIN 
 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Import low-level requirements (LLR) for a bus 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  IMPORTING Bus_LLR[INIT_PFS, INIT_ACK] 
 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Import the high-level (HLR) requirements for a bus and 
  % define the LLR as an interpretation of the HLR 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  IMPORTING Bus_HLR[INIT_PFS, INIT_ACK] {{ 
                    State         := Bus_LLR.State, 
                    Initial_State := Bus_LLR.Initial_State, 
                    next_state    := Bus_LLR.next_state, 
                    output        := Bus_LLR.output 
    }} 
 
  END Bus_Interpretation 
 

Figure 35 – Theory Interpretation for Asynchronous Bus 

Type checking this theory generates two TCCs, both of which are easily proven using the 

typecheck-prove (M-x tcp) command of PVS, proving that the Bus_LLR requirements are an 

implementation of the Bus_HLR requirements and that the axioms of the Bus_HLR theory are 

consistent. 

3.4.4 High-Level Requirements for the Asynchronous FGS Side 

The PVS specification for an FGS Side also needs to be changed to input and output values of 

type Message rather than just a simple Boolean.  Since we make no assumptions about the 

component clocks, a correct implementation of the synchronization logic requires a hand-shaking 

protocol as illustrated in Figure 36. 
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Figure 36 – Asynchronous Pilot Flying Side Logic 

The Ack value is used to communicate to the other side when a side has reached a stable state. 

The Primary_Side starts in the Confirmed sub-state of the Pilot_Flying state with its Ack set to 

true. The other side starts in the Listening sub-state of the Not_Pilot_Flying state with its Ack 

also set to true. When the Primary_Side sees the other side become the pilot flying side, it 

transitions to the Inhibited sub-state of the Not_Pilot_Flying state and sets its Ack to false. While 

in the Inhibited state, a side does not respond to the flight crew pressing the Transfer Switch.4 

The Not_Pilot_Flying_Side resumes listening for the Transfer Switch when it receives an Ack 

from the other side indicating that the other side has reached the Confirmed state. When the 

Transfer Switch is pressed, the Not_Pilot_Flying side transitions to the Waiting sub-state of the 

Pilot_Flying state and remains in this sub-state until it sees the other side’s Ack fall, indicating 

that the other side has yielded control.  The PVS specification for the high-level requirements for 

an asynchronous FGS side is shown in Figure 37, Figure 44, and Figure 45.  

                                                

4 In an actual system, it could be remedied by ensuring the Transfer Switch remains high longer than the time 
needed for the Ack to be received from the new pilot flying side. 
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Side_HLR[Primary_Side : bool] : THEORY 
 
BEGIN 
 
   IMPORTING Message 
  
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % State defined an an uninterpreted, non-empty type 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    State: TYPE+         
 
    Initial_State: State 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Next state defined as an uninterpreted function 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    next_state: [State, bool, bool, Message-> State] 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Extractor functions for this side 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    pre_TS : [State -> bool] 
    pre_MSG: [State -> Message] 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Output is a message containing the pilot flying status and ack 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    output : [State -> Message]  
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Auxiliary functions for stating properties 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    rise_ts  (s: State, ts:bool  ): bool = NOT pre_TS(s) AND ts 
    rise_ospf(s: State, m:Message): bool = NOT pfs(pre_MSG(s)) AND pfs(m) 
    fall_ack (s: State, m:Message): bool = ack(pre_MSG(s)) AND NOT ack(m) 
 
    confirmed(s: State): bool =     pfs(output(s)) AND ack(output(s)) 
    inhibited(s: State): bool = NOT pfs(output(s)) AND NOT ack(output(s)) 
    listening(s: State): bool = NOT pfs(output(s)) AND     ack(output(s)) 
    waiting  (s: State): bool =     pfs(output(s)) and NOT ack(output(s))   
 

Figure 37 – High-Level Requirements for the Asynchronous Side (Part 1) 

The Side_HLR theory is parameterized with whether this side is the Primary Side. Uninterpreted 

values are provided for the type Side, the constant Initial_State, the next_state function, and 

extractor functions for the previous value of the Transfer Switch (pre_TS), the previous value of 

the other side’s message, (pre_MSG), and the output of this side. We also specify several 

convenient auxiliary functions. The functions rise_ts, rise_ospf, and fall_ack define precisely 

how a rising edge of the Transfer Switch, a rising edge of the other side’s pilot flying value, and 
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a falling edge of the other side’s ack are to be identified. The functions confirmed, inhibited, 

listening, and waiting provide a convenient way identifying the sub-state of a side.  

 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % High level requirements 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    HLR1: AXIOM 
       output(Initial_State) = Msg(Primary_Side, TRUE) 
 
    HLR2: AXIOM 
       pre_TS(Initial_State) 
 
    HLR3: AXIOM 
       pre_MSG(Initial_State) = Msg(NOT Primary_Side, TRUE) 
 

Figure 38 – High-Level Requirements for the Asynchronous Side (Part 2) 

Axioms HLR1 through HLR3 in Figure 38 define the result of applying each of the three 

extractors to the Initial_State constructor. The output of the Initial_State is set to either 

confirmed or listening depending on the Primary_Side theory parameter. The stored value of the 

Transfer Switch is initialized to true so that it cannot be pressed in the initial step. The stored 

value of the other side’s message is initialized to agree with the initial output of the bus from the 

other side  
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    HLR4: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m:Message) : 
          NOT clk => output(next_state(s, clk, ts, m)) = output(s) 
  
    HLR5: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m: Message) : 
          clk AND confirmed(s) AND rise_ospf(s, m) =>  
             inhibited(next_state(s, clk, ts, m)) 
 
    HLR6: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m: Message) : 
          clk AND confirmed(s) AND NOT rise_ospf(s, m) =>  
             confirmed(next_state(s, clk, ts, m)) 
 
    HLR7: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m: Message) : 
          clk AND inhibited(s) AND ack(m) =>  
             listening(next_state(s, clk, ts, m)) 
 
    HLR8: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m: Message) : 
          clk AND inhibited(s) AND NOT ack(m) =>  
             inhibited(next_state(s, clk, ts, m)) 
    
    HLR9: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m: Message) : 
          clk AND listening(s) AND rise_ts(s, ts) =>  
             waiting(next_state(s, clk, ts, m)) 
    
    HLR10: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m: Message) : 
          clk AND listening(s) AND NOT rise_ts(s, ts) =>  
             listening(next_state(s, clk, ts, m)) 
 
    HLR11: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m: Message) : 
          clk AND waiting(s) AND fall_ack(s, m) =>  
             confirmed(next_state(s, clk, ts, m)) 
 
    HLR12: AXIOM 
       FORALL (s:State, clk:bool, ts:bool, m: Message) : 
          clk AND waiting(s) AND NOT fall_ack(s, m) =>  
             waiting(next_state(s, clk, ts, m)) 
 

Figure 39 – High-Level Requirements for the Asynchronous Side (Part 3) 

HLR4 through HLR12 in Figure 39 define the result of applying the output extractor to the 

next_state constructor in accordance with the protocol of Figure 36 (recall that confirmed, 

inhibited, listening, and waiting are defined in terms of the output extractor). Note that HLR4 

asserts that if the clock for a side is false, no change occurs in the output of the side. 
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    HLR13: AXIOM 
       FORALL (s:State, clk:bool, ts: bool, m: Message) : 
          NOT clk => pre_TS(next_state(s, clk, ts, m)) = pre_TS(s) 
 
    HLR14: AXIOM 
       FORALL (s:State, clk:bool, ts: bool, m: Message) : 
          clk => pre_TS(next_state(s, clk, ts, m)) = ts 
 
    HLR15: AXIOM 
       FORALL (s:State, clk:bool, ts: bool, m: Message) : 
          NOT clk => pre_MSG(next_state(s, clk, ts, m)) = pre_MSG(s) 
 
    HLR16: AXIOM 
       forall (s:State, clk:bool, ts: bool, m: Message) : 
          clk => pre_MSG(next_state(s, clk, ts, m)) = m 
 
END Side_HLR 
 

Figure 40 – High-Level Requirements for the Asynchronous Side (Part 4) 

Finally, HLR13 through HLR16 define the result of applying the extractors pre_TS and 

pre_MSG to the constructor next_state.  Again, if the clock for the side if false, the value 

returned by each extractors is not changed by the next_state function. 

3.4.5 Low-Level Requirements for the Asynchronous FGS Side 

The PVS theory Side_LLR shown in Figure 41 and Figure 42 defines a constructive 

implementation of a synchronous Side by providing a concrete interpretation for each type, 

constant, and function. The four possible values of the state machine of Figure 36, Confirmed, 

Inhibited, Listening, and Waiting, are defined as the PVS enumeration type Pilot_Flying_Side. 

The initial value of the state machine is defined to be either Confirmed or Listening depending on 

the Primary_Side theory parameter. 

The State of a side is defined as a PVS record structure consisting of the three fields – the current 

value of the Pilot_Flying_Side state machine (st), the previous value of the Transfer Switch 

(pre_ts), and the previous value of the bus message from the other side (pre_msg). The 

Initial_State constant consists of a record in which the st component is set the 

Initial_Pilot_Flying_Side, the pre_ts component is initialized to true to ensure the Transfer 

Switch cannot be pressed in the initial state, and the pre_msg component is set to agree with the 

message provided by the bus from the other side. 
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Side_LLR[Primary_Side : bool] : THEORY 
BEGIN 
 
    IMPORTING Message 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Pilot flying state machine values  
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    Pilot_Flying_Side: TYPE = {Confirmed, Inhibited, Listening, Waiting} 
 
    Initial_Pilot_Flying_Side : Pilot_Flying_Side =  
      IF Primary_Side THEN Confirmed ELSE Listening ENDIF 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Definition of state and initial state for this side 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    State: TYPE          = [# st      : Pilot_Flying_Side,  
                              pre_ts  : bool,  
                              pre_msg : Message #] 
 
    Initial_State: State = (# st      := Initial_Pilot_Flying_Side, 
                              pre_ts  := TRUE, 
                              pre_msg := Msg(NOT Primary_Side, TRUE) #) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Extractor functions for this side 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    pre_TS (s: State): bool    = pre_ts(s) 
    pre_MSG(s: State): Message = pre_msg(s) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Auxiliary functions for defining next state function 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    rise_ospf(s:State, m:Message): bool = NOT pfs(pre_MSG(s)) AND pfs(m) 
    rise_ts  (s:State, ts:bool  ): bool = NOT pre_TS(s) AND ts 
    fall_ack (s:State, m:Message): bool = ack(pre_MSG(s)) AND NOT ack(m) 
 

Figure 41 – Low-Level Requirements for the Asynchronous Side (Part 1) 

To maintain consistency with the high-level requirements, extractor functions pre_TS and 

pre_MSG are defined. Auxiliary functions are also defined to simplify specification of the 

next_state function. 



   

 
69 

  
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Next state function 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    next_state(s: State, clk: bool, ts: bool, m: Message): State = 
      %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
      % No change when clock is false 
      %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
      IF (NOT clk) THEN  
          s 
      ELSE LET 
         next_st =  
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          % Transition 1 - Rise of Other Side Pilot Flying 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          IF (Confirmed?(st(s)) AND rise_ospf(s, m)) 
            THEN Inhibited 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          % Transition 2 - Rise of Other Side Pilot Flying 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          ELSIF (Inhibited?(st(s)) AND ack(m)) 
            THEN Listening 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          % Transition 3 - Rise of Transfer Switch 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          ELSIF (Listening?(st(s)) AND rise_ts(s, ts)) 
            THEN Waiting 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          % Transition 4 - Fall of Other Side Ack 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          ELSIF (Waiting?(st(s)) AND fall_ack(s, m)) 
            THEN Confirmed 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          % No transition taken 
          %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
          ELSE  
           st(s)             
          ENDIF 
        IN 
          (# st := next_st, pre_ts := ts, pre_msg := m #) 
      ENDIF 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Output is a message containing the pilot flying status and the ack 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    output(s:State) : Message =  
             (# pfs := Confirmed?(st(s)) OR Waiting?(st(s)), 
                ack := Confirmed?(st(s)) OR Listening?(st(s)) #) 
 
  END Side_LLR 

Figure 42 – Low-Level Requirements for the Asynchronous Side (Part 2) 

The next_state function (Figure 42) computes each of the three components of the next system 

state from the current state and inputs, where the inputs consist of the side’s clock, the Transfer 
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Switch, and the bus message from the other side. If the side’s clock is false, no change occurs in 

the side’s state. Otherwise, the next sub-state is computed in accordance with the logic of Figure 

36 and composed with the current value of the Transfer Switch and the message from the other 

side. 

To show that the low-level requirements of Figure 41 and Figure 42 implement the high-level 

requirements of Figure 37 through Figure 40, we define a theory interpretation as shown in 

Figure 43. 

 
Side_Interpretation[Primary_Side: bool]: THEORY 
  
BEGIN 
 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Import the low-level requirements (LLR) for a side 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  IMPORTING Side_LLR[Primary_Side] 
 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Import the high-level (HLR) requirements for a side and 
  % define the LLR as an interpretation of the HLR 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  IMPORTING Side_HLR[Primary_Side] {{ 
                    State         := Side_LLR.State, 
                    Initial_State := Side_LLR.Initial_State, 
                    next_state    := Side_LLR.next_state, 
                    pre_TS        := Side_LLR.pre_TS, 
                    pre_MSG       := Side_LLR.pre_MSG, 
                    output        := Side_LLR.output 
            }} 
 
  END Side_Interpretation 
 

Figure 43 – Theory Interpretation for the Asynchronous Side 

Type checking this theory with PVS generates 16 TCCs, one for each axiom specified in the 

high-level requirements of Figure 37 through Figure 40. These TCCS are easily proven using the 

typecheck-prove (M-x tcp) command of PVS, proving that the Side_LLR requirements are an 

implementation of the Side_HLR requirements and that the axioms of the Side_HLR 

requirements are consistent.  

3.4.6 PVS Specification of the Asynchronous Pilot Flying Example 

The PVS specification for the entire asynchronous Pilot_Flying_System depicted in Figure 31 is 

shown in Figure 44 and Figure 45.  
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Pilot_Flying_System: THEORY 
BEGIN 
 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Import the system components 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  IMPORTING Side_HLR[TRUE]        AS Left_Side; 
  IMPORTING Bus_HLR [TRUE, TRUE]  AS LR_Bus; 
  IMPORTING Side_HLR[FALSE]       AS Right_Side; 
  IMPORTING Bus_HLR [FALSE, TRUE] AS RL_Bus; 
 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Define the system state 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  State: Type          = [# Left_Side  :  Left_Side.State, 
                            LR_Bus     :  LR_Bus.State, 
                            Right_Side :  Right_Side.State, 
                            RL_Bus     :  RL_Bus.State, 
                            pre_TS     :  bool                 #] 
                   
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Define the initial system state 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  Initial_State: State = (# Left_Side  := Left_Side.Initial_State, 
                            LR_Bus     := LR_Bus.Initial_State, 
                            Right_Side := Right_Side.Initial_State, 
                            RL_Bus     := RL_Bus.Initial_State, 
                            pre_TS     := TRUE                 #) 
                                                

Figure 44 – PVS Specification of the Asynchronous Pilot Flying Example – Part 1   

The specification of the asynchronous system is very similar to the synchronous specification 

given in Figure 18 and Figure 19. The main difference is that the next_state function takes each 

of the four clocks as inputs and passes the appropriate clock value to each component. 
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  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Next state function 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  next_state(s: State, CLK1, CLK2, CLK3, CLK4, TS: bool): State = 
    LET  
        %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
        % Compute the next state of LR Bus and the Right Side 
        %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
        C1      = Left_Side.output(Left_Side(s)), 
        next_LR = LR_Bus.next_state(LR_Bus(s), CLK2, C1), 
        C2      = LR_Bus.output(next_LR), 
        next_RS = Right_Side.next_state(Right_Side(s), CLK3, TS, C2), 
 
        %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
        % Compute the next state of the RL Bus and the Left Side 
        %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
        C3      = Right_Side.output(Right_Side(s)), 
        next_RL = RL_Bus.next_state(RL_Bus(s), CLK4, C3), 
        C4      = RL_Bus.output(next_RL), 
        next_LS = Left_Side.next_state(Left_Side(s), CLK1, TS, C4) 
    IN  
       (# Left_Side  := next_LS, 
          LR_Bus     := next_LR, 
          Right_Side := next_RS, 
          RL_Bus     := next_RL, 
          pre_TS     := TS        #) 
 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  % Outputs 
  %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
  Left_Pilot_Flying_Side(s: State) : bool = pfs(output(Left_Side(s))) 
 
  Right_Pilot_Flying_Side(s: State): bool = pfs(output(Right_Side(s))) 
 
END Pilot_Flying_System                   
 

Figure 45 – PVS Specification of the Asynchronous Pilot Flying Example – Part 2  
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3.4.7 Formal Verification of the Asynchronous Pilot Flying Example 

Formal verification of the asynchronous Pilot Flying system proceeds in much the same was as 

for verification of the synchronous example. The informal requirements for the asynchronous 

system are identical to those for the synchronous system: 

R1. At least one side shall be the pilot flying side. 

R2.  At most one side shall be the pilot flying side. 

R3.  Pressing the Transfer Switch shall always change the pilot flying side. 

R4.  The system shall start with the Primary Side as the pilot flying side. 

R5.  The system shall not change the pilot flying side unless the Transfer Switch is pressed. 

The formal specification of these requirements is shown in Figure 46 through Figure 56.  

The definition of a Reachable_State is similar to that given for the synchronous example except 

that the next_state function now depends on the clock of each component. Since each component 

only takes a step if its clock is true, this means that there are more reachable states than for the 

synchronous system. This is to be expected since it is the varying execution rates of the 

components that are the source of potential race conditions and deadlocks. 

To simplify the formal specification of the requirements, we define a stable_state to be one in 

which the ack of each side is true. This corresponds to the states where one side is in the 

Confirmed sub-state and the other side is in the Listening sub-state (see Figure 36). Of course, it 

also includes states where both sides are in the Confirmed or Listening sub-state, but these will 

be excluded in the formal specification of the requirements as unreachable states. 

Since the two sides may now execute on different steps, it is no longer true that if one side sees 

the Transfer Switch pressed, the other side will also see the Transfer Switch pressed on the same 

step. To more precisely specify requirements involving the Transfer Switch, we introduce three 

definitions for when the Transfer Switch is pressed. The predicates pressed_seen_left and 

pressed_seen_right are true when the Transfer Switch is observed to be pressed by the left or 

right side respectively, i.e. when the Transfer Switch has risen from the previous value observed 

by that side. The predicate pressed is true when the Transfer Switch has risen from its previous 

value regardless of the value of each side’s clock.   
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Pilot_Flying_System_Requirements: THEORY 
  BEGIN 
     
    IMPORTING Pilot_Flying_System 
 
    s:                          VAR Pilot_Flying_System.State 
    m1, m2, m3:                 VAR Message 
    ts, clk1, clk2, clk3, clk4: VAR bool 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Definition of a reachable state 
    %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――  
    Reachable_State(s): INDUCTIVE bool =   
      s = Initial_State OR  
          (EXISTS (r: Pilot_Flying_System.State, c1, c2, c3, c4, t: bool): 
                      Reachable_State(r) AND  
                         s = next_state(r, c1, c2, c3, c4, t)) 
                     
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % The system is stable when both side's acks are true 
    %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――  
    stable_state(s): bool =   
      (ack(output(Left_Side(s))) and ack(output(Right_Side(s)))) 
                     
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Definitions for Transfer Switch pressed 
    %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――  
    pressed(ts, s) : bool = NOT pre_TS(s) AND ts 
    pressed_seen_left(ts, s) : bool = not pre_TS(Left_Side(s)) and ts 
    pressed_seen_right(ts, s): bool = not pre_TS(Right_Side(s)) and ts; 
 
 

Figure 46 – Asynchronous Pilot Flying System Requirements (Part 1) 

Verification of the system properties is based on definition of a Valid_State predicate just as was 

done for the synchronous example.  However, definition of the Valid_State predicate is more 

complex in the asynchronous system and makes use of several auxiliary definitions shown in 

Figure 47. 
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    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Predicates used to define Valid State 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    Confirmed(m1) : bool =     pfs(m1) AND     ack(m1); 
    Inhibited(m1) : bool = NOT pfs(m1) AND NOT ack(m1); 
    Listening(m1) : bool = NOT pfs(m1) AND     ack(m1); 
    Waiting  (m1) : bool =     pfs(m1) AND NOT ack(m1); 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Equality of messages 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    == : [Message, Message -> bool] =   
         LAMBDA (m1, m2) : pfs(m1) = pfs(m2) AND ack(m1) = ack(m2); 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Ordering of messages 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    >> : [Message, Message -> bool] =  LAMBDA (m1, m2) :  
         Inhibited(m1) AND Confirmed(m2) OR 
         Listening(m1) AND Inhibited(m2) OR 
         Waiting(m1)   AND Listening(m2) OR 
         Confirmed(m1) AND Waiting(m2); 
 

Figure 47 – Asynchronous Pilot Flying System Requirements (Part 2) 

Since each side generates an output message consisting of a pilot flying indication (pfs) and an 

acknowledgement (ack), it is convenient to name each of the four possible messages to match the 

sub-state of the side from which it is generated. This is done by defining predicates Confirmed, 

Inhibited, Listening and Waiting over the type Message as shown in Figure 47. We also define 

equality over Messages and an ordering of Messages.  The intuition behind the ordering relation 

is that a message m1 follows a message m2 (m1 >> m2) if m1 is the next state after m2 in the 

state transition diagram of Figure 36, i.e. Inhibited >> Confirmed, Listening >> Inhibited and so 

forth. 
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    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Valid state constraints over component states 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
     Side_Bus_Side_Consistency(m1, m2, m3) : bool = 
         m1 == m2 and m2 == m3 OR 
         m1 >> m2 and m2 == m3 OR 
         m1 == m2 and m2 >> m3 OR 
         Waiting(m1) AND Inhibited(m2) AND Inhibited(m3) OR 
         Waiting(m1) AND Listening(m2) AND Inhibited(m3) OR 
         Waiting(m1) AND Waiting  (m2) AND Inhibited(m3)  
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Valid state constraints on side components 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
     Side_Consistency(m1, m2) : bool =  
         Listening(m1) AND Confirmed(m2) OR 
         Waiting  (m1) AND Inhibited(m2) OR 
    Confirmed(m1) AND Listening(m2) OR 
         Confirmed(m1) AND Waiting  (m2) OR 
         Inhibited(m1) AND Confirmed(m2)  
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Full definition of a valid state 
    %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――    
    Valid_State: [Pilot_Flying_System.State -> bool] =  
      {s | LET  
              LS =  output(Left_Side(s)), 
              LR =  LR_Bus.output(LR_Bus(s)), 
              RP =  pre_MSG(Right_Side(s)), 
              RS =  output(Right_Side(s)),   
              RL =  RL_Bus.output(RL_Bus(s)), 
              LP =  pre_MSG(Left_Side(s)) 
           IN 
              Side_Bus_Side_Consistency(LS, LR, RP) AND                    
              Side_Bus_Side_Consistency(RS, RL, LP) AND  
         Side_Consistency(LP, LS)              AND  
         Side_Consistency(RP, RS) 
      } 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Proof that every reachable state is a valid state 
    %―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――   
     Reachable_States_Valid: THEOREM 
        Reachable_State(s) => Valid_State(s) 
 
 

Figure 48 – Asynchronous Pilot Flying System Requirements (Part 3) 

There are two types of consistency defined in Figure 48 that we wish to enforce in the definition 

of Valid_State. Side_Bus_Side_Consistency captures the constraint that if a change in sub-state 

occurs in a side, it will transfer across the bus and eventually be stored in the other side as the 

previous value of the first side’s message. To illustrate, consider the case where m1 is the output 
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message of the Left_Side, m2 is the output message of the LR_Bus, and m3 is the pre_MSG of the 

Right_Side (an analogous situation holds for the Right_Side, RL_Bus, and Left_Side). One 

possibility is that the sub-state of the Left_Side has been transmitted to the Right_Side and m1, 

m2 and m3 are identical (m1 == m2 and m2 == m3). Another possibility is that the Left_Side has 

just changed to a following sub-state, but the LR_Bus and the Right_Side have not yet seen the 

change (m1 >> m2 and m2 == m3).  Another possibility is that the LR_Bus has been updated but 

the change has not yet reached the Right_Side (m1 == m2 and m2 >> m3).  

There are three other possible relationships that are explicitly enumerated in 

Side_Bus_Side_Consistency.  Let m1, m2, and m3 be as just described. Consider the situation 

where the Left_Side has just entered the Listening sub-state, but that information has not yet been 

communicated to the LR_Bus so that the system is in the state Listening(m1), Inhibited(m2) and 

Inhibited(m3). The first case occurs when the Transfer Switch is pressed and the system enters 

the state Waiting(m1), Inhibited(m2) and Inhibited(m3). The second case occurs when the 

Transfer Switch is pressed while in the state Listening(m1), Listening(m2) and Inhibited(m3), 

putting the system into the state Waiting(m1) and Listening(m2) and Inhibited(m3). The third 

case evolves directly from the second case when the LR_Bus is updated with the Left_Side’s 

output, putting the system into the Waiting(m1) and Waiting(m2) and Inhibited(m3) state. 

Analogous situations exist for the Right_Side, RL_Bus, and the Left_Side. 

The Side_Consistency predicate identifies relationships that must be maintained between the sub-

state of a side and its copy of the previous message from the other side. For example, if a side is 

in the Confirmed sub-state, then the previous message from the other side must be either 

Listening or Inhibited.  

All of these constraints on the valid system states are collected in the definition of Valid_State in 

Figure 48. The Reachable_States_Valid theorem states that all reachable states are also valid 

states for the asynchronous Pilot Flying system. The proof of this theorem is similar to the proof 

for the synchronous example shown in Figure 23, but due to the larger number of reachable 

states, more work is needed to keep the proof tractable. For example, simply applying the PVS 

grind command to the inductive branch of the proof as was done in the synchronous case 

generates 544 sub-goals. While each of these can be easily dispatched with a few PVS 

commands, the proof can be almost fully automated with two additional steps.  
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When proving the 544 sub-goals, the PVS theorem prover often requires human assistance to 

case split a sub-goal in order to determine which of the Side_HLR axioms should be invoked. It 

is actually easier for the theorem prover to use a constructive definition more like that found in 

the Side_LLR theory. However, we prefer to maintain the declarative style using axioms found in 

Side_HLR since this is closer to the traditional “shall” statements software engineers expect to 

receive as requirements. To do this while still facilitating theorem proving, we add to the 

Side_HLR theory the two lemmas as shown in Figure 49. 

   
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % Lemmas used to simplify system level proofs 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    L1: LEMMA 
       FORALL (s: State, clk: bool, ts:bool, m: Message) : 
          output(next_state(s, clk, ts, m))  = 
            IF (NOT clk) THEN 
               output(s) 
            ELSIF (confirmed(s) AND rise_ospf(s, m)) THEN 
               (# pfs := FALSE, ack := FALSE #)  
            ELSIF (inhibited(s) AND ack(m)) THEN 
               (# pfs := FALSE, ack := TRUE #)  
            ELSIF (listening(s) AND rise_ts(s, ts)) THEN 
               (# pfs := TRUE, ack := FALSE #)  
            ELSIF (waiting(s) AND fall_ack(s, m)) THEN 
               (# pfs := TRUE, ack := TRUE #)  
            ELSE  
               output(s)             
          ENDIF 
 
    L2: LEMMA 
       forall (s: State, clk: bool, ts:bool, m: Message) : 
          pre_MSG(next_state(s, clk, ts, m))  = 
            IF (NOT clk) THEN pre_MSG(s) ELSE m  ENDIF 
 

Figure 49 – Lemmas Added to Side_HLR to Support Theorem Proving 

These lemmas define the effect of applying the output and pre_MSG extractors to the next_state 

constructor in a constructive style that defines the result for all possible conditions. These 

lemmas can easily be proven using the axioms of Side_HLR and the PVS theorem prover can be 

instructed to invoke these lemmas as automatic rewrite rules using the PVS use command. This 

eliminates the need for manual intervention to case split a sub-goal. 

The second step for proof automation is to define a custom PVS strategy. PVS strategies can be 

thought of as user-defined proof commands constructed from the basic proof commands of PVS. 

The strategy needed here is shown in Figure 50. 
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(defstep grind-use-grind (&rest lemmas) 
  (let ((uselems (cons 'use* lemmas))) 
   (then 
     (grind) uselems (grind) 
   )) 
    "Applies grind, then uses lemmas followed by grind on on each subgoal." 
    "Applying grind - use - grind." 
 ) 
 

Figure 50 – Grind-use-grind PVS Proof Strategy 

This strategy defines a PVS proof command called grind-use-grind that accepts a sequence of 

lemma names as an argument. Its effect is to apply the PVS grind command to the current sub-

goal, possibly generating one or more new sub-goals. It then invokes the named lemmas on each 

new sub-goal with the PVS use command, and finally applies the grind command to that sub-

goal. An illustration of its use is shown in the last step of the proof for the asynchronous 

Reachable_States_Valid theorem shown in Figure 51. 

 
;;; Proof Reachable_States_Valid-1 for formula 
Pilot_Flying_System_Requirements.Reachable_States_Valid 
;;; developed with shostak decision procedures 
("" 
 (rule-induct "Reachable_State") 
 (skosimp) 
 (case "s!2 = Initial_State") 
 (("1" 
   (auto-rewrite-theories "Message" "Left_Side" "LR_Bus" "Right_Side" 
    "RL_Bus") 
   (grind)) 
  ("2" 
   (assert) 
   (hide 1) 
   (grind-use-grind "LR_Bus.HLR2" "RL_Bus.HLR2" "Left_Side.L1" 
    "Left_Side.L2" "Right_Side.L1" "Right_Side.L2")))) 
   

Figure 51 – PVS Proof of Asynchronous Reachable States Valid Theorem 

Successful completion of the proof of Figure 51 establishes that every reachable state of the 

asynchronous Pilot_Flying_System is also a valid state. The Reachable_States_Valid theorem 

can then be used to prove requirements R1 and R2 shown in Figure 52, both of which can be 

discharged with a PVS (use “Reachable_States_Valid) command followed by a grind command. 
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    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R1. At least one side shall always be the pilot flying side. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R1: THEOREM 
      Reachable_State(s) => 
        Left_Pilot_Flying_Side(s) OR Right_Pilot_Flying_Side(s) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R2. Both sides shall agree on the pilot flying side 
    %     except while the system is switching sides. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R2: THEOREM 
      Reachable_State(s) AND stable_state(s) =>  
        (Left_Pilot_Flying_Side(s) = NOT Right_Pilot_Flying_Side(s)) 
 

   Figure 52 – Asynchronous Pilot Flying System Requirements (Part 4) 

However, the proof of requirement R3 (pressing the Transfer Switch shall always change the 

pilot flying side) reveals a problem. To formalize R3, we break it into two smaller requirements 

R3a and R3b as shown in Figure 53. 

     
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R3. Pressing the transfer switch shall always change the pilot 
    %     flying side except when the system is switching sides.  
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R3a: THEOREM 
      Reachable_State(s) AND stable_state(s) =>  
        (NOT Left_Pilot_Flying_Side(s) AND pressed(ts, s) =>  
             Left_Pilot_Flying_Side(next_state(s,TRUE,clk2,clk3,clk4,ts)))  
 
    R3b: THEOREM 
      Reachable_State(s) AND stable_state(s) => 
         (NOT Right_Pilot_Flying_Side(s) AND pressed(ts, s) => 
              Right_Pilot_Flying_Side(next_state(s,clk1,clk2,TRUE,clk4,ts))) 
 

Figure 53 – Incorrect Statement of Asynchronous Requirement R3 

These requirements state that if the Transfer Switch is pressed while the system is in a stable 

state (i.e. is not switching sides) the side that is not the pilot flying side shall become the pilot 

flying side providing its clock is true. However, trying to prove either theorem generates four 

sub-goals that cannot be proven. These correspond to cases in which the Transfer Switch was 

true the last time the side’s clock was true. In other words, even if the Transfer Switch is pressed 

on this step and the side’s clock is true, the side does not see a rising edge of the Transfer Switch 

because the last time its clock was true the Transfer Switch was also true.  
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There is no easy fix for this problem. Instead, the system must be designed to ensure that the 

pilot not flying side sees the Transfer Switch being pressed. In an actual system, it would be 

possible to place additional requirements on the length of time the Transfer Switch must remain 

high and the time it must remain low to ensure that the pilot not flying side would see a rising 

edge of the Transfer Switch, but since we are making no assumptions about the system clock that 

will not work for our system. To make this explicit, we replace the pressed predicate in R3a and 

R3b with pressed_seen_left and pressed_seen_right as shown in Figure 54. This makes it clear 

the requirements are satisfied only if the pilot not flying side actually observes the Transfer 

Switch being pressed. Both of these theorems can be proven with a PVS (use 

“Reachable_States_Valid”) command followed by a grind-use-grind command invoking the 

appropriate lemmas.  

   
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R3. Pressing the transfer switch shall always change the pilot 
    %     flying side except when the system is switching sides.  
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R3a: THEOREM 
      Reachable_State(s) AND stable_state(s) =>  
        (NOT Left_Pilot_Flying_Side(s) AND pressed_seen_left(ts, s) =>  
             Left_Pilot_Flying_Side(next_state(s,TRUE,clk2,clk3,clk4,ts)))  
 
    R3b: THEOREM 
      Reachable_State(s) AND stable_state(s) => 
         (NOT Right_Pilot_Flying_Side(s) AND pressed_seen_right(ts, s) => 
              Right_Pilot_Flying_Side(next_state(s,clk1,clk2,TRUE,clk4,ts))) 
 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R4. The system shall start with the left side as the pilot 
    %     flying side. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R4: THEOREM 
      Left_Pilot_Flying_Side(Initial_State) 
 
 

Figure 54 – Asynchronous Pilot Flying System Requirements (Part 5) 

Requirement R4 (the system shall start with the left side as the pilot flying side) also shown in 

Figure 54 is easily proven by installing the axioms of Side_HLR and Bus_HLR as automatic 

rewrite rules followed by a grind command. However, requirement R5 (the system shall not 

change the pilot flying side unless the Transfer Switch is pressed) turns out to not be true as 

formulated in Figure 55 
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    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R5. The system shall not change the pilot flying side while it 
    %     is in a stable state unless the transfer switch is pressed. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R5a: THEOREM 
       Valid_State(s) AND stable_state(s) AND NOT pressed(ts, s)  => 
            Left_Pilot_Flying_Side(next_state(s,clk1,clk2,clk3,clk4,ts)) = 
                Left_Pilot_Flying_Side(s) 
 
    R5b: THEOREM 
       Valid_State(s) AND stable_state(s) AND NOT pressed(ts, s) => 
            Right_Pilot_Flying_Side(next_state(s,clk1,clk2,clk3,clk4,ts)) = 
                Right_Pilot_Flying_Side(s)   
 

Figure 55 – Incorrect Statement of Asynchronous Requirement R5 

The counter example for this occurs when the clock for the Not_Pilot_Flying side becomes false 

while the Transfer Switch is false. At a later time, the Transfer Switch becomes true, but the 

Not_Pilot_Flying side does not observe this rising edge because its clock is still false. The 

Transfer Switch remains true for several steps and during this period, the Not_Pilot_Flying side’s 

clock becomes true. At this point, the Not_Pilot_Flying side observes a rising edge of the 

Transfer Switch and becomes the Pilot_Flying_Side. However, the predicate pressed is not true 

on that step since the Transfer Switch has been true for several steps. 

Requirement R5 is false due to a subtle interaction between the component clocks and their 

stored value of the Transfer Switch. The intent of this requirement was that the system should 

not spontaneously change state while in a stable state unless there is some external stimulation. 

Interestingly enough, it is possible to prove R5 if it is restated as shown in Figure 56. 
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    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    % R5. The system shall not change the pilot flying side while it 
    %     is in a stable state unless the transfer switch is high. 
    %――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 
    R5a: THEOREM 
       Valid_State(s) AND stable_state(s) AND NOT ts => 
            Left_Pilot_Flying_Side(next_state(s,clk1,clk2,clk3,clk4,ts)) = 
                Left_Pilot_Flying_Side(s) 
 
    R5b: THEOREM 
       Valid_State(s) AND stable_state(s) AND NOT ts => 
            Right_Pilot_Flying_Side(next_state(s,clk1,clk2,clk3,clk4,ts)) = 
                Right_Pilot_Flying_Side(s)   
 
  END Pilot_Flying_System_Requirements 
 

Figure 56 – Asynchronous Pilot Flying System Requirements (Part 6) 

Here, we have replaced the NOT pressed(ts, s) with NOT ts, so that the requirement states that 

the system shall not change the pilot flying side while it is in a stable state unless the Transfer 

Switch is high. While technically a slightly weaker requirement, this formulation still satisfies 

the original intent of the requirement and is easily proven to be true. 
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3.5 The Synchronous Pilot Flying Example in HOL 

Higher Order Logic (HOL) is a formal system originally adopted and implemented by Mike 

Gordon [7], [8]. Subsequently, other implementations of HOL have been developed [24], [25], 

[13], [27], [26], [17]. In general, these systems agree on the formal system implemented [24], but 

their interfaces and proof infrastructure can be quite different. In our example we will work with 

HOL4 [25], [12]. 

In HOL4 notation, ‘~’ is the ‘not’ operator, ‘/\’ is conjunction, ‘\/’ is disjunction, ‘T’ is True, and 

‘F’ is False. The ‘!’ symbol is ‘for all’, and the ‘?’ symbol is ‘there exists’. Finally, ‘<|’ and ‘|>’ 

are used to indicate a record structure. 

3.5.1 Specification in HOL4 using a Next-State Approach 

This section describes a HOL4 specification of the synchronous pilot flying example using a 

“this state, next state” approach similar to what was done in PVS. We start by defining the RISE 

function in terms of a Boolean signal s. We then define data types for PFS (cf. Pilot_Flying_Side 

type in Figure 15) and Side_State (cf. State type in Figure 15). We also define System_State (cf. 

State type in Figure 18). These HOL4 definitions are shown in Figure 57. 
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numLib.prefer_num(); 
 
(*-------------------------------------------------------------------------*) 
(* Rise definition                                                         *) 
(*-------------------------------------------------------------------------*) 
  
val RISE_def = 
 Define 
  `RISE(pre_s : bool, 
        s     : bool) 
   = 
   ~pre_s /\ s`; 
 
(*-------------------------------------------------------------------------*) 
(* Data type definitions                                                   *) 
(*-------------------------------------------------------------------------*) 
 
Hol_datatype  
  `PFS = Pilot_Flying  
       | Not_Pilot_Flying`; 
 
Hol_datatype  
  `Side_State =  
      <| st: PFS;  
         pre_ts: bool;  
         pre_ospf: bool 
      |>`; 
 
Hol_datatype  
  `System_State =  
      <| stateLS: Side_State;  
         stateLR: bool;  
         stateRS: Side_State;  
         stateRL: bool;  
         pre_ts: bool  
       |>`; 
 

Figure 57 – Rise and Data Type Definitions 

Next we define the initial states for the sides (both the primary side and the non-primary side), 

the buses, and the system. These are shown in Figure 58 and correspond with the initial state 

definitions in PVS. 
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val Initial_Side_State_Primary_def =  
 Define  
  `Initial_Side_State_Primary =   <| st:= Pilot_Flying;  
                                     pre_ts:= T;  
                                     pre_ospf:= F |>`; 
 
val Initial_Side_State_Not_Primary_def =  
 Define 
  `Initial_Side_State_Not_Primary = <| st:= Not_Pilot_Flying;  
                                       pre_ts:= T;  
                                       pre_ospf:= T |>`; 
 
val Initial_Bus_State_Primary_def =  
 Define 
  `Initial_Bus_State_Primary = T`; 
 
val Initial_Bus_State_Not_Primary_def =  
 Define 
  `Initial_Bus_State_Not_Primary = F`; 
 
val Initial_System_State_def =   
 Define 
  `Initial_System_State = <| stateLS := Initial_Side_State_Primary; 
                             stateLR := Initial_Bus_State_Primary; 
                             stateRS := Initial_Side_State_Not_Primary; 
                             stateRL := Initial_Bus_State_Not_Primary; 
                             pre_ts  := T |>`; 
 

Figure 58 – Initial State Definitions 

To complete the specification, we have left to define the next state functions for Side, Bus, and 

System. These functions are called Side_ns, Bus_ns, and System_ns in the code shown in Figure 

59. Note that the Bus_ns function simply returns the input value. The delay is implemented at the 

top level in the System_ns function. 
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val Side_ns_def = 
 Define 
  `Side_ns (state : Side_State,  
            ts    : bool,  
            ospf  : bool) = 
   let 
    nextst =  
     if (state.st = Pilot_Flying) /\ RISE(state.pre_ospf, ospf)  
         then Not_Pilot_Flying 
     else if (state.st = Not_Pilot_Flying) /\ RISE(state.pre_ts, ts) 
     then Pilot_Flying 
     else state.st 
   in 
    state with <| st:= nextst; pre_ts:= ts; pre_ospf:= ospf |>`; 
 
val Bus_ns_def =  
 Define 
  `Bus_ns (input : bool) = input`; 
     
val System_ns_def =  
 Define 
  `System_ns (state : System_State,  
              ts    : bool) = 
   let 
     nextLR = Bus_ns (state.stateLS.st = Pilot_Flying) and 
     nextRL = Bus_ns (state.stateRS.st = Pilot_Flying)      
   in 
    state with <| stateLS := Side_ns(state.stateLS, ts, nextRL);  
                  stateLR := nextLR; 
                  stateRS := Side_ns(state.stateRS, ts, nextLR); 
                  stateRL := nextRL; 
                  pre_ts  := ts |>`; 
 

Figure 59 – Next State Definitions 

3.5.2 Formal Verification of the Next-State Approach in HOL4 

In this section we discuss formal verification in HOL4 of the specification described in the 

previous section. We prove one property (“At Least One Side Flying”) as an example. 

Proving properties of the system proceeds in a manner very similar to that used in PVS. We will 

walk through the proof of the first property, R1: “At least one side shall be the pilot flying side.” 

We first define Reachable_State.  We then define Valid_State, which contains all system states 

satisfying the following four predicates: Pre_TS_Consistency, Pre_OSPF_Consistency, 

At_Least_One_Side_Flying, and Buses_Differ_When_Both_Sides_Flying. These definitions are 

shown in Figure 60.  
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(*-------------------------------------------------------------------------*) 
(* Reachable_State                                                         *) 
(*-------------------------------------------------------------------------*) 
 
val reachable = Hol_reln  
 `Reachable Initial_System_State  
  /\ 
  (!s1 s2 ts. Reachable s1 /\ (System_ns(s1,ts) = s2) ==> Reachable s2)`; 
 
val (Reachable_rules,Reachable_induction,Reachable_cases) = reachable; 
 
(*-------------------------------------------------------------------------*) 
(* Definitions required by Valid_State                                     *) 
(*-------------------------------------------------------------------------*) 
 
val Pre_TS_Consistency_def = 
 Define 
  `Pre_TS_Consistency s =  
      (s.stateLS.pre_ts = s.pre_ts) /\ (s.stateRS.pre_ts = s.pre_ts)`; 
 
val Pre_OSPF_Consistency_def =  
 Define 
 `Pre_OSPF_Consistency s =  
     (s.stateLS.pre_ospf = s.stateRL) /\ (s.stateRS.pre_ospf = s.stateLR)`; 
 
val At_Least_One_Side_Flying_def =  
 Define  
  `At_Least_One_Side_Flying s =  
        (s.stateLS.st = Pilot_Flying) \/ (s.stateRS.st = Pilot_Flying)`; 
 
val Buses_Differ_When_Both_Sides_Flying_def = 
 Define 
  `Buses_Differ_When_Both_Sides_Flying s =  
       (s.stateLS.st = Pilot_Flying) /\ (s.stateRS.st = Pilot_Flying)  
       ==> ~(s.stateLR = s.stateRL)`; 
 
(*-------------------------------------------------------------------------*) 
(* Valid_State                                                             *) 
(*-------------------------------------------------------------------------*) 
 
val Valid_State_def = 
 Define  
  `Valid_State s = Pre_TS_Consistency s /\  
                   Pre_OSPF_Consistency s /\ 
                   At_Least_One_Side_Flying s /\ 
                   Buses_Differ_When_Both_Sides_Flying s`; 
 

Figure 60 – Valid State Definition 

We wish to show the first property, R1: “At least one side shall be the pilot flying side.” We do 

this in two steps. We show that all reachable states are valid, and then we show that all valid 

states satisfy R1. First, we define a custom simplification set (shown in Figure 61), which we 
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will use in nearly all of our proofs. This simplification set expands the definitions in our 

specification as needed and includes LET_THM to simplify complicated LET expressions. 

 
val sys_ss = srw_ss() ++ rewrites 
    [Pre_TS_Consistency_def, 
     Pre_OSPF_Consistency_def, 
     At_Least_One_Side_Flying_def, 
     Buses_Differ_When_Both_Sides_Flying_def, 
     Valid_State_def, 
     Side_ns_def, 
     Bus_ns_def, 
     System_ns_def, 
     RISE_def, 
     Initial_System_State_def, 
     Initial_Side_State_Primary_def, 
     Initial_Side_State_Not_Primary_def, 
     Initial_Bus_State_Primary_def, 
     Initial_Bus_State_Not_Primary_def, 
     LET_THM]; 
 

Figure 61 – Custom Simplification Set sys_ss 

Using the sys_ss simplification set just defined, we can show that the initial state is valid and that 

the next state of a valid state is valid. These two theorems are then used to show that all 

reachable states are valid (see Figure 62). 

 
val Valid_State_Base = ``Valid_State Initial_System_State``; 
 
 
val Valid_State_Base_Thm = prove 
(Valid_State_Base, 
 RW_TAC sys_ss [] THEN METIS_TAC[]); 
 
val Valid_State_Inductive =  
  ``!s ts. Valid_State s ==> Valid_State (System_ns(s,ts))``; 
 
val Valid_State_Inductive_Thm = prove 
(Valid_State_Inductive, 
 RW_TAC sys_ss [] THEN METIS_TAC[]); 
 
val Reachable_States_Are_Valid = prove 
(``!s. Reachable s ==> Valid_State s``, 
 Induct_on `Reachable s`  
   THEN METIS_TAC [Valid_State_Base_Thm, 
                   Valid_State_Inductive_Thm]); 
 

Figure 62 – HOL4 Proof that all Reachable States are Valid 
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Next we show that all valid states satisfy R1: “At least one side shall be the pilot flying side.” 

The proof is done using rewriting with the custom simplification set sys_ss as shown in  

 
val R1_Thm = store_thm 
 ("R1_Thm", 
 ``!s. Valid_State s ==>  
    (s.stateLS.st = Pilot_Flying) \/ (s.stateRS.st = Pilot_Flying)``, 
 RW_TAC sys_ss []); 
 

Figure 63 – HOL4 Proof that All Valid States Satisfy R1 

We now put the two pieces together to prove that all reachable states satisfy R1. 

 
val R1_Thm_Reachable = store_thm 
 ("R1_Thm", 
 ``!s. Reachable s ==>  
    (s.stateLS.st = Pilot_Flying) \/ (s.stateRS.st = Pilot_Flying)``, 
 METIS_TAC [R1_Thm, Reachable_States_Are_Valid]); 
 

Figure 64 – HOL4 Proof that All Valid States Satisfy R1 

3.5.3 Specification in HOL4 using a Streams Approach 

Modeling components that operate over infinite streams of data can be approached in a variety of 

ways. An approach that is well-suited to higher order logic represents a stream of elements, 

where each element has type τ, by a function of type num→ τ.  A device, or component, having a 

number of ports is modeled as a predicate on the possible values of the ports. Since a port is a 

stream, the behavior of the device is represented by a predicate that takes a bundle of streams and 

returns true or false. 

For example, a bus that acts as a unit delay can be represented as 

 
   Bus (init,input,output) =  
      (output 0 = init) /\ 
      (output (n+1) = input n) 
 

Figure 65 – Bus Specification with Streams Approach   

where input and output have type num→α, and init, the initial value of the stream, has type α. 

The type variable α shows that the definition is polymorphic, and thus can be instantiated to yield 

a bus over streams of any type.  
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The parallel composition of devices is achieved by conjunction of the corresponding predicates.  

Combining devices by connecting them together is modeled by relational composition: the 

resulting device is a predicate on the external ports, and internal connections are hidden by 

existential quantification.  Thus, we may obtain a bus that delays data by two clock ticks by 

composing two buses: 

 
    Two_Delay_Bus (init1,init2,input,output) =  
      ?c. Bus (init1,input,c) /\ 
          Bus (init2,c,output) 
 

Figure 66 – Two-Delay Bus Specification with Streams Approach   

Suppose we want to say that there has been a "rise" at time t on a Boolean stream, written "RISE 

stream t".  At time zero there can be no rise. At any other time, a rise occurs at time t if the line is 

low at time t-1 and high at time t. This can be directly modeled as follows: 

  
 (RISE stream 0 = F) /\ 
  (RISE stream (t+1) = ~(stream t) /\ stream (t+1) 
 

Figure 67 – ‘Rise’ Definition with Streams Approach   

The RISE predicate has been defined by explicit case analysis on whether a number is zero or a 

successor. An equivalent definition is the following: 

  
RISE stream t = if t = 0 then F else  ~(stream (t-1)) /\ stream t 
 

Figure 68 – Alternate ‘Rise’ Definition with Streams Approach   

This modeling style has been used successfully on a wide variety of system verifications [20]. It 

is well suited to systems where all components share the same clock, but it can also be extended 

to deal with asynchronous systems with handshakes, for example. It can express circuits with 

feedback loops without having to solve tricky recursive equations. 

3.5.3.1 Properties 
Expressing properties of systems modeled in this style involves asserting that the behaviors of a 

device, or implementation, are contained within the behaviors allowed by a specification. Using 

the fact that subset is defined by implication, we obtain the general recipe: 
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  implementation ==> specification 

This can also be read as "anything that models the implementation is also a model of the 

specification". Note that there is a residual question to be dealt with, namely one would want to 

show that there is indeed a model of the implementation. However, when working with 

implementations imported into logic from an existing design, this step is often skipped over. 

3.5.3.2 System Model 
We will proceed in a top-down fashion. The flight guidance system can be directly modeled as 

follows: 

 
System (L,R,Transfer_Switch) =  
     ?w1 w2.  
       Side(T,Transfer_Switch,w2,L) /\   (* Left Side *) 
       Side(F,Transfer_Switch,w1,R) /\   (* Right Side *) 
       Bus(L,w1) /\                      (* LR_Bus *) 
 
       Bus(R,w2)                         (* RL_Bus *) 
 

Figure 69 – System Specification with Streams Approach   

The external ports of the system are L, R, and Transfer_Switch.  There are also two internal buses 

w1, w2 that connect the two sides. The left side is initialized with T and the right side with F, 

setting the initial pilot flying side. Both sides take the transfer switch as input and connect to the 

buses and the external ports L and R. 

Each Side component implements some decision-making logic. This is defined as follows: 

    
     Side (Initial_Pilot_Flying_Side : bool, 
         Transfer_Switch           : num->bool, 
         Other_Side_Pilot_Flying   : num->bool, 
         Pilot_Flying_Side         : num->bool)  
     =  
     (Pilot_Flying_Side 0 = Initial_Pilot_Flying_Side) /\ 
     (!t. Pilot_Flying_Side (SUC t) =  
          if (Pilot_Flying_Side t = T) /\  
             RISE Other_Side_Pilot_Flying (SUC t) 
              then F 
          else if (Pilot_Flying_Side t = F) /\  
                  RISE Transfer_Switch (SUC t) 
              then T 
          else Pilot_Flying_Side t) 
 

Figure 70 – Side Specification with Streams Approach   
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This tiny state machine is defined by case analysis on whether the system is at its initial step 

(time 0) or otherwise. 

We have specified the buses as pure unit delays, omitting to specify the output at time zero: 

    
Bus (instream:num->bool, outstream:num->bool)  
     =  
    !t. outstream (SUC t) = instream t 
 

Figure 71 – Final Bus Specification for Streams Approach   

In an earlier formalization of the system, initial values were specified for the buses, but the 

proofs revealed that the proof succeeded no matter what the initial values were set to. By 

omitting initial values, the statements and proofs about the system become more general, since 

any possible initial values will be acceptable for the purposes of proof. 

3.5.4 Formal Verification of the Streams Approach in HOL4 

We proved two facts about the system in HOL4. First, we proved that the L port is high at time 

zero.  The statement of this is 

   
 System(L,R,Transfer_Switch) ==> L(0) 
 

Figure 72 – Statement of R4 Property   

and the proof is quite straightforward, as we discuss below. Next, we proved that at least one side 

is the pilot flying side: 

   
System(L,R,Transfer_Switch) ==> !t. L(t) \/ R(t) 
 

Figure 73 – Statement of R1 Property   

This proof is more challenging but still relatively small.  

3.5.4.1 Left at Time Zero 
This proof is straightforward. We merely simplify with the system definitions and then reduce. 
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   val Left_at_Time_Zero = prove 
   (``System(L,R,Transfer_Switch) ==> L(0)``, 
    RW_TAC std_ss [System_def, Side_def,Bus_def]); 
 

Figure 74 – Proof of R4 Property for Streams Approach   

3.5.4.2 At Least One Side Flying 
This property is more challenging. It requires induction and the system state at time t can depend 

on the state at times t-1 and t-2, which means that complete induction is needed. The proof then 

proceeds by case analysis on whether the system is at step 0, 1, or some arbitrary number greater 

than one. The base cases are simple to prove by simplification with the definitions of the system 

components. The inductive hypothesis yields 4 possible combinations for values of the two 

Pilot_Flying_Side ports at the two previous steps in the computation. Some basic reasoning 

finishes the proof. 

The full proof of this property, once packaged up, is shown in Figure 75. 

    
     val At_Least_One_Side_Flying =  
     Count.apply prove 
      (``System(L,R,Transfer_Switch) ==> !t. L(t) \/ R(t)``, 
       DISCH_TAC  
         THEN completeInduct_on `t`  
         THEN `(t = 0) \/ (t = SUC 0) \/ ?k. t = SUC (SUC k)`  
                 by METIS_TAC [arithmeticTheory.num_CASES]  
         THEN FULL_SIMP_TAC kstd_ss [System_def,Bus_def,Side_def,RISE_def] 
         THEN `(L k \/ R k) /\ (L (SUC k) \/ R (SUC k))` 
                 by METIS_TAC [prim_recTheory.LESS_SUC_SUC]  
         THEN METIS_TAC[]); 
 

Figure 75 – Proof of R1 Property for Streams Approach   

Elapsed time was about a fifth of a second. In the course of the proof, no axioms were declared, 

no definitions were made, and no theories were brought in from disk. Approximately 41,000 

primitive inference steps were required to achieve the proof. 
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4 Case Study: Model Checking 
This chapter illustrates the use of model checking to verify the correctness of the mode logic of a 

single side of the FGS.  The FGS mode logic, while quite complex, consists only of Boolean 

inputs and outputs. This makes it ideally suited for formal verification with a wide range of 

model checkers, including implicit state BDD-based model checkers such as NuSMV as well as 

Satisfiability Modulo Theories (SMT)-based model checkers such as Kind. While models 

consisting only of Boolean logic are well-suited for model checking, most model checkers can 

also handle models with enumerated types and small integers. SMT-based model checkers such 

as Kind can also handle models with real numbers if they do not involve nonlinear arithmetic. 

The rest of this chapter is organized as follows. Section 4.1 provides an overview of the FGS 

mode logic. Section 4.2 describes the software verification plan for the mode logic, identifying 

the life-cycle data items to be produced, the DO-178C objectives to be satisfied, and tool 

qualification issues.  Section 4.3 provides a detailed specification of the mode logic as a 

MATLAB Simulink/Stateflow model.  Section 4.4 discusses the formal verification of the mode 

logic using the Kind model checker and Simulink Design Verifier™. 

4.1 Mode Logic Overview 

Modes are defined by Leveson as mutually exclusive sets of system behaviors [18]. Specifically 

as it relates to the FGS, Advisory Circular AC/ACJ 25.1329 defines a mode as a system 

configuration that corresponds to a single (or set of) FGS behavior(s) [5]. In the FGS, the modes 

are actually abstractions of their associated flight control law and reflect the current state of the 

flight control law. There are three different types of modes in the FGS mode logic.  

The simplest modes (non-arming modes) have only two actual states, CLEARED and 

SELECTED, as shown in Figure 76.  A mode is said to be selected if it has been manually 

requested by the flight crew or if it has been automatically requested by a subsystem such as the 

FMS, otherwise it is said to be cleared. Non-arming modes become active immediately upon 

selection with its associated flight control law providing guidance commands to the FD and, if 

engaged, the AP. When cleared, the mode’s associated flight control law is non-operational, i.e., 

it does not generate any outputs. 
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ACTIVECLEARED

 

Figure 76 – A Non-Arming Mode 

Some modes must first be armed to become active when a capture condition is met, such as the 

acquisition of a navigation source or proximity to a target reference such as a desired altitude. 

Such modes have three states as shown in Figure 77. The two states ARMED and ACTIVE are 

sub-states of the SELECTED state, i.e., when the mode is armed or active, it is also selected. 

While in the ARMED state, the mode’s flight control law is not generating guidance commands 

for the FD or AP, but it may be accepting inputs, accumulating state information, and helping to 

determine if the capture condition is met. Once the capture condition is met, the mode transitions 

to the ACTIVE state and its flight control law begins generating guidance for the FD and AP. 

Note that in most arming modes the only way to exit the ACTIVE state is to deselect the mode, 

i.e., it is not usually possible to revert directly from the ACTIVE state to the ARMED state. 

ARMED ACTIVE

SELECTEDCLEARED

 

Figure 77 – An Arming Mode 

Some modes also distinguish between capturing and tracking the target. Such a mode is shown in 

Figure 78. Once in the ACTIVE state, such a mode’s flight control law first captures the target by 

maneuvering the aircraft to align it with the navigation source or reference. Once correctly 

aligned, the mode transitions to the tracking state in which it holds the aircraft on the target. Both 

the CAPTURE and TRACK states are sub-states of the ACTIVE state and the mode’s flight 

control law is active in both states, i.e., generating guidance commands for the FD and AP. Note 

that the only way to exit the ACTIVE state is to deselect the mode, i.e., it is not usually possible 

to revert directly from the TRACK state to the CAPTURE state or from the ACTIVE state to the 

ARMED state. 
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Figure 78 – A Capture/Track Mode 

 
The FGS modes are organized into the lateral modes, which control the behavior of the aircraft 

about the longitudinal, or roll, axis of the aircraft and the vertical modes, which control the 

behavior of the aircraft about the lateral, or pitch, axis of the aircraft. The lateral modes in this 

example include Roll Hold, Lateral Navigation, Lateral Approach and Lateral Go Around. The 

vertical modes include Pitch Hold, Vertical Speed, Flight Level Change, Altitude Hold, Altitude 

Select, Vertical Approach and Vertical Go Around.  

The mode logic of the FGS consists of the specification of these individual modes and the rules 

for transitioning between them. To provide proper guidance of the aircraft, these modes are 

tightly synchronized so that only a small portion of their total state space is actually reachable. 

For example, since at least one lateral and one vertical mode must be active and providing 

guidance whenever the FD is displayed or the AP is engaged, one mode is designated as the 

basic mode for each axis. The basic mode is automatically activated if no other mode is active 

for that axis. In this example, the basic modes are Roll Hold and Pitch Hold. In similar fashion, 

only one lateral mode and one vertical mode can provide guidance to the FD and the AP at the 

same time, so the mode logic must ensure that at most one lateral and one vertical mode are ever 

active at the same time. 

Other constraints enforce relationships between the modes that are dictated by the characteristics 

of the aircraft and the airspace. For example, Vertical Approach mode is not allowed to become 

active until Lateral Approach mode has become active to ensure that the aircraft is horizontally 

centered on the localizer before tracking the glideslope.  As another example, if the pilot cancels 

a landing and performs a go around, Lateral and Vertical Go Around modes must both be active. 
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Still other relationships must be maintained between the mode logic and the surrounding 

systems. For example, the AP should never be engaged when Lateral and Vertical Go Around 

modes are active since the pilot should be manually flying the aircraft during a go around.   

While verifying the behavior of a single mode is straightforward, ensuring that all the 

relationships between the modes and the aircraft are always maintained can be very complex. 

Moreover, since many of these relationships are of the form “the mode logic shall always ensure 

relationship x” they cannot be fully verified with testing since testing can only verify a small 

sample of the total inputs and states. In contrast, model checking is an ideal way to verify these 

relationships. All of the relationships described above and many others are formally stated and 

verified in Section 4.4. 

4.2 Software Verification Plan 

In this case study, we will use model checking to perform verification activities associated with 

the outputs of the software design process, focusing on the objectives of Table A-4 in DO-178C 

and Table FM.A-4 in DO-333.  The purpose of these verification activities is to detect any errors 

that may have been introduced during the software design process (DO-178C Section 5.2).  

Specifically, this case study will verify the low-level software requirements for the mode logic of 

a side of the FGS and show that the software architecture and the low-level software 

requirements comply with the high-level software requirements. 

4.2.1 Formal Specification and Verification Tools 

The low-level software requirements and software architecture will be specified as MATLAB 

Simulink and Stateflow models. These models will be translated into the Lustre formal 

specification language using a proprietary Rockwell Collins tool. Lustre is the input language of 

the JKind SMT-based model checker [14].  JKind is a Java implementation of the Kind model 

checker developed by the University of Iowa [9].  

Kind and JKind make use of SMT (Satisfiability Modulo Theories) solvers and the k-induction 

inference principle.  SMT solvers are tools for determining the satisfiability of logical 

expressions containing a finite number of terms.  A bounded model checking problem (one that 

considers only a finite number of steps) can be mapped to a satisfiability problem.  The k-

induction principle is then used to extend the analysis to traces of infinite length.   
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The high-level software requirements will be specified as Lustre predicates and merged with the 

Lustre specification of the low-level requirements. The low-level software requirements and 

software architecture will be shown to comply with the high-level requirements using JKind. 

To provide a commercially available example, the MATLAB Design Verifier model checker will 

also be used to show that the low-level software requirements and the software architecture 

comply with a subset of the high-level requirements.  These high-level requirements will be 

specified using both the MATLAB Simulink graphical and textual notations.  

4.2.2  Life Cycle Data Items 

Life cycle data items for this example are specified using a variety of notations and tools. 

High-Level Software Requirements The high-level software requirements are specified in two 

different ways. For verification with the JKind SMT-based model checker, they are 

specified as predicates in the Lustre formal specification language in the file 

Mode_Logic.lustre-props. For verification with MATLAB Simulink Design Verifier, 

they are specified using both the Simulink graphical and textual notation in the file 

Mode_Logic_Props.mdl. Mode_Logic_Props.mdl also refers to other modeling files, 

including Mode_Logic_Props_lib.mdl which contains Simulink blocks frequently used 

by Mode_Logic_Props.mdl, and mode_logic_inputs.mat, mode_logic_outputs.mat and 

no_higher_event.mat which contain Simulink bus definitions for the system inputs, 

outputs and prioritized events. 

Low-Level Software Requirements The low-level software requirements are specified as 

MATLAB Simulink/Stateflow models Mode_Logic.mdl and Mode_Logic_lib.mdl. 

Software Architecture The software architecture is specified as MATLAB Simulink/Stateflow 

models in the files Mode_Logic.mdl and Mode_Logic_lib.mdl. 

4.2.3 Objectives to Be Satisfied 

The DO-178C and DO-333 objectives to be satisfied through model checking are summarized in 

Table 2. A more detailed discussion of how each objective is satisfied is provided in this section. 

Objective A-4.1 – Low-level requirements comply with high-level requirements. This objective is 

demonstrated by proving with the JKind model checker or Design Verifier that the high-level 
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software requirements are implemented by the low-level software requirements and the software 

architecture.  

Objective A-4.2 – Low-level requirements are accurate and consistent. This objective is met by 

modeling the low-level requirements and the software architecture in the executable model 

language Simulink/Stateflow and by translating into the formal specification language Lustre. 

Objective A-4.4 – Low-level requirements are verifiable. This objective is met by modeling the low-

level requirements and the software architecture in the executable model language 

Simulink/Stateflow and by translating that model into the formal specification language Lustre. 

Objective A-4.5 – Low-level requirements conform to standards. This objective is partially met by 

modeling the low-level requirements and the software architecture in the Simulink/Stateflow 

design language. Commonly used blocks are provided in a library of blocks approved for use on 

the project.  Models can be automatically checked with the MATLAB Model Advisor for 

conformance with some project defined standards. Conformance to any remaining standards can 

be shown by manual review of the graphical models. 

Objective A-4.6 – Low-level requirements are traceable to high-level requirements. This objective is 

partially met by proving with the JKind model checker or Design Verifier that the high-level 

software requirements are implemented by the low-level software requirements and the software 

architecture, demonstrating that all high-level requirements have been developed into low-level 

requirements. Demonstrating that all low-level requirements can be traced to high-level 

requirements is accomplished through manual review. 

Objective A-4.7 – Algorithms are accurate. This objective is met by modeling the low-level 

requirements in Simulink/Stateflow and proving that the high-level software requirements are 

implemented by the low-level software requirements and the software architecture. 
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Table 2 – Summary of Objectives Satisfied by Model Checking 

Objective Description A B C D Notes 

A.4.1 Low-level requirements comply 
with high-level requirements. 

■ ■ ■  Established by proof that the high-level 
requirements are implemented by the low-level 
requirements and the software architecture. 

A.4.2 Low-level requirements are 
accurate and consistent. 

■ ■ ■  Established by modeling using an executable 
language and translation to a formal specification 
language. 

A.4.3 Low-level requirements are 
compatible with target computer. 

    Not addressed 

A.4.4 Low-level requirements are 
verifiable. 

■ ■   Established by modeling using an executable 
language and translation to a formal specification 
language. 

A.4.5 Low-level requirements conform 
to standards. 

□ □ □  Established by use of Simulink/Stateflow design 
language. 

A.4.6 Low-level requirements are 
traceable to high-level 
requirements. 

□ □ □  Established by verification of the high-level 
requirements.  

A.4.7 Algorithms are accurate. ■ ■ ■  The accuracy of the mode logic is established by 
model checking.  

A.4.8 Software architecture is 
compatible with high-level 
requirements. 

■ ■ ■  Established by proof that the high-level 
requirements are implemented by the low-level 
requirements and the software architecture. 

A.4.9 Software architecture is 
consistent 

■ ■ ■  Established by modeling using an executable 
language and translation to a formal specification 
language. 

A.4.10 Software architecture is 
compatible with target computer. 

    Not addressed 

A.4.11 Software architecture is verifiable. ■ ■   Established by modeling using an executable 
language and translation to a formal specification 
language. 

A.4.12 Software architecture conforms to 
standards. 

□ □ □  Partially established by use of Simulink/Stateflow. 

A.4.13 Software partitioning integrity is 
confirmed. 

    Partitioning integrity has been established using 
formal methods for several commercial operating 
systems.  This is not addressed in the current case 
study.   

FM.A-4.14 Formal analysis cases and 
procedures are correct. 

■ ■ ■  Established by review 

FM.A-4.15 Formal analysis results are 
correct and discrepancies 
explained. 

■ ■ ■  Established by review 

FM.A-4.16 Requirements formalization is 
correct. 

■ ■ ■  Established by review 

FM.A-4.17 Formal method is correctly 
defined, justified, and appropriate. 

■ ■ ■ ■ Established by review 

■  Full credit claimed □  Partial credit claimed                 Satisfaction of objective is at applicant’s discretion 
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Objective A-4.8 – Software architecture is compatible with the high-level requirements. This 

objective is demonstrated by proving with the JKind model checker or Design Verifier that the 

high-level software requirements are implemented by the low-level software requirements and 

the software architecture.  

Objective A-4.9 – Software architecture is consistent. This objective is met by modeling the low-

level requirements and the software architecture in the executable modeling language 

Simulink/Stateflow and by translating that model into the formal specification language Lustre. 

Objective A-4.11 – Software architecture is verifiable. This objective is met by modeling the low-

level requirements and the software architecture in the executable model language 

Simulink/Stateflow and by translating that model into the formal specification language Lustre. 

Objective A-4.12 – Software architecture conforms to standards. This objective is partially met by 

modeling the low-level requirements and the software architecture in the Simulink/Stateflow 

design language. Commonly used blocks are provided in a library of blocks approved for use on 

the project.  Models can be automatically checked with the MATLAB Model Advisor for 

conformance with some project defined standards. Conformance to any remaining standards can 

be shown by manual review of the graphical models. 

Objective FM.A-4.14 Formal analysis cases and procedures are correct. This objective is met 

through review to ensure that the analyses and procedures satisfy the objectives A-4.1 through 

A-4.12 for which credit is claimed. There are no assumptions associated with the 

Simulink/Stateflow models to be checked. The model contains only Boolean and enumerated 

types, has only Boolean inputs and outputs, and assumes no constraints on its inputs.  

Objective FM.A-4.15 Formal analysis results are correct and discrepancies explained. This 

objective is met through review to ensure that all formal properties are proven. Many of the 

properties had to be revised before they could be proved. Typically, these were due to omissions 

in the original requirements or oversights introduced by the informality of textual requirements.  

For example, the requirement that “vertical approach mode shall be active only if lateral 

approach mode is active” could not be implemented with the chosen software architecture and 

had to be relaxed to allow lateral approach mode to be inactive for a single step before vertical 

approach mode became inactive. Each such requirement change or discrepancy was explained 

and fed back into the safety assessment process for review. 
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Objective FM.A-4.16 Requirements formalization is correct. This objective is met through review to 

ensure that the formal statement of a requirement is a conservative representation of the informal 

requirement. In the case where the JKind model checker is used for verification, the translation 

of the Simulink/Stateflow model to Lustre must either be checked by review or by qualification 

of the translation tool. 

Objective FM.A-4.17 Formal method is correctly defined, justified, and appropriate. This objective 

is met through a review to ensure: 

a. All notations used for formal analysis are verified to have precise, unambiguous, 

mathematically defined syntax and semantics. The formal notation used was a subset of 

Simulink/Stateflow that was automatically translated to the Lustre formal specification 

language. 

b. The soundness of each formal analysis method is justified. The JKind model checker is 

based k-induction, as is the Kind model checker upon which it is based. Soundness of k-

induction is straightforward and is discussed in [9] and its references.  Since the Design 

Verifier model checker is a commercial product, less information is available about the 

underlying methodology.  Soundness concerns would have to be addressed by the vendor 

as part of a qualification support kit. 

c. Assumptions related to each formal analysis are described and justified. Since this 

example contains only Boolean and enumerated types, no assumptions related to the 

formal analysis (e.g., approximating floating-point numbers as reals) were necessary. 

4.2.4 Tool Qualification Issues 

As was the case for the theorem proving case study, for the certification objectives and mode of 

tool use that we are considering in this case study, Criteria 3 applies.  This means that for all 

airborne software levels the model checkers would need to be qualified to TQL-5.  Model 

checking does not (in general) produce independently checkable output.  This means that the 

model checker must be qualified if its outputs are to be used for certification credit.  

In addition to the development artifacts that must be provided, tool qualification requires that 

Tool Operational Requirements (TOR) be defined.  The TORs describe what the tool claims to 

do relative to the certification objectives.  Then a comprehensive test suite must be developed to 
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show that those requirements are satisfied over an appropriate range of tool inputs. For a model 

checker, this would mean producing a collection of models and properties that span the full range 

of constructs found in the model and property specification language(s) of the tool.  These 

example models would need to contain property errors which the model checker would have to 

be shown to identify correctly.   

We are not aware of any existing efforts to qualify an academic open source model checker like 

Kind.  However, there is no reason that this could not be accomplished following the process 

outlined above, in a manner similar to that carried out for any other TQL-5 verification tool.   

Our use of Kind relied upon the Rockwell Collins translation framework to generate Lustre input 

from the Simulink/Stateflow model.  There are two ways that this might be handled with respect 

to certification/qualification concerns.  The first approach would be to consider the translation 

tool and the model checker to be a single tool that acts directly on the Simulink/Stateflow model 

and doesn’t directly expose the intermediate Lustre translation.  The TORs and qualification test 

suite would be written to be consistent with this interface.  The second approach would be to 

consider the translation and model checking steps separately.  The model checker would be 

qualified on its own based on the Lustre input language.  The translation step would then be 

treated as part of the Low-Level Requirements formalization process (Objective FM.A-4.16).  

The objective would be to show that the Lustre output is a conservative representation of the 

Simulink/Stateflow input model.  This could be satisfied either through a manual review of the 

input and output, or by qualification of the translation tool to automate this function.   

For commercial tools like Simulink Design Verifier, some support from the tool vendor may be 

needed to achieve qualification.  As of this time, MathWorks has not provided a qualification kit 

for the Design Verifier.  However, there is no reason in principle, that this could not be done.  

The general outline of qualification should be similar to that of the Polyspace abstract 

interpretation tool (described in section 5.2.3 and [19]).    

4.3 Specification of the Mode Logic 

This section describes the mode logic in detail as a MATLAB Simulink/Stateflow model. The 

top level Simulink diagram is shown in Figure 79. 
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Figure 79 – Mode Logic Top Level 

As can be seen in Figure 79, the mode logic takes several Boolean valued inputs and outputs 

several Boolean values summarizing the status of the system modes. The mode logic has two 

subsystems, Event Processing and Flight Modes. Event Processing outputs Boolean events 

(signals that are true for at most one step) and Boolean conditions (signals that can be true for 

several steps). It establishes a priority among the incoming events and conditions and ensures 



   

 
106 

that if multiple events or conditions occur on the same step, only the higher priority events and 

conditions are output to the Flight Modes.  Event Processing is discussed in more detail in 

Section 4.3.2.  

4.3.1 Flight Modes  

The Flight Modes subsystem of Figure 79 is the heart of the mode logic. As shown in Figure 80, 

it is organized into four parallel state machines, FD, ANNUNCIATIONS, LATERAL, and 

VERTICAL,  

FD
1

ANNUNCIATIONS
2

Flight_Modes

LATERAL
3

VERTICAL
4

 

Figure 80 – Flight Modes Subsystem 

These four state machines execute in the order indicated by the number in each state machine in 

Figure 80. The FD state machine determines whether the FD is displayed on the PFD, while the 

ANNUNCIATIONS state machine determines whether the mode annunciations are displayed on 

the PFD. The LATERAL and VERTICAL state machines are further decomposed into the state 

machines for the lateral and vertical modes of the FGS.  
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4.3.1.1 FD 
The FD state machine determines whether the FD associated with this FGS channel is displayed 

on the PFD. Its logic is shown in Figure 81. 

[Turn_FD_On()]

FD

ON
en: FD_On = true

ex: FD_On = false

OFF
[Turn_FD_Off()]

 

Figure 81 – FD Mode Logic 

The FD is either OFF or ON and always starts in the OFF state. Whether the FD transitions from 

the OFF state to the ON state is determined by the Turn_FD_On truth table shown in Table 3. As 

specified in that table, the FD should be turned on if the FD switch is pressed, the AP is engaged, 

an overspeed condition exists, a lateral mode is manually selected, a vertical mode is manually 

selected, or there is a pilot flying transfer to this side of the aircraft while the mode annunciations 

are on.  

Table 3 – Turn FD On 

Condition  1  2  3  4  5  6  7  
FD_Switch_Pressed  T  -  -  -  -  -  -  
When_AP_Engaged  -  T  -  -  -  -  -  
Overspeed  -  -  T  -  -  -  -  
Lateral_Mode_Manually_Selected()  -  -  -  T  -  -  -  
Vertical_Mode_Manually_Selected()  -  -  -  -  T  -  -  
Pilot_Flying_Transfer  -  -  -  -  -  T  -  
Pilot_Flying_Side  -  -  -  -  -  T  -  
Modes_On  -  -  -  -  -  T  -  
 TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  FALSE  

 

Note that the FD state machine sets the mode logic output FD_On of the mode logic to true when 

it enters the ON state and to false when it exits the ON state. All of the FGS outputs are turned 

on and off in similar fashion by other state machines. 
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The truth table for when a lateral mode is manually selected is shown in Table 4. A lateral mode 

is manually selected when the HDG, NAV, APPR, or GA switch is pressed. 

Table 4 – Lateral Mode Manually Selected 

Condition 1 2 3 4 5 
HDG_Switch_Pressed  T  -  -  -  -  
NAV_Switch_Pressed  -  T  -  -  -  
APPR_Switch_Pressed  -  -  T  -  -  
GA_Switch_Pressed  -  -  -  T  -  
 TRUE  TRUE  TRUE  TRUE  FALSE  

 

The truth table for when a vertical mode is manually selected is shown in Table 5. A vertical 

mode is manually selected when the VS, FLC, ALT, APPR, or GA switch is pressed or when the 

VS Pitch Wheel is rotated while Vertical Speed (VS) and Vertical Approach (VAPPR) modes 

are not active and an overspeed condition does not exist. 

Table 5 – Vertical Mode Manually Selected 

Condition 1 2 3 4 5 6 7 
VS_Switch_Pressed  T - - - - - - 
FLC_Switch_Pressed  - T - - - - - 
ALT_Switch_Pressed  - - T - - - - 
APPR_Switch_Pressed  - - - T - - - 
GA_Switch_Pressed  - - - - T - - 
VS_Pitch_Wheel_Rotated  - - - - - T - 
VS_Active  - - - - - F - 
VAPPR_Active  - - - - - F - 
Overspeed  - - - - - F - 
 TRUE TRUE TRUE TRUE TRUE TRUE FALSE 

 

The conditions for turning the FD off are show in Table 6.  The FD should be turned off when 

the FD switch is pressed provided an overspeed condition does not exist. 

Table 6 – Turn FD Off 

Condition  1  2  
FD_Switch_Pressed  T  -  
Overspeed  F  -  
 TRUE  FALSE  
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4.3.1.2 ANNUNCIATIONS 
The ANNUNCIATIONS state machine determines whether the mode annunciations are 

displayed on the PFD.  Its logic is shown in Figure 82. 

[Turn_Annunciations_On()]

ANNUNCIATIONS

ON
en: Modes_On = true

ex: Modes_On = false

OFF
en: Modes_On = false

ex: Modes_On = true [Turn_Annunciations_Off()]

 

Figure 82 – ANNUNCIATIONS Mode Logic 

The mode annunciations are either OFF or ON and always start in the OFF state. Whether the 

annunciations are displayed is determined by the Turn_Annunciations_On truth table shown in 

Table 7. The mode annunciations are turned on whenever the AP is engaged, the offside FD (i.e., 

the FD on the other side of the aircraft) is turned on, or the FD on this side of the aircraft is 

turned on. 

Table 7 – Turn Annunciations On 

Condition  1  2  3  4  
Is_AP_Engaged  T  -  -  -  
Is_Offside_FD_On  -  T  -  -  
FD_On  -  -  T  -  
 TRUE  TRUE  TRUE  FALSE  

 

The logic for turning the mode annunciations off is given in the truth table of Table 8. The mode 

annunciations are turned off when the AP is not engaged, the offside FD is not displayed, and the 

onside FD is not displayed. 

Table 8 – Turn Annunciations Off 

Condition  1  2  
Is_AP_Engaged  F  -  
Is_Offside_FD_On  F  -  
FD_On  F  -  
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Actions  TRUE  FALSE  
 

4.3.1.3 LATERAL 
The lateral modes control the behavior of the aircraft about the longitudinal, or roll, axis. The 

organization of the LATERAL state machine is shown in Figure 83. 

LATERAL

Update_Activated_Modes

Lateral_Mode_Active

New_Lateral_Mode_Activated

HDG 1

NAV
2

LAPPR
3

LGA 4

ROLL 5

 

Figure 83 – LATERAL Modes 

The individual lateral modes of HDG, NAV, LAPPR, LGA, and ROLL are implemented as 

parallel state machines that execute in the order shown in Figure 83. Since exactly one lateral 

mode should be active and providing guidance to the FD and AP at a time, the LATERAL state 

machine defines two truth tables, Lateral_Mode_Active and New_Lateral_Mode_Activated, and 

a function, Update_Activated_Modes, to support this synchronization.  
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The Lateral_Mode_Active truth table is used to make the default lateral mode Roll Hold (ROLL) 

active if no other lateral mode is active and to deactivate ROLL mode when another lateral mode 

becomes active. Its specification is given in the description of ROLL mode in Section 4.3.1.3.5.  

The New_Lateral_Mode_Activated truth table is used to deactivate the active lateral mode when 

a new lateral mode becomes active. Its logic is shown in Table 9. 

Table 9 – New Lateral Mode Activated 

Condition  1  2  3  4  5  
HDG_Will_Be_Activated  T  -  -  -  -  
NAV_Will_Be_Activated  -  T  -  -  -  
LAPPR_Will_Be_Activated  -  -  T  -  -  
LGA_Will_Be_Activated  -  -  -  T  -  
 TRUE  TRUE  TRUE  TRUE  FALSE  

 

While the intent of New_Lateral_Mode_Activated is straightforward – it should return true if a 

new lateral mode will be activated during this step - its implementation is actually quite subtle. 

Invoking it during the execution of the currently active mode to determine if that mode should 

deactivate may depend on whether a mode that has not yet executed will become active. The 

recommended way to synchronize parallel state machines in Stateflow is to “wake-up” a mode 

machine that executed earlier through the use of directed broadcast events. Unfortunately, this 

leads to a model that is not well-suited for model checking.5 

Instead, we require that each mode implements a truth table Will_Be_Activated that predicts if 

that mode will become active based on its current state and its inputs. At the start of each step of 

the LATERAL mode machine, these values are computed and stored in local state variables by 

the Update_Activated_Modes function. These stored values are then used in the 

New_Lateral_Mode_Activated truth table shown in Table 9 so that the current active lateral 

mode knows whether to deactivate itself regardless of its order of execution. 

                                                

5 For model checking, the state transition relation must be “unwound” into a static description of all possible system 
transitions. Each directed broadcast significantly increases the complexity of this description and the interleaving of 
all possible sequences of directed broadcasts results in a combinatorial explosion in the size of the state transition 
relation. 
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4.3.1.3.1 Heading Select (HDG) 
Heading Select (HDG) mode turns the aircraft to the selected heading displayed on the PFD and 

then holds the aircraft to that heading. It is a non-arming mode that can be selected to become the 

active lateral mode at any time. Its logic is shown in Figure 84. 

ACTIVE
en: HDG_Active = true

ex: HDG_Active = false

SELECTED
en: HDG_Selected = true

ex: HDG_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

HDG

 

Figure 84 – Heading Select (HDG) Mode 

HDG mode starts in the CLEARED state. It transitions into the SELECTED state when the 

HDG_Select truth table shown in Table 10 evaluates to true, i.e., when the HDG switch is 

pressed. On entry to the SELECTED state it sets the HDG_Selected output to true.  

Table 10 – HDG Select 

Condition  1  2  
HDG_Switch_Pressed  T  -  
 TRUE  FALSE  

 

Since it is not an arming mode, it immediately transitions into the ACTIVE state. On entry to the 

ACTIVE state it sets the HDG_Active output to true. HDG mode returns to the CLEARED state 

when the HDG_Clear truth table shown in Table 11  evaluates to true, i.e., when the HDG 

switch is pressed, when there is a pilot flying transfer, or when the mode annunciations are 

turned off. Note that on exit from the ACTIVE state it sets the HDG_Active output to false and 

on exit from the SELECTED state it sets the HDG_Selected output to false. 
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Table 11 – HDG Clear 

Condition  1  2  3  4  
HDG_Switch_Pressed  T  -  -  -  
Pilot_Flying_Transfer  -  T  -  -  
Modes_On  -  -  F  -  
 TRUE  TRUE  TRUE  FALSE  

 

HDG mode will also transition to the CLEARED state if another mode becomes active on this 

step (i.e., the transition guarded by New_Lateral_Mode_Activated is taken). In similar fashion, if 

HDG mode becomes active, the current active lateral mode must deactivate itself. The 

Will_Be_Activated truth table that supports this synchronization for HDG mode is shown in 

Table 12. 

Table 12 – HDG Will Be Activated 

Condition  1  2  
in(CLEARED)  T  -  
Select()  T  -  
  TRUE  FALSE  

 

4.3.1.3.2 Lateral Navigation (NAV) 
Lateral Navigation (NAV) mode captures and tracks lateral guidance for en route navigation and 

non-precision approaches. It is an arming mode that must be armed before it can become active.  

Its logic is shown in Figure 85. 

ARMED

ACTIVE
en: NAV_Active = true

ex: NAV_Active = false

SELECTED
en: NAV_Selected = true

ex: NAV_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

NAV

[Capture()]

 

Figure 85 – Lateral Navigation (NAV) Mode 
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NAV mode starts in the CLEARED state. It transitions into the SELECTED state when the 

NAV_Select truth table shown in Table 13 evaluates to true, i.e., when the NAV switch is 

pressed.  

Table 13 – NAV Select 

Condition  1  2  
NAV_Switch_Pressed  T  -  
 TRUE  FALSE  

 

Since it is an arming mode, it then enters the ARMED state. From the ARMED state it will 

transition to the ACTIVE state when the NAV_Capture truth table shown in Table 14 evaluates 

to true, i.e. when the NAV_Capture_Condition_Met input is true.  

Table 14 – NAV Capture 

Condition  1  2  
NAV_Capture_Condition_Met  T  -  
 TRUE  FALSE  

 

NAV mode returns to the CLEARED state when the NAV_Clear truth table shown in Table 15 

evaluates to true, i.e., when the NAV switch is pressed, when the navigation source or frequency  

changes, when there is a pilot flying transfer, or when the mode annunciations are turned off. 

Table 15 – NAV Clear 

Condition  1  2  3  4  5  6  
NAV_Switch_Pressed  T  -  -  -  -  -  
Selected_NAV_Source_Changed  -  T  -  -  -  -  
Selected_NAV_Frequency_Changed  -  -  T  -  -  -  
Pilot_Flying_Transfer  -  -  -  T  -  -  
Modes_On  -  -  -  -  F  -  
 TRUE  TRUE  TRUE  TRUE  TRUE  FALSE  

 

NAV mode will also transition to the CLEARED state if another mode becomes active on this 

step (i.e., the transition guarded by New_Lateral_Mode_Activated is taken). Note that it is not 

possible to directly transition back to the ARMED state from the ACTIVE state. The 

Will_Be_Activated truth table for NAV mode is shown in Table 16. 
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Table 16 – NAV Will Be Activated 

Condition  1  2  
in(SELECTED.ARMED)  T  -  
Capture()  T  -  
Clear()  F  -  
 TRUE  FALSE  

 

Note that since NAV is an arming mode, Table 16 must guard against the situation in which 

NAV mode receives a command to clear itself at the same time that its capture condition 

becomes true. 

4.3.1.3.3 Lateral Approach (LAPPR) 
Lateral Approach (LAPPR) mode captures and tracks lateral guidance for precision and non-

precision approaches.   It is an arming mode that must be armed before it can become active.   Its 

logic is shown in Figure 86. 

ARMED

ACTIVE
en: LAPPR_Active = true

ex: LAPPR_Active = false

SELECTED
en: LAPPR_Selected = true

ex: LAPPR_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

LAPPR

[Capture()]

 

Figure 86 – Lateral Approach (LAPPR) Mode 

LAPPR mode starts in the CLEARED state. It transitions into the SELECTED state when the 

LAPPR_Select truth table shown in Table 17 evaluates to true, i.e., when the APPR switch is 

pressed.  

Table 17 – LAPPR Select 

Condition  1  2  
APPR_Switch_Pressed  T  -  
 TRUE  FALSE  
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Since it is an arming mode, it then enters the ARMED state. From the ARMED state it will 

transition to the ACTIVE state when the LAPPR_Capture truth table shown in Table 18 

evaluates to true, i.e. when the LAPPR_Capture_Condition_Met input is true.  

Table 18 – LAPPR Capture 

Condition  1  2  
LAPPR_Capture_Condition_Met  T  -  
 TRUE  FALSE  

 

LAPPR mode returns to the CLEARED state when the LAPPR_Clear truth table shown in Table 

19 evaluates to true, i.e., when the APPR switch is pressed, when the navigation source or 

frequency is changed, when there is a pilot flying transfer, or when the mode annunciations are 

turned off. 

Table 19 – LAPPR Clear 

Condition  1  2  3  4  5  6  
APPR_Switch_Pressed  T  -  -  -  -  -  
Selected_NAV_Source_Changed  -  T  -  -  -  -  
Selected_NAV_Frequency_Changed  -  -  T  -  -  -  
Pilot_Flying_Transfer  -  -  -  T  -  -  
Modes_On  -  -  -  -  F  -  
 TRUE  TRUE  TRUE  TRUE  TRUE  FALSE  

 

LAPPR mode will also transition to the CLEARED state if another mode becomes active on this 

step (i.e., the transition guarded by New_Lateral_Mode_Activated is taken). Note that it is not 

possible to directly transition back to the ARMED state from the ACTIVE state. The 

Will_Be_Activated truth table for LAPPR mode is shown in Table 20. 

Table 20 – LAPPR Will Be Activated 

Condition  1  2  
in(SELECTED.ARMED)  T  -  
Capture()  T  -  
Clear()  F  -  
 TRUE  FALSE  
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4.3.1.3.4 Lateral Go Around (LGA) 
Lateral Go Around (LGA) mode maintains the current heading when the pilot aborts a landing. It 

is a non-arming mode that can become the active lateral mode at any time. Its logic is shown in 

Figure 87. 

ACTIVE
en: LGA_Active = true

ex: LGA_Active = false

SELECTED
en: LGA_Selected = true

ex: LGA_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

LGA

 

Figure 87 – Lateral Go Around (LGA) Mode 

LGA mode starts in the CLEARED state. It transitions into the SELECTED state when the 

LGA_Select truth table shown in Table 21 evaluates to true, i.e., when the GA switch is pressed 

while an overspeed condition does not exist.  

Table 21 – LGA Select 

Condition  1  2  
GA_Switch_Pressed  T  -  
Overspeed  F  -  
 TRUE  FALSE  

 

Since it is not an arming mode, it immediately transitions into the ACTIVE state. LGA mode 

returns to the CLEARED state when the LGA_Clear truth table shown in Table 22 evaluates to 

true, i.e., when the AP is engaged, when the SYNC switch is pressed, when Vertical Go Around 

(VGA) mode becomes inactive, when there is a pilot flying transfer, or when the mode 

annunciations are turned off. 
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Table 22 – LGA Clear 

Condition  1  2  3  4  5  6  
When_AP_Engaged  T  -  -  -  -  -  
SYNC_Switch_Pressed  -  T  -  -  -  -  
VGA_Active  -  -  F  -  -  -  
Pilot_Flying_Transfer  -  -  -  T  -  -  
Modes_On  -  -  -  -  F  -  
 TRUE  TRUE  TRUE  TRUE  TRUE  FALSE  

 

LGA mode will also transition to the CLEARED state if another mode becomes active on this 

step (i.e., the transition guarded by New_Lateral_Mode_Activated is taken). The 

Will_Be_Activated truth table for LGA mode is shown in Table 23. 

Table 23 – LGA Will Be Activated 

Condition  1  2  
in(CLEARED)  T  -  
Select()  T  -  
  TRUE  FALSE  

4.3.1.3.5 Roll Hold (ROLL) 
Roll Hold (ROLL) mode holds the aircraft at the fixed bank angle it is in when the mode 

becomes active or when the SYNC switch is pressed. ROLL mode is the basic lateral mode and 

is always active when no other lateral mode is active and the mode annunciations are on. Since it 

may need to become active at any time, it a non-arming mode. Its logic is shown in Figure 88. 

ACTIVE
en: ROLL_Active = true

ex: ROLL_Active = false

SELECTED
en: ROLL_Selected = true

ex: ROLL_Selected = false

CLEARED

[ ! Lateral_Mode_Active()]

[Lateral_Mode_Active()]

ROLL

 

Figure 88 – Roll Hold (ROLL) 

ROLL mode starts in the Active state. It transitions into the CLEARED state when the Lateral 

Mode Active truth table shown in Table 24 evaluates to true, i.e., when another lateral mode is 
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active. ROLL mode transitions back to the ACTIVE state when no other lateral mode is active, 

i.e. when Lateral_Mode_Active evaluates to false.  

Table 24 – Lateral Mode Active 

Condition  1  2  3  4  5  
HDG_Active  T  -  -  -  -  
NAV_Active  -  T  -  -  -  
LAPPR_Active  -  -  T  -  -  
LGA_Active  -  -  -  T  -  
 TRUE  TRUE  TRUE  TRUE  FALSE  

 
4.3.1.4 VERTICAL 
The vertical modes control the behavior of the aircraft about the lateral, or pitch, axis. The 

organization of the VERTICAL state machine is shown in Figure 89. 

The individual vertical modes of VS, FLC, ALT, ALTSEL, VAPPR, VGA and PITCH are 

implemented as parallel state machines that execute in that order. Just as with the lateral modes, 

the VERTICAL state machine defines two truth tables, Vertical_Mode_Active and 

New_Vertical_Mode_Activated, and a function, Update_Activated_Modes, to support the 

synchronization between the vertical modes. 

The Vertical_Mode_Active truth table is used to make the default vertical mode Pitch Hold 

(PITCH) active if no other vertical mode is active and to deactivate PITCH mode when another 

vertical mode becomes active. Its specification is given in the description of PITCH mode in 

Section 4.3.1.4.7. 
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VERTICAL

Update_Activated_Modes

Vertical_Mode_Active

New_Vertical_Mode_Activated

1

2

3

4

VAPPR 5

VS

FLC

ALT

ALTSEL

PITCH

VGA 6

7

 

Figure 89 – VERTICAL Modes 

The New_Vertical_Mode_Activated truth table is used to deactivate the current active vertical 

mode when a new vertical mode becomes active. Its logic is shown in Table 25. 
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Table 25 – New Vertical Mode Activated 

Condition  1  2  3  4  5  6  7  
VS_Will_Be_Activated  T  -  -  -  -  -  -  
FLC_Will_Be_Activated  -  T  -  -  -  -  -  
ALT_Will_Be_Activated  -  -  T  -  -  -  -  
ALTSEL_Will_Be_Activated  -  -  -  T  -  -  -  
VAPPR_Will_Be_Activated  -  -  -  -  T  -  -  
VGA_Will_Be_Activated  -  -  -  -  -  T  -  
 TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  FALSE  

 

As with the lateral modes, we require that each vertical mode implements a truth table 

Will_Be_Activated that predicts if that mode will become active based on its current state and its 

inputs. At the start of each step of the VERTICAL mode machine, these values are computed and 

stored in local state variables by the Update_Activated_Modes function. These stored values are 

then used in the New_Vertical_Mode_Activated truth table shown in Table 25 so that the current 

active vertical mode knows whether to deactivate itself if another vertical mode will become 

active. 

4.3.1.4.1 Vertical Speed (VS) 
Vertical Speed (VS) mode holds the aircraft to the Vertical Speed (VS) reference displayed on 

the PFD. It is a non-arming mode that can become active at any time. Its logic is shown in 

Figure 90. 

ACTIVE
en: VS_Active = true

ex: VS_Active = false

SELECTED
en: VS_Selected = true

ex: VS_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

VS

 

Figure 90 – Vertical Speed (VS) Mode 
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VS mode starts in the CLEARED state. It transitions into the SELECTED state when the 

VS_Select truth table shown in Table 26 evaluates to true, i.e., when the VS switch is pressed 

while an overspeed condition does not exist and Vertical Approach (VAPPR) mode is not active.  

Table 26 – VS Select 

Condition  1  2  
VS_Switch_Pressed  T  -  
Overspeed  F  -  
VAPPR_Active  F  -  
 TRUE  FALSE  

 

Since it is not an arming mode, it immediately transitions into the ACTIVE state. VS mode 

returns to the CLEARED state when the VS_Clear truth table shown in Table 27 evaluates to 

true, i.e., when the VS switch is pressed, when there is a pilot flying transfer, or when the mode 

annunciations are turned off. 

Table 27 – VS Clear 

Condition  1  2  3  4  
VS_Switch_Pressed  T  -  -  -  
Pilot_Flying_Transfer  -  T  -  -  
Modes_On  -  -  F  -  
 TRUE  TRUE  TRUE  FALSE  

 

VS mode will also transition to the CLEARED state if another vertical mode becomes active on 

this step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The 

Will_Be_Activated truth table for VS is shown in Table 28. 

Table 28 – VS Will Be Activated 

Condition  1  2  
in(CLEARED)  T  -  
Select()  T  -  
  TRUE  FALSE  
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4.3.1.4.2 Flight Level Change (FLC) 
Flight Level Change (FLC) mode acquires and tracks an Indicated Airspeed (IAS) or Mach 

Reference Airspeed while also climbing or descending to bring the aircraft to the Preselected 

Altitude. It is a non-arming mode that can become active at any time. Its logic is shown in  

Figure 91. 

ACTIVE
en: FLC_Active = true

ex: FLC_Active = false

SELECTED
en: FLC_Selected = true

ex: FLC_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

FLC

 

Figure 91 – Flight Level Change (FLC) Mode 

FLC mode starts in the CLEARED state. It transitions into the SELECTED state when the 

FLC_Select truth table shown in Table 29 evaluates to true, i.e., when the FLC switch is pressed 

while Vertical Approach (VAPPR) mode is not active, or when an overspeed condition exists 

while Altitude Hold (ALT) mode and Altitude Select (ALTSEL) mode are not active and are not 

about to become active.  

Table 29 – FLC Select  

Condition  1  2  3  
FLC_Switch_Pressed  T  -  -  
VAPPR_Active  F  -  -  
Overspeed  -  T  -  
ALT_Active  -  F  -  
ALT_Will_Be_Activated  -  F  -  
ALTSEL_Active  -  F  -  
ALTSEL_Will_Be_Activated  -  F  -  
 TRUE  TRUE  FALSE  

 

Since it is not an arming mode, it immediately transitions into the ACTIVE state. FLC mode 

returns to the CLEARED state when the FLC_Clear truth table shown in Table 30 evaluates to 
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true, i.e., when the FLC switch is pressed while there is not an overspeed condition, when the VS 

Pitch Wheel is rotated while there is not an overspeed condition, when there is a pilot flying 

transfer, or when the mode annunciations are turned off. 

Table 30 – FLC Clear 

Condition  1  2  3  4  5  
FLC_Switch_Pressed  T  -  -  -  -  
Overspeed  F  F  -  -  -  
VS_Pitch_Wheel_Rotated  -  T  -  -  -  
Pilot_Flying_Transfer  -  -  T  -  -  
Modes_On  -  -  -  F  -  
 TRUE  TRUE  TRUE  TRUE  FALSE  

 

FLC mode will also transition to the CLEARED state if another vertical mode becomes active on 

this step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The 

Will_Be_Activated truth table for FLC is shown in Table 31. 

Table 31 – FLC Will Be Activated 

Condition  1  2  
in(CLEARED)  T  -  
Select()  T  -  
  TRUE  FALSE  

 

4.3.1.4.3 Altitude Hold (ALT) 
Altitude Hold (ALT) mode acquires and tracks the altitude reference, which is set to the current 

altitude when the mode is activated or upon a SYNC request by the flight crew. It is a non-

arming mode that can become active at any time. Its logic is shown in Figure 92. 
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ACTIVE
en: ALT_Active = true

ex: ALT_Active = false

SELECTED
en: ALT_Selected = true

ex: ALT_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

ALT

 

Figure 92 – Altitude Hold (ALT) Mode 

ALT mode starts in the CLEARED state. It transitions into the SELECTED state when the 

ALT_Select truth table shown in Table 32 evaluates to true, i.e., when the ALT switch is pressed 

while Vertical Approach (VAPPR) mode is not active or when the Altitude Select (ALTSEL) 

target altitude is changed while ALTSEL mode is in the TRACK state and VAPPR mode is not 

active. 

Table 32 – ALT Select  

Condition  1  2  3  
ALT_Switch_Pressed  T  -  -  
VAPPR_Active  F  F  -  
ALTSEL_Target_Changed  -  T  -  
ALTSEL_Track  -  T  -  
 TRUE  TRUE  FALSE  

 

Since it is not an arming mode, it immediately transitions into the ACTIVE state. ALT mode 

returns to the CLEARED state when the ALT_Clear truth table shown in Table 33 evaluates to 

true, i.e., when the ALT switch is pressed, when the VS Pitch Wheel is rotated, when there is a 

pilot flying transfer, or when the mode annunciations are turned off. 
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Table 33 – ALT Clear 

Condition  1  2  3  4  5  
ALT_Switch_Pressed  T  -  -  -  -  
VS_Pitch_Wheel_Rotated  -  T  -  -  -  
Pilot_Flying_Transfer  -  -  T  -  -  
Modes_On  -  -  -  F  -  
Actions  TRUE  TRUE  TRUE  TRUE  FALSE  

 

ALT mode will also transition to the CLEARED state if another vertical mode becomes active 

on this step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The 

Will_Be_Activated truth table for ALT is shown in Table 34. 

Table 34 – ALT Will Be Activated 

Condition  1  2  
in(CLEARED)  T  -  
Select()  T  -  
  TRUE  FALSE  

 

4.3.1.4.4 Altitude Select (ALTSEL) 
Altitude Select (ALTSEL) mode captures and tracks the Preselected Altitude. It is a capture/track 

mode that must be armed before it can become active and that has both capture and track sub-

states of its active state. Its logic is shown in Figure 93. 

ARMED

ACTIVE
en: ALTSEL_Active = true

ex: ALTSEL_Active = false

TRACK
en: ALTSEL_Track = true

ex: ATLSEL_Track = false

[Track()]

CAPTURE

SELECTED
en: ALTSEL_Selected = true

ex: ALTSEL_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

ALTSEL

[Capture()]

 

Figure 93 – Altitude Select (ALTSEL) Mode 
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ALTSEL starts in the CLEARED state. It transitions to the SELECTED state when the 

ALTSEL_Select truth table shown in Table 35 evaluates to true, i.e., when none of Vertical 

Approach (VAPPR), Vertical Go Around (VGA), or Altitude Hold (ALT) mode are active.  

Table 35 – ALTSEL Select 

Condition  1  2  
VAPPR_Active  F  -  
VGA_Active  F  -  
ALT_Active  F  -  
 TRUE  FALSE  

 

It also immediately enters the ARMED state in which the FGS monitors the aircraft closure rate 

towards the target altitude and determines the optimum capture point to transition to the capture 

state. When the ALTSEL capture condition is met (Table 36) it enters the ACTIVE state. 

Table 36 – ALTSEL Capture 

Condition  1  2  
ALTSEL_Capture_Condition_Met  T  -  
Actions  TRUE  FALSE  

 

It also immediately enters the CAPTURE state in which the FGS generates vertical guidance 

commands to perform a smooth capture of the target altitude. Once the target altitude is reached 

and the ALTSEL track condition is met (Table 37) it transitions to the TRACK state. 

Table 37 – ALTSEL Track 

Condition  1  2  
ALTSEL_Track_Condition_Met  T  -  
 TRUE  FALSE  

 

ALTSEL mode returns to the CLEARED state when the ALTSEL_Clear truth table shown in 

Table 38 evaluates to true, i.e., when one of Vertical Approach (VAPPR), Vertical Go Around 

(VGA), or Altitude Hold (ALT) modes becomes active, or when the mode annunciations are 

turned off. 
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Table 38 – ALTSEL Clear 

Condition  1  2  3  4  5  
VAPPR_Active  T  -  -  -  -  
VGA_Active  -  T  -  -  -  
ALT_Active  -  -  T  -  -  
Modes_On  -  -  -  F  -  
Actions  TRUE  TRUE  TRUE  TRUE  FALSE  

 

ALTSEL mode will also transition to the CLEARED state if another mode becomes active on 

this step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The 

Will_Be_Activated truth table for ALTSEL mode is shown in Table 39. 

Table 39 – ALTSEL Will Be Activated 

Condition  1  2  
in(SELECTED.ARMED)  T  -  
Capture()  T  -  
Clear()  F  -  
 TRUE  FALSE  

 

4.3.1.4.5 Vertical Approach (VAPPR) 
Vertical Approach (VAPPR) mode captures and tracks the vertical guidance for Instrument 

Landing System (ILS) precision glideslope approaches. It is an arming mode that must be armed 

before it can become active. Its logic is shown in Figure 94. 

ARMED

ACTIVE
en: VAPPR_Active = true

ex: VAPPR_Active = false

SELECTED
en: VAPPR_Selected = true

ex: VAPPR_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

VAPPR

[Capture()]

 

 Figure 94 – Vertical Approach (VAPPR) Mode 
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VAPPR mode starts in the CLEARED state. It transitions into the SELECTED state when the 

VAPPR_Select truth table shown in Table 40 evaluates to true, i.e., when the APPR switch is 

pressed.  

Table 40 – VAPPR Select 

Condition  1  2  
APPR_Switch_Pressed  T  -  
 TRUE  FALSE  

 

It also immediately enters the ARMED state. From the ARMED state it will transition to the 

ACTIVE state when the VAPPR Capture truth table shown in Table 41 evaluates to true, i.e., 

when the vertical approach capture condition is met and Lateral Approach (LAPPR) mode is 

active and an overspeed condition does not exist. 

Table 41 – VAPPR Capture 

Condition  1  2  
VAPPR_Capture_Condition_Met  T  -  
LAPPR_Active  T  -  
Overspeed  F  -  
 TRUE  FALSE  

 

VAPPR mode returns to the CLEARED state when the VAPPR_Clear truth table shown in  

Table 42 evaluates to true, i.e., when the APPR switch is pressed, when Lateral Approach 

(LAPPR) mode is not selected, when the navigation source or frequency is changed, when there 

is a pilot flying transfer, or when the mode annunciations are turned off. 

Table 42 – VAPPR Clear 

Condition  1  2  3  4  5  6  7  
APPR_Switch_Pressed  T  -  -  -  -  -  -  
LAPPR_Selected  -  F  -  -  -  -  -  
Selected_NAV_Source_Changed  -  -  T  -  -  -  -  
Selected_NAV_Frequency_Changed  -  -  -  T  -  -  -  
Pilot_Flying_Transfer  -  -  -  -  T  -  -  
Modes_On  -  -  -  -  -  F  -  
 TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  FALSE  
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VAPPR mode will also transition to the CLEARED state if another mode becomes active on this 

step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The 

Will_Be_Activated truth table for VAPPR mode is shown in Table 43. 

Table 43 – VAPPR Will Be Activated 

Condition  1  2  
in(SELECTED.ARMED)  T  -  
Capture()  T  -  
Clear()  F  -  
 TRUE  FALSE  

 

4.3.1.4.6 Vertical Go Around (VGA) 
Vertical Go Around (VGA) mode maintains a fixed pitch angle when the pilot aborts a landing. 

It is a non-arming mode that can become the active vertical mode at any time. Its logic is shown 

in Figure 95. 

ACTIVE
en: VGA_Active = true

ex: VGA_Active = false

SELECTED
en: VGA_Selected = true

ex: VGA_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

VGA

 

Figure 95 – Vertical Go Around (VGA) Mode 

VGA mode starts in the CLEARED state. It transitions into the SELECTED state when the 

VGA_Select truth table shown in Table 44 evaluates to true, i.e., when the GA switch is pressed 

while an overspeed condition does not exist.  
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Table 44 – VGA Select 

Condition  1  2  
GA_Switch_Pressed  T  -  
Overspeed  F  -  
Actions  TRUE  FALSE  

 

It immediately transitions into the ACTIVE state. VGA mode returns to the CLEARED state 

when the VGA_Clear truth table shown in Table 45 evaluates to true, i.e., when the AP is 

engaged, when the SYNC switch is pressed, when the VS Pitch Wheel is rotated, when there is a 

pilot flying transfer, or when the mode annunciations are turned off. 

Table 45 – VGA Clear 

Condition  1  2  3  4  5  6  
When_AP_Engaged  T  -  -  -  -  -  
SYNC_Switch_Pressed  -  T  -  -  -  -  
VS_Pitch_Wheel_Rotated  -  -  T  -  -  -  
Pilot_Flying_Transfer  -  -  -  T  -  -  
Modes_On  -  -  -  -  F  -  
 TRUE  TRUE  TRUE  TRUE  TRUE  FALSE  

 

LGA mode will also transition to the CLEARED state if another mode becomes active on this 

step (i.e., the transition guarded by New_Vertical_Mode_Activated is taken). The 

Will_Be_Activated truth table for LGA mode is shown in Table 23. 

Table 46 – LGA Will Be Activated 

Condition  1  2  
in(CLEARED)  T  -  
Select()  T  -  
  TRUE  FALSE  

 

4.3.1.4.7 Pitch Hold (PITCH) 
Pitch Hold (PITCH) mode holds the aircraft at the fixed pitch angle it is in when the mode 

becomes active or when the SYNC switch is pressed.  PITCH is the basic vertical mode and is 

always active when no other vertical mode is active. Since it may need to become active at any 

time, it is a non-arming mode. Its mode logic is shown in Figure 96. 
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ACTIVE
en: PITCH_Active = true

ex: PITCH_Active = false

SELECTED
en: PITCH_Selected = true

ex: PITCH_Selected = false

CLEARED

[ ! Vertical_Mode_Active()]

[Vertical_Mode_Active()]

PITCH

 

Figure 96 – Pitch Hold (PITCH) Mode 

PITCH mode starts in the Active sub-state of the SELECTED state. It transitions into the 

CLEARED state when the Vertical_Mode_Active truth table shown in Table 47 evaluates to true, 

i.e., when another vertical mode is active. PITCH mode transitions back to the ACTIVE state 

when no other vertical mode is active, i.e. when Vertical_Mode_Active evaluates to false.  

Table 47 – Vertical Mode Active 

Condition  1  2  3  4  5  6  7  
VS_Active  T  -  -  -  -  -  -  
FLC_Active  -  T  -  -  -  -  -  
ALT_Active  -  -  T  -  -  -  -  
ALTSEL_Active  -  -  -  T  -  -  -  
VAPPR_Active  -  -  -  -  T  -  -  
VGA_Active  -  -  -  -  -  T  -  
 TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  FALSE  

 

4.3.2 Event Processing 

While the Flight Modes subsystem of Section 4.3.1 constitutes most of the mode logic, the Event 

Processing subsystem also plays an important role. The LATERAL and VERTICAL state 

diagrams ensure that there is always at least one lateral and one vertical mode active, and that the 

current active lateral or vertical mode is always deactivated if a new mode becomes active. 

However, they do not ensure that only one lateral and one vertical mode is active at the same 

time. In fact, without Event Processing there are several situations in which more than one lateral 

or vertical mode can become active.  The next section describes the approach taken here - 

prioritization of input events - to keep this from happening. Other approaches and the reasons for 

not selecting them are discussed in Section 4.3.2.1. 
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4.3.2.1 Event Prioritization 
The logic of the Event Processing subsystem is shown in Figure 97.  Event processing 

establishes a ranking of input events so that higher priority events supersede lower priority 

events. 
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Figure 97 – Event Processing 

Blocks such as SYNC_Switch_Pressed_Seen instantiate the Seen logic shown in Figure 97, which 

outputs Seen as true if its Input signal is true while the Inhibit_In signal is false. This block also 

generates an Inhibit_Out signal when either the Inhibit_In input or the Seen output is true. 
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Figure 98 – Seen Logic 

These blocks can be cascaded as shown in Figure 97 to inhibit generation of low priority events 

when a higher priority event occurs at the same time. In this way, simultaneous input events are 

resolved in favor of the more important events, providing a mechanism to ensure that only one 

lateral and one vertical mode becomes active on each step.  

It is not necessary to preempt all simultaneous events. For example, the HDG_Switch_Pressed 

event can occur simultaneously with the VS_Switch_Pressed event without conflict. For this 

reason, the prioritization of events is organized in a lattice that allows some simultaneous events. 

This helps to ensure that as few input events as possible are inhibited. Identifying which events 

can safely occur simultaneously is done through model checking.  

Most of the blocks are guarded by a rising edge detector, which is true for the one step on which 

the input transitions from false to true. These blocks generate signals that correspond to events, 

which can only be true for one step. However, some blocks, such as 

LAPPR_Capture_Cond_Met_Seen, are not preceded by rising edge detectors. These blocks 

establish a priority on input conditions, which can be true for several steps. Input conditions are 

given a lower priority than input events. This allows the mode logic to respond to a high priority 

input event and still respond to an input condition (that will probably still be true) on the 

subsequent step.  

Also, note that the When_Pilot_Flying_Transfer_Seen event is set true whenever the 

Is_Pilot_Flying input (indicating if this is the pilot flying side of the aircraft) changes value. This 

event does not conflict with any other inputs or conditions and is neither inhibited nor inhibits 

the other outputs of Event Processing. 
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The advantage of this approach is that it isolates the handling of conflicting input events into one 

place where it is easier to reason about their priority. While discarding some events might seem 

unsafe, a simple thought exercise shows that it is safe and preferable to discard the lower priority 

event than it is to try to process both events. Consider the situation in the FGS in which the lower 

priority event occurs immediately after the higher priority event. In that situation, the lower 

priority event effectively overrides the higher priority event. Now consider the situation in which 

the higher priority event occurs immediately after the lower priority event. In that situation, the 

higher priority event effectively overrides the lower priority event. Both sequences can happen in 

the FGS and both result in safe flight. So discarding the lower priority event is acceptable since it 

corresponds to the situation in which the lower priority event occurs immediately before the 

higher priority event.  Allowing some events to occur simultaneously because they do not 

conflict with each other is a modest advantage made feasible through formal verification. 

4.3.2.2 Alternatives to Event Prioritization 
There are other approaches to resolving conflicting simultaneous events. One approach is to 

resolve the conflicts by adding constraints in the tables for mode activation that directly consider 

all possible combinations of inputs. However, this can quickly become overwhelming and 

obscures the most important cases when there aren’t simultaneous inputs. It also unnecessarily 

entangles the logic of the different modes.  

Another approach is to add an Active state machine that keeps track of which mode is currently 

active and use it to coordinate the individual mode machines. While appealing on the surface, it 

has several disadvantages. First, unlike the individual mode machines, it does not represent an 

abstraction of the underlying system state; its purpose is to enforce the constraint that only one 

lateral mode and one vertical mode can be active at a time. An indication of this is the fact that 

there must be a transition from every active mode to every other active mode, since any mode 

can become active at any time. However, the more important issue is that it separates the logic 

for making a mode active from the logic for arming and clearing the modes. This leads to a 

model of the mode logic that is distributed across several state machines and is difficult to 

understand. 

The approach taken here is to represent each mode as a small, relatively independent, state 

machine that represents an abstraction of the underlying flight control law. Rather than building 
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complex structures to enforce constraints required by the physical aircraft, we use formal 

analysis to ensure those constraints are met.  

4.4 Formal Verification of the Mode Logic  

This section discusses how model checking can be used to formally verify that the Mode Logic 

model meets is requirements. Since model checking is so highly automated, more of the 

emphasis shifts to writing good properties than in theorem proving. In Section 4.4.1, we discuss 

informal heuristics for writing good properties.  In Section 4.4.2 we use these heuristics to 

develop formal properties for the mode logic and verify them using the Kind SMT-based model 

checker. In Section 4.4.3 we discuss verifying a subset of these properties using MATLAB 

Design Verifier.  

4.4.1 Heuristics for Writing Formal Properties 

Writing good formal properties shares many similarities with writing good requirements and is 

as much art as science. Fortunately, most organizations tend to build variations of the same 

systems and will develop libraries of good properties over time. However, writing that first set of 

properties can be challenging. Formal properties do have the advantage over requirements that 

they can be mathematically checked against a model of the system and even a single property 

can find many errors. In many ways, it is more important to get started than it is to write the ideal 

set of properties. This section describes several strategies, heuristics, and rules of thumb for 

writing good formal properties. While certainly incomplete and informal, many of these were 

followed in developing the formal properties for the mode logic discussed in the next section.  

One of best sources of formal properties is often found in the safety-related6 requirements for the 

system. Not only are these requirements inherently important, but their implementation typically 

touches on several parts of the system. Properties that cut across an entire system in this way 

often find the most errors. For example, in the mode logic, the properties that found the most 

errors were those that checked that at least one lateral and vertical mode was active and that at 

most one lateral and vertical mode was active. These properties depended on the correct 

interaction of all the modes and cut across the entire model. 
                                                

6 Here “safety-related requirements” are those can affect the safe operation of the aircraft as used in DO-178C rather 
than the formal methods notion of a predicate over a finite number of successive states. 



   

 
137 

If the system developers or domain experts are available, another good strategy is to simply ask 

them what things they are the most worried about in the system. Refining their concerns into a 

set of formal properties often requires an ongoing dialogue7, but their intuition and knowledge of 

the system can be invaluable. 

Another excellent source of formal properties is the system or software requirements. Informal 

requirements can take on many different forms, from text to block diagrams to state-machines to 

use cases to pseudo-code, but their intent is always to describe what the system should do 

without specifying how it should do it. Often, an informal requirement actually encompasses 

several properties. A strategy that we have used successfully is to transcribe the informal 

requirement into one or more textual statements and then writing a formal property for each 

textual statement.  

User manuals can also be an excellent source of formal properties. Often, user manuals are 

written with less design information than the system requirements. Most of the requirements for 

the mode logic were originally developed from user manuals describing the system for pilots. 

Once the above sources of properties have been exhausted, another option is to carefully review 

the model itself looking for anything that is not checked by a property. Often, this will identify 

requirements (and hence properties) that have been completely omitted. Surprisingly, even 

writing properties directly from the model itself will often expose errors in understanding the 

semantics of the model and should not be ruled out as a strategy. 

Another heuristic that can be helpful in developing properties is to consider each input and try to 

identify all the ways that changing that input can affect one or more outputs and then write 

properties describing each such change. This provides a systematic way of breaking the problem 

down into several small problems and identifying properties. Ideally, the behavior of the system 

expressed in the requirement is gleaned from requirements or user manuals.  

A final guideline concerns the process of writing properties and their verification. When a 

property is found to be false, this only means that there is a discrepancy between the formal 

property and the model. As often as not, such discrepancies expose errors in the property rather 

                                                

7 For example, when asked this question one developer replied simply “whether it’s right.” Further discussion led to 
the development of several important safety-related properties. 
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than in the model, and these take the form of missing assumptions.  For example, the original 

requirement may be written as “the system shall arm for vertical approach mode when the APPR 

button is pressed” but formal verification reveals that this is true unless an overspeed condition 

exists. In this situation, it is probably the formal property, not the model, which needs to be 

corrected. Since many requirements will share the same undocumented assumptions, it is 

generally best to check properties incrementally as they are developed rather than developing all 

the properties and then checking them. In this way, insights gained from verifying the first 

properties can be incorporated into the development of later properties. 

4.4.2 Verification of the Mode Logic Using the Kind Model Checker 

This section describes how the Kind Model Checker can be used to formally verify that the 

MATLAB Simulink/Stateflow model described in Section 4.2 meets its requirements. To do this, 

the model must be translated into the Lustre language accepted by the Kind model checker and 

the requirements stated formally in Lustre. The translation into Lustre has been performed using 

the Rockwell Collins Formal Verification Framework. The resulting file is provided along with 

this report. Section 4.4.2.1 describes how the safety-related requirements and functional 

requirements are stated formally in the Lustre language. Section 4.4.2.2 discusses the process of 

understanding the counterexamples produced from three false properties and correcting the 

Mode Logic model. 

4.4.2.1 Writing Properties for the Kind Model Checker 
There are 118 properties that have been formally verified for the mode logic. These are listed in 

Appendix B – Mode Logic Properties. The reader may wish to refer to that appendix while 

reading this section. We specify properties in Lustre by defining a unique Boolean variable for 

each requirement and assigning to this variable the formal specification of the requirement. For 

example, the requirement that at least one lateral mode shall always be active is specified as  

-------------------------------------------------------------------------------------- 
-- At least one lateral mode shall always be active 
-- when the FD is displayed or the AP is engaged. 
-------------------------------------------------------------------------------------- 
 At_Least_One_Lateral_Mode_Active =  
    ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active or LGA_Active; 
      
 check At_Least_One_Lateral_Mode_Active; 

Figure 99 – At Least One Lateral Mode Active (Lustre) 
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We have chosen to use descriptive names such as At_Least_One_Lateral_Mode_Active for the 

Boolean values assigned to requirements. Any unique valid Lustre name, for example, R0015a, 

would also be acceptable. We will also follow the convention of embedding the informal, textual 

statement of the requirement in Lustre comments (lines starting with “—“) immediately before 

the formal statement of the requirement. The requirement is then formally specified by assigning 

a predicate defining the requirement to the Boolean variable. In the case of Figure 99 this is just 

a Boolean expression stating that at least one of the system outputs specifying the active status of 

the lateral modes must be true.  Finally, the “check” statement instructs the Kind model checker 

to attempt to prove the property is always true for all possible combination of inputs and states. 

Note that we have actually verified a stronger requirement than the one stated in the informal 

textual requirement which requires that a lateral mode must be active when the FD is displayed 

or the AP is engaged. Its proof demonstrates at least one lateral mode is always active, not just 

when the FD is displayed or the AP is engaged. It is always acceptable to prove a stronger 

property than is actually required, though we may wish to keep track of the original requirement 

in case changes to the model invalidate the stronger property. If this stronger property was not 

true of our model, the weaker actual property could be stated using an implication as shown in 

Figure 100. 

-------------------------------------------------------------------------------------- 
-- At least one lateral mode shall always be active  
-- when the FD is displayed or the AP is engaged. 
-------------------------------------------------------------------------------------- 
 At_Least_One_Lateral_Mode_Active =  
    FD_On or Is_AP_Engaged => 
       ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active or LGA_Active; 
      
 check At_Least_One_Lateral_Mode_Active; 

Figure 100 – Weaker Version of at Least One Lateral Mode Active (Lustre) 

The requirement that at least one lateral mode is always active when the FD is on or the AP is 

engaged is an example of a safety-related software requirement that traces to a system level 

safety requirement that the FGS shall provide valid guidance when the FD is on or the AP is 

engaged. As discussed in 4.4.1, safety-related requirements are excellent candidates for formal 

verification. This is partly because of their explicit relationship to system safety, but it is also due 

to the inherent difficulty of testing them.   Safety-related requirements are often of the form “bad 

things shall never happen” or conversely, “good things shall always happen.” Such requirements 

are difficult to test since testing can demonstrate their truth only for states and inputs actually 
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tested. In contrast, formal verification proves them to be true for all possible combinations of 

inputs and system states. Safety-related requirements are also excellent properties for finding 

design errors since the entire system often contributes to maintaining safety-related requirements 

and an error anywhere in the system will often falsify the requirement. 

Another safety-related requirement is the requirement that no more than one lateral mode can 

ever be active at the same time. This is important since having two lateral flight control laws 

active at the same time would generate conflicting guidance commands to the FD and the AP.  

This requirement is formally stated in Figure 101. 

-------------------------------------------------------------------------------------- 
-- At most one lateral mode shall be active 
-- when the FD is displayed or the AP is engaged. 
-------------------------------------------------------------------------------------- 
 At_Most_One_Lateral_Mode_Active =  
  (ROLL_Active =>  
    not (               HDG_Active or NAV_Active or LAPPR_Active or LGA_Active)) and 
  (HDG_Active =>  
    not (ROLL_Active or               NAV_Active or LAPPR_Active or LGA_Active)) and 
  (NAV_Active =>  
    not (ROLL_Active or HDG_Active or               LAPPR_Active or LGA_Active)) and 
  (LAPPR_Active =>  
    not (ROLL_Active or HDG_Active or NAV_Active or                 LGA_Active)) and 
  (LGA_Active =>  
    not (ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active              )); 
       
 check At_Most_One_Lateral_Mode_Active; 

Figure 101 – At Most One Lateral Mode Active (Lustre) 

The requirements for at least one and at most one lateral mode active could be combined into a 

single requirement that exactly one lateral mode shall be active. We have chosen to state them as 

separate requirements as a matter of preference. In similar fashion, there are requirements that at 

least one vertical mode shall be active and at most one vertical mode shall be active.  

Another safety-related requirement is that VAPPR (vertical approach) mode shall be active only 

if LAPPR (lateral approach) mode is active. This is important since the aircraft should not be 

making a vertical descent to land when it isn’t aligned with the runway.  It turns out to be 

difficult to deactivate VAPPR mode on the exact step in which LAPPR mode is deactivated, but 

easy to deactivate VAPPR mode on the next step after LAPPR is deactivated. Since a delay of 

one step is insignificant given the inertia of the aircraft, this requirement can be relaxed to allow 

a one-step delay in clearing VAPPR mode when LAPPR mode is deactivated. This can be 

formally stated as “if VAPPR mode is active on two successive steps, LAPPR mode must be 
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active on the first step.” Since this is true for any two successive steps, it is equivalent to 

requiring that LAPPR must be active when VAPPR is active except on the last step in which 

LAPPR is active.  This is shown in Figure 102 using the Lustre “pre” operator which returns the 

value of a variable on the previous step. 

-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be active only if LAPPR mode is active (except on the last step). 
--------------------------------------------------------------------------------------  
 VAPPR_Active_Implies_LAPPR_Active =  
   (pre VAPPR_Active and VAPPR_Active) => pre LAPPR_Active; 
     
 check VAPPR_Active_Implies_LAPPR_Active; 

Figure 102 – VAPPR Active Only If LAPPR Active (Lustre) 

Of course, the weakening of the original requirement to accommodate the design decision 

allowing a one-step delay needs to be fed back into the system safety process for review as 

specified in DO-178B/C to ensure that it does not violate the system safety requirements. 

Another safety-related requirement is that LGA (lateral go around) mode shall be active if and 

only if VGA (vertical go around) mode is active. These modes are active only during takeoff or 

during a go around following an aborted landing. The LGA flight control law maintains a fixed 

heading while the VGA flight control law maintains a fixed pitch and both modes should be 

active at the same time. Similar to the requirement that VAPPR mode active implies LAPPR 

mode active, this requirement is much simpler to implement if it can be relaxed for one step. For 

this reason, the requirement is specified as two implications as shown in Figure 103. 

-------------------------------------------------------------------------------------- 
-- VGA mode shall be active if LGA mode is active (except for one step). 
--------------------------------------------------------------------------------------   
   LGA_Active_Implies_VGA_Active =  
    (pre LGA_Active and LGA_Active) => pre VGA_Active; 
     
   check LGA_Active_Implies_VGA_Active; 
   
-------------------------------------------------------------------------------------- 
-- LGA mode shall be active if VGA mode is active (except for one step). 
--------------------------------------------------------------------------------------  
   VGA_Active_Implies_LGA_Active =  
    pre VGA_Active and VGA_Active => pre LGA_Active; 
     
   check VGA_Active_Implies_LGA_Active; 

   Figure 103 – LGA Active If and Only If VGA Active (Lustre) 

Another safety-related requirement is that when an overspeed condition occurs, either FLC, 

ALT, or ALTSEL mode shall be active. The normal response of the FGS to an overspeed 
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condition is to enter FLC mode to pitch the aircraft up to reduce speed. However, to avoid 

moving outside of the aircraft’s assigned flight level, the pilot may select either ALT mode to 

hold the aircraft at its current altitude or the aircraft may activate ALTSEL mode by capturing 

and tracking the preselected altitude. However, trying to prove this requirements reveals that 

there are several ways in which either ALT or ALTSEL mode can be deactivated (e.g., 

deselection by the pilot, rotating the VS Pitch Wheel, or a pilot flying transfer) causing the 

aircraft to enter basic PITCH mode in which it holds the current pitch angle. However, we can 

prove that FLC, ALT, ALTSEL, or PITCH mode must be active when an overspeed condition 

exists as shown in Figure 104. 

-------------------------------------------------------------------------------------- 
-- FLC, ALT, ALTSEL, or PITCH mode shall be active  
-- while an overspeed condition exists. 
-------------------------------------------------------------------------------------- 
 Overspeed_Implies_FLC_ALT_ALTSEL_PITCH =  
   Overspeed => FLC_Active or ALT_Active or ALTSEL_Active or PITCH_Active; 
     
 check Overspeed_Implies_FLC_ALT_ALTSEL_PITCH;   

Figure 104 – Overspeed Implies FLC, ALT, ALTSEL, or PITCH Active (Lustre) 

Once in PITCH mode, FLC will immediately be selected due to the overspeed condition, so 

PITCH mode can be active for only one step while an overspeed condition exists. We confirm 

this by proving the property shown in Figure 105 that if PITCH is active in one step and an 

overspeed condition exists in the next step, the system shall exit PITCH mode.   

-------------------------------------------------------------------------------------- 
-- PITCH mode shall be active for only one step while an overspeed condition exists. 
--------------------------------------------------------------------------------------  
 Overspeed_and_PITCH_Transitory = true -> 
   pre PITCH_Active and Overspeed => not PITCH_Active; 
     
 check Overspeed_and_PITCH_Transitory; 

Figure 105 – Overspeed and PITCH Transitory (Lustre) 

The -> (followed by) operator of Lustre (not to be confused with the => implies operator) is used 

in Figure 105 to exclude the initial system state from the proof. The -> operator replaces the 

value of the Boolean predicate in the first step with the value true (its left hand operand) and uses 

the value of the predicate (its right hand operand) for all subsequent steps. This is necessary 

since as it is possible for the Overspeed input to be true in the initial step before the system has 

had time to respond to it. The -> operator is a convenient way to exclude the initial system state 

from proofs in which the validity of the property in the initial step does not matter.  
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When combined with the proof of Figure 104 this proves that FLC, ALT, or ALTSEL mode 

must be active during an overspeed condition except for one transitory step during which PITCH 

mode can be active. As before, these requirement changes must be fed back into the system 

safety process for review.  

As discussed in Section 4.4.1, another useful source of properties is the functional requirements 

for the mode logic or the user’s manual. For example, HDG is simple lateral mode in which the 

aircraft acquires and tracks a heading reference (i.e. a compass direction). Both the system 

requirements and the user’s manual for the FGS state that this mode should be selected whenever 

the pilot presses the HDG button on the FCP if HDG mode is not already selected.  This is 

formally stated as shown in Figure 106. 

-------------------------------------------------------------------------------------- 
-- HDG mode shall be selected if the HDG switch is pressed while HDG mode is cleared. 
--------------------------------------------------------------------------------------  
 HDG_Switch_Pressed_Selects_HDG =  
   not pre HDG_Selected and RISING(HDG_Switch)  
   and No_Higher_Event_Than_HDG_Switch_Pressed => HDG_Selected; 
       
 check HDG_Switch_Pressed_Selects_HDG;       

Figure 106 – HDG Switch Pressed Selects HDG (Lustre) 

Formally stating the requirement of Figure 106 requires the introduction of two auxiliary 

definitions in Lustre. The first of these, the function RISING, is quite simple.  Its definition is 

shown in Figure 107. 

-------------------------------------------------------------------------------------- 
-- RISING - returns true when signal s changes from false to true 
-------------------------------------------------------------------------------------- 
node RISING (s : bool) returns (p : bool); 
let 
   p = false -> (not pre s and s); 
tel; 

Figure 107 – Definition of RISING (Lustre) 

RISING takes a single Boolean valued input and returns true if its value has changed from false 

to true. Note that its value in the initial step is always false. The function RISING must be used in 

the formal statement of Figure 106 since the mode logic only responds a rising value of the input 

HDG_Switch as shown in the Event_Prioitization logic of Figure 97.  

The second auxiliary definition, No_Higher_Event_Than_HDG_Switch_Pressed, is more 

complicated. Recall that the Event_Prioritization logic described in Section 4.3.2.1 masks some 
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input events when a higher priority event occurs at the same time. Since the input HDG_Switch 

refers to the system level input rather than the possibly masked value 

HDG_Switch_Pressed_Seen passed into the Flight_Modes specification (Section 4.3.1), formally 

specifying the conditions under which HDG mode is selected must incorporate the behavior in 

the event prioritization logic.  

One way to do this would be to use the internal value HDG_Switch_Pressed_Seen computed in 

the model itself to formally state the requirement. A practical difficulty in doing this is that the 

intermediate value’s name in the Lustre specification may be quite different from the name used 

by the Simulink designer due to the translation process. In fact, the intermediate value may even 

have been optimized away during translation.  However, if both of these obstacles were 

overcome, the requirement of Figure 106 could be restated as shown in Figure 108. 

-------------------------------------------------------------------------------------- 
-- HDG mode shall be selected if the HDG switch is pressed while HDG mode is cleared. 
--------------------------------------------------------------------------------------  
 HDG_Switch_Pressed_Selects_HDG =  
   not pre HDG_Selected and HDG_Switch_Pressed_Seen => HDG_Selected; 
       
 check HDG_Switch_Pressed_Selects_HDG;    
    

Figure 108 – HDG Switch Pressed Selects HDG Using Internal Variables (Lustre) 

Despite its intuitive appeal, there is a more insidious danger in using internal values to specify 

properties. The problem is that the validity of the proof now depends on the correctness of the 

model itself. For example, imagine that the portion of the model that computes 

HDG_Switch_Pressed_Seen is incorrect and always returns the value false. The property is then 

trivially true since false => p is always true for any predicate p. The effect would be that an error 

in the portion of the model defining HDG_Switch_Pressed_Seen could mislead us into believing 

the property of Figure 108 was true when it was actually false.  

One solution to this problem would be to prove the correctness of the internal variable with its 

own set of properties. Another solution, and the one that we have used here, is to only use input 

and output variables (i.e. no internal variables) in our properties. However, restricting the 

variables in properties to only system input and output variables leads to verbose properties 

unless we first introduce auxiliary definitions that independently specify portions of the model. 

The function RISING is one example of such an auxiliary definition. Another is the Lustre 
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variable No_Higher_Event_Than_Heading_Switch_Pressed. Its definition is shown in Figure 

109. 

  No_Higher_Event_Than_HDG_Switch_Pressed =  
    (not RISING(APPR_Switch) and No_Higher_Event_Than_APPR_Switch_Pressed); 

Figure 109 – No Higher Event Than HDG Switch Pressed (Lustre) 

The purpose of this variable is to independently specify the event prioritization logic relevant to 

the HDG switch. It is set to the value true if the next higher priority event, the pressing of the 

APPR switch, does not occur and no even higher priority event than the pressing of the APPR 

switch occurs. Of course, the Lustre variable No_Higher_Event_Than_APPR_Switch_Pressed 

must also be defined, but the resulting collection of recursive definitions nicely captures the 

event prioritization logic in a form that supports succinct specification of mode logic properties. 

For example, formalizing the requirement that HDG mode should be selected if the HDG switch 

is pressed while HDG mode is cleared can be written as shown in Figure 106. 

Since HDG mode is a non-arming mode, to complete the verification of its functional behavior 

we need to specify all ways in which HDG mode can be selected and all ways in which HDG 

mode can be cleared.  HDG mode can only be selected by the pilot pressing the HDG switch, but 

there are three ways in which HDG mode can be cleared. These are shown in Figure 110. 

-------------------------------------------------------------------------------------- 
-- HDG mode shall be cleared if the HDG switch is pressed while HDG mode is selected. 
--------------------------------------------------------------------------------------   
 HDG_Switch_Pressed_Clears_HDG =  
   pre HDG_Selected and RISING(HDG_Switch)  
   and No_Higher_Event_Than_HDG_Switch_Pressed => not HDG_Selected; 
       
 check HDG_Switch_Pressed_Clears_HDG;        
         
-------------------------------------------------------------------------------------- 
-- HDG mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_HDG =  
   pre HDG_Selected and CHANGED(Pilot_Flying_Side)  => not HDG_Selected; 
       
 check Pilot_Flying_Transfer_Clears_HDG;        
         
-------------------------------------------------------------------------------------- 
-- HDG mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------  
 Modes_Off_Clears_HDG =  
   pre HDG_Selected and not Modes_On  => not HDG_Selected; 
       
 check Modes_Off_Clears_HDG;     

Figure 110 – Functional Requirements for Clearing HDG Mode (Lustre) 
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The functional requirements for arming modes such as NAV, LAPPR, ALTSEL, and VAPPR 

must include properties describing how an armed mode becomes active. Our first attempt at 

formalizing a property specifying how NAV mode can become active is shown in Figure 111.  

-------------------------------------------------------------------------------------- 
-- NAV mode shall become active if the NAV capture condition is met  
-- while NAV mode is armed. 
--------------------------------------------------------------------------------------  
 NAV_Active_When_Capture_Cond_Met = true -> 
   pre NAV_Selected and not pre NAV_Active  
   and NAV_Capture_Cond_Met 
   and No_Higher_Event_Than_NAV_Capture_Cond_Met => NAV_Active; 
       
 check NAV_Active_When_Capture_Cond_Met;   

Figure 111 – Initial Functional Requirements for Activating NAV Mode (Lustre) 

This property specifies that NAV mode is armed by stating that it is selected but not active in the 

previous step. There is also no need to look for the rising edge of NAV_Capture_Cond_Met since 

the mode logic transitions from armed to active whenever the NAV capture condition is true, not 

just on its rising edge. However, attempting to prove this property identifies several conditions 

under which it is not true. The correct property is shown in Figure 112. 

-------------------------------------------------------------------------------------- 
-- NAV mode shall become active if the NAV capture condition is met  
-- while NAV mode is armed. 
--------------------------------------------------------------------------------------  
 NAV_Active_When_Capture_Cond_Met = true -> 
   pre NAV_Selected and not pre NAV_Active  
   and NAV_Capture_Cond_Met 
   and not Selected_NAV_Source_Changed  
   and not Selected_NAV_Frequency_Changed 
   and not CHANGED(Pilot_Flying_Side) 
   and Modes_On 
   and No_Higher_Event_Than_NAV_Capture_Cond_Met => NAV_Active; 
       
 check NAV_Active_When_Capture_Cond_Met;   

Figure 112 – Correct Functional Requirements for Activating NAV Mode (Lustre) 

For most arming modes it is possible for the mode to be either activated or cleared while armed, 

depending on external events.  NAV mode will be cleared if the selected navigation source is 

changed (e.g. selecting a different type of navigation beacon), the frequency is changed, the 

Transfer switch is pressed (causing a change in the pilot flying side) or the mode annunciations 

are turned off. All of these conditions must be incorporated into the antecedent of the property. 

This illustrates one of the most important benefits of formal specification – it forces a precise 

enumeration of the exceptions to the normal case. Note that we have not gone back and revised 
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the textual informal specification of the requirement to include these exceptions. Instead, we 

have chosen to leave the informal specification the way it was originally written since this 

captures the requirement’s original intent. The exceptions are then documented in the formal 

specification. 

4.4.2.2 Debugging False Properties in Kind 
One of the most important benefits of formal verification is its ability to find errors that 

traditional verification approaches such as reviews or testing would miss. For example, sixteen 

errors were found when verifying the MATLAB Simulink/Stateflow model of the mode logic 

using the Kind model checker (see Appendix C).  Even though this example had been specified 

previously in RSML-e [4] and formally verified using the NuSMV model checker, the process of 

rewriting it in Simulink/Stateflow was sufficient to introduce new errors.  This section discusses 

a few of the errors listed in Appendix C  and describes the process of understanding why a 

property is false and correcting the problem. 

4.4.2.2.1 VGA Clear Error 
Our first example is a simple naming error that was found by the Kind model checker in a few 

seconds. While this error would probably have been found through testing, it was simpler and 

faster to find it through model checking. It is also a good first example because of its simplicity. 

The error was made in the specification of the VGA mode and is shown in Figure 113. 

ACTIVE
en: VGA_Active = true

ex: LGA_Active = false

SELECTED
en: VGA_Selected = true

ex: VGA_Selected = false

CLEARED

[Select()]

[Clear()]

[New_Vertical_Mode_Activated()]

VGA

 

Figure 113 – VGA Clear Error 

The output variable LGA_Active, rather than VGA_Active, was being set to false on exiting 

ACTIVE mode. This error was detected while trying to prove that at least one lateral mode is 
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always active (Figure 99).  The counterexample produced by the Kind model checker is shown in 

Figure 114.  

 

  Step 1 Step 2 Step 3 
Input Signals       
ALTSEL_Capture_Cond_Met false false false 
ALTSEL_Target_Changed false false false 
ALTSEL_Track_Cond_Met false false false 
ALT_Switch false false false 
APPR_Switch false false false 
FD_Switch true false true 
FLC_Switch false false false 
GA_Switch false true false 
HDG_Switch false true false 
Is_AP_Engaged true false false 
Is_Offside_VAPPR_Active false false false 
Is_Offside_VGA_Active false false true 
LAPPR_Capture_Cond_Met false false false 
NAV_Capture_Cond_Met false false false 
NAV_Switch true false false 
Offside_FD_On false false false 
Overspeed false false false 
Pilot_Flying_Side true false false 
SYNC_Switch true true false 
Selected_NAV_Frequency_Changed false false false 
Selected_NAV_Source_Changed false false false 
VAPPR_Capture_Cond_Met false false false 
VS_Pitch_Wheel_Rotated false false true 
VS_Switch false false false 
        
Output Signals       
HDG_Active false false false 
LAPPR_Active false false false 
LGA_Active false true false 
NAV_Active false false false 
ROLL_Active true false false 

 

Figure 114 –Counterexample for Clearing VGA Error 

The counterexample is three steps long with the values of the relevant inputs and outputs shown 

for each step (Kind does not generate values for inputs and outputs that do not affect the 

property). Values that have not changed from the previous step are shown in grey text. The most 
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significant values have had their enclosing box shaded in grey by the authors to help in 

understanding the counterexample. 

In the initial step ROLL mode is active as expected. In the second step, the GA switch is pressed, 

activating LGA mode. This also activates VGA mode, though VGA_Active is not included in the 

counterexample since its value is not directly relevant to the property. In step 3, the VS Pitch 

Wheel is rotated, which clears VGA mode. This does not actually clear LGA mode in step 3 

(though LGA mode would be cleared in step 4), but due to the naming error, the output variable 

LGA_Active is incorrectly set to false, making it appear that LGA mode has been cleared. 

This example illustrates several important points about model checking. First, the model checker 

will produce a counterexample if it can invalidate a property, but it may not be the best 

counterexample for human comprehension. In understanding a counterexample, changes in 

values are often important clues (for example the GA switch being pressed in step 2), but the 

model checker may also change values that have no impact on outputs. For example, the HDG 

switch is pressed in step 2, but this is not relevant since it is masked due to event prioritization by 

the pressing of the GA switch. Finally, though not demonstrated here, if the model can be 

simulated it may be even more helpful to step through the simulation using the input values 

provided by the counterexample. 

4.4.2.2.2 FLC Select Error 
Our second example is a much more subtle design error that probably would not have been found 

through testing. It also would have allowed two vertical modes to be active while an overspeed 

condition existed.  The error was made in the specification of the selection logic for FLC mode 

and is shown in Table 48. 

Table 48 – FLC Select Error 

Condition  1  2  3  
FLC_Switch_Pressed  T  -  -  
VAPPR_Active  F  -  -  
Overspeed  -  T  -  
ALT_Active  -  F  -  
ALTSEL_Active  -  F  -  
 TRUE  TRUE  FALSE  
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The error was detected while trying to prove that no more than one vertical mode is ever active. 

The counterexample produced by the Kind model checker is shown in Figure 115.  

  Step 1 Step 2 
Input Signals     
ALTSEL_Capture_Cond_Met false false 
ALTSEL_Target_Changed false false 
ALTSEL_Track_Cond_Met false false 
ALT_Switch false true 
APPR_Switch false false 
FD_Switch false true 
FLC_Switch false true 
GA_Switch true false 
HDG_Switch false false 
Is_AP_Engaged false true 
Is_Offside_VAPPR_Active false false 
Is_Offside_VGA_Active false false 
LAPPR_Capture_Cond_Met false false 
NAV_Capture_Cond_Met false false 
NAV_Switch false false 
Offside_FD_On false false 
Overspeed false true 
Pilot_Flying_Side true true 
SYNC_Switch true false 
Selected_NAV_Frequency_Changed false false 
Selected_NAV_Source_Changed false false 
VAPPR_Capture_Cond_Met false false 
VS_Pitch_Wheel_Rotated false true 
VS_Switch false true 
      
Output Signals     
ALTSEL_Active false false 
ALT_Active false true 
FLC_Active false true 
PITCH_Active true false 
VAPPR_Active false false 
VGA_Active false false 
VS_Active false false 

Figure 115 – Counterexample for FLC Select Error 

In the initial step PITCH mode is active as expected. In the second step, the ALT switch is 

pressed, activating ALT mode. However, an overspeed condition also occurs in the second step, 

activating FLC mode. This occurred because of a design decision to never mask an overspeed 

condition in the Event_Prioritization logic of Section 4.3.2.1.  
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In this situation, precedence should be given to the pilot’s selection of ALT mode to hold the 

aircraft at the current altitude. To enforce this, the FLC selection logic of Table 48 must be 

modified to return false if ALT will become active in this step and not just if it is already active. 

A similar change must be made if ALTSEL will become active in this step.  The correct logic for 

FLC Select is shown in Table 29 on page 123. 

It is worth noting that this error would have been very difficult to detect through testing since it 

depends on two events (the pilot pressing the ALT switch and the start of an overspeed 

condition) on the exact same step. It also would have been very difficult to find through 

inspection since very few reviewers would catch a corner condition such as this. The error also 

has an unknown impact on safety since it’s not clear what the behavior of the aircraft would be 

with two flight control laws active at the same time. 

4.4.2.2.3 ALTSEL Select Error 
The last error illustrates how execution order can affect the behavior of a Stateflow model in 

subtle ways. As discussed in Section 4.3.1.4.4, ALTSEL mode is to be cleared when ALT, 

VAPPR or VGA are active and selected when none of them are active. This requirement is 

captured in the property of Figure 116 below. 

-------------------------------------------------------------------------------------- 
-- If the mode annunciations are on, ALTSEL mode shall be selected if  
-- none of ALT, VAPPR, or VGA mode are active. 
--------------------------------------------------------------------------------------   
 ALTSEL_Selected_If_Not_ALT_VAPPR_VGA_Active = true -> 
   Modes_On and not (ALT_Active or VAPPR_Active or VGA_Active) => ALTSEL_Selected; 
        
 check ALTSEL_Selected_If_Not_ALT_VAPPR_VGA_Active; 
 

Figure 116 – ALTSEL Select Error (Lustre) 

However, the Kind model checker was able to falsify this property in a few seconds, producing 

the counterexample shown in Figure 117. 
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Input Signals       
ALTSEL_Capture_Cond_Met true false false 
ALTSEL_Target_Changed false false true 
ALTSEL_Track_Cond_Met false false false 
ALT_Switch false false true 
APPR_Switch false false true 
FD_Switch false false true 
FLC_Switch false false true 
GA_Switch false true false 
HDG_Switch false false true 
Is_AP_Engaged false false false 
Is_Offside_VAPPR_Active false false false 
Is_Offside_VGA_Active false false true 
LAPPR_Capture_Cond_Met true false false 
NAV_Capture_Cond_Met false false false 
NAV_Switch false false true 
Offside_FD_On true false false 
Overspeed false false false 
Pilot_Flying_Side false false false 
SYNC_Switch false false true 
Selected_NAV_Frequency_Changed false false false 
Selected_NAV_Source_Changed false false false 
VAPPR_Capture_Cond_Met false false false 
VS_Pitch_Wheel_Rotated false true false 
VS_Switch false false true 
        
Output Signals       
ALTSEL_Selected true true false 
ALT_Active false false false 
Modes_On false true true 
VAPPR_Active false false false 
VGA_Active false true false 

Figure 117 – Counterexample for ALTSEL Select Error 

In step 1 ALTSEL mode is selected with ALT, VAPPR, and VGA cleared as expected. In step 2, 

the GA Switch is pressed, causing VGA mode to become active. However, ALTSEL mode does 

not clear as expected. In step 3, the SYNC switch is pressed, clearing VGA mode.  However, 

ALTSEL mode now clears. 

This unexpected behavior occurred because in the original model, ALTSEL mode was assigned 

to execute immediately after ALT mode and before VAPPR and VGA mode. As a result, the 

ALTSEL selection logic of Table 35 on page 127 referred to the value of ALT_Active after ALT 

mode had executed and the values of VAPPR_Active and VGA_Active before VAPPR and VGA 

mode had executed. As a result, there was a one-step delay in the reaction of ALTSEL mode to 
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changes in VAPPR and VGA mode while changes in ALT mode were processed in the same 

step. 

While this was not a particularly serious error, it does violate the original requirement.  It could 

lead to considerable confusion during debugging, and it would also be very difficult to find using 

testing or reviews. 

Fortunately, this error was easily fixed by assigning ALTSEL mode to execute after ALT, 

VAPPR, and VGA modes but before PITCH mode. To make this clear, the position of ALTSEL 

mode was changed so it was positioned immediately before PITCH mode. 

4.4.3 Verification of the Mode Logic Using MATLAB Design Verifier 

It is also possible to formally state and verify properties using MATLAB Design Verifier. 

Properties can be specified either graphically as Simulink/Stateflow models or textually as 

MATLAB function blocks. For example, the graphical specification of the requirement that at 

least one lateral mode shall be active is shown in Figure 118.  

 

Figure 118 – At Least One Lateral Mode Active (Design Verifier) 

This Simulink block simply computes the OR of the output signals for each active mode. The 

circular “P” icon is a proof objective block from the Design Verifier library. When Design 

Verifier is invoked on the model, it will attempt to prove that its value is always true (or 

whatever value has been specified in its dialog box).  

At_Least_One_Lateral_Mode_Active:
    At least one lateral mode shall be active.

OR

OR

At_Least_One_Lateral_Mode_Active

5
LGA_Active

4
LAPPR_Active

3
NAV_Active

2
HDG_Active

1
ROLL_Active



   

 
154 

The specification of the slightly more complex requirement that NAV mode shall become active 

when the NAV capture condition is met is shown Figure 119. 

 

Figure 119 – NAV Active When Capture Cond Met (Design Verifier) 

The implication (A ==> B) block used in Figure 119 is also part of the Design Verifier library. It 

returns true if the antecedent A is false or the consequent B is true. Note this property is true only 

when the selected NAV source and frequency are not being changed and a pilot flying transfer is 

not occurring and the mode annunciations are on and no higher priority event is masking the 

capture condition. 

To illustrate the textual specification of properties, the requirement that at least one vertical 

mode is active is specified as a MATLAB function block in Figure 120. 

function At_Least_One_Vertical_Mode_Active(PITCH_Active, VS_Active,  FLC_Active, 
                                ALT_Active, ALTSEL_Active, VAPPR_Active, VGA_Active) 
    % At least one vertical mode shall be active. 
    P = ( PITCH_Active  || FLC_Active   || ALT_Active    ||  
          ALTSEL_Active || VAPPR_Active || VGA_Active); 
               
    sldv.prove(P); 
 

Figure 120 – At Least One Vertical Mode Active (Design Verifier) 

NAV_Active_When_Capture_Cond_Met:
    NAV mode shall become active if the NAV capture condition is met while NAV mode is armed.
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The command sldv.prove(P) behaves similar to the Proof Objective of Figure 118 and instructs 

Design Verifier to attempt to prove that P is true for all combinations of inputs and outputs.  

For convenience, we group both the graphical and textual properties into one or more subsystem 

blocks as shown in Figure 121. 

 

Figure 121 – Properties Subsystem (Design Verifier) 

This block has bus input signal (Inputs) that contains all the inputs to the Mode Logic and a bus 

output signal (Outputs) that contains all the outputs from the mode logic. The bus signals are 

defined using the Simulink Bus Editor and bus selectors are used to extract individual signals 

that are used to define each property. Note that either inputs or outputs for the Mode Logic can 

be used as inputs for a specific property. 

The No_Higher_Event block outputs a bus signal that contains signals such as 

No_Higher_Event_Than_HDG_Switch_Pressed. These signals serve the same purpose they did 

in the Lustre specification - to independently specify the event prioritization logic in a form that 
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supports the succinct specification of mode logic properties. In this example, the signal 

No_Higher_Event_Than_NAV_Capture_Cond_Met is being selected from the bus signal and 

input to the property specified in Figure 119. 

The actual model that is analyzed with Design Verifier is shown in Figure 122. This model 

contains the Mode Logic model itself and the property subsystem block of Figure 121. It only 

has one input, the bus signal for the Mode Logic inputs. The individual inputs for the Mode 

Logic are extracted using bus selector blocks and input to the Mode Logic. The outputs from the 

Mode Logic are collected into a bus signal using a bus creator block. The Mode Logic input and 

output bus signals are then fed into the property subsystem block. If desired, several property 

subsystem blocks with different subsets of the Mode Logic properties could be created. 

When the “Prove Properties” function of Design Verifier is invoked on this model, Design 

Verifier attempts to prove each proof obligation identified with a Proof Objective block or a 

sldv.prove command. Design Verifier will create a detailed analysis report of the results. The 

user can also request that a harness model be created to support the more detailed analysis of 

counterexamples. 

The examples available with this report include Simulink specifications of ten of the 118 Mode 

Logic properties. Development and verification of the other 108 properties are left as an exercise 

for the reader. 
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Figure 122 – Top-Most Model (Design Verifier) 
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5 Case Study: Abstract Interpretation 
This section illustrates the use of abstract interpretation to verify the correctness of the source 

code implementation of one of the flight control modes for the example system.  The Heading 

Control Law source code consists of C code generated from a Simulink model of the controller.  

We will check a variety of non-functional properties related to the run-time behavior of the code 

using the Polyspace and Astrée abstract interpretation tools.   

The rest of the chapter is organized as follows.  Section 5.1 provides an overview of the Heading 

Control model and the source code generated from it.  It also describes the kinds of properties 

that will be checked by abstract interpretation.  Section 5.2 describes the software verification 

plan for the Heading Control source code, identifying the life-cycle data items to be produced, 

the DO-178C objectives to be satisfied, and tool qualification issues.  Sections 5.3 and 5.4 

describe the formal verification results using Astrée and Polyspace, respectively.   

5.1 Overview of the Heading Control Model 

The Heading Control Law is one of the flight modes in the FGS that is selected by the mode 

logic.  It computes aileron, elevator, rudder, and throttle commands based on sensor inputs and 

commanded aircraft heading, altitude, and speed.  For this case study, we have used a publicly 

available model provided by researchers at the University of Minnesota (UMN).  A detailed 

description of the model and its use in an Unmanned Aerial Vehicle (UAV) flight test platform 

can be found in [3].  The complete flight software implemented by UMN consists of a sensor 

data acquisition module, a navigation module, a guidance law, a main control law, and a number 

of other modules associated with sensor faults and system identification.  The heading control 

law that we are using is one mode available in the main control law.  It is comparable in many 

ways to flight control laws that would be found in commercial aircraft.  The other functions of 

the UMN flight test platform would be carried out by other parts of our example system.   

5.1.1 Heading Control Model and Code 

The heading control software is implemented as a single thread that executes at 50Hz.  The 

design is implemented as a two-tiered structure with inner and outer control loops (Figure 123).  

The inner loop controller (shown in blue) tracks the desired pitch (theta) and roll (phi) angles of 

the aircraft while damping out oscillations present in the open-loop dynamics.  It responds to 



   

 
159 

inputs produced by the three outer loop controllers.  The Altitude Tracker produces a pitch angle 

reference command, and the Velocity Tracker produces a throttle command. Both the Altitude 

Tracker and Velocity Tracker use proportional-integral control and implement integrator anti-

windup logic to safely limit the commands provided to the inner loop control system. The 

throttle command is constrained between 0 and 1, and the pitch angle reference is constrained to 

±20º. The heading controller (Psi Tracker) uses proportional gain, and the roll angle reference is 

constrained directly at ±45º. This limiting is required to prevent the aircraft from rolling over due 

to large ground track angle step commands.  

 

Figure 123 – Heading Control Law Model 

The MATLAB Real-Time Workbench (RTW) was used to generate C code for the heading 

control model.  The target platform selected to generate the source code for the Simulink model 

was the Embedded Real Time (ERT) target environment. RTW generated library files, header 

files, the heading_control.c and ert_main.c. The heading_control.c and the ert_main.c were 

included as the source files in the Polyspace project. The C header files also had to be included 

in the project to run the verification successfully. RTW generates functions for each block in the 

Simulink model. There are 856 lines of code in heading_control.c and 101 lines of code in 

ert_main.c.  A fragment of the C code for heading_control.c is shown in Figure 124.   
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/* 
 * File: heading_control.c 
 * 
 * Code generated for Simulink model 'heading_control'. 
 * 
 * Model version                  : 1.153 
 * Simulink Coder version         : 8.1 (R2011b) 08-Jul-2011 
 * TLC version                    : 8.1 (Jul  9 2011) 
 * C/C++ source code generated on : Fri Mar 01 16:24:21 2013 
 * 
 * Target selection: ert.tlc 
 * Embedded hardware selection: Generic->32-bit x86 compatible 
 * Code generation objectives: Unspecified 
 * Validation result: Not run 
 */ 
 
#include "heading_control.h" 
#include "heading_control_private.h" 
 
/* user code (top of source file) */ 
#include "../../../Software/FlightCode/control/rtw_grt_control.c" 
 
/* Block signals (auto storage) */ 
BlockIO_heading_control heading_control_B; 
 
/* Block states (auto storage) */ 
D_Work_heading_control heading_control_DWork; 
 
/* External inputs (root inport signals with auto storage) */ 
ExternalInputs_heading_control heading_control_U; 
 
/* External outputs (root outports fed by signals with auto storage) */ 
ExternalOutputs_heading_control heading_control_Y; 
 
/* Real-time model */ 
RT_MODEL_heading_control heading_control_M_; 
RT_MODEL_heading_control *const heading_control_M = &heading_control_M_; 
 
/* Model step function */ 
void heading_control_step(void) 
{ 
  real_T denAccum; 
  real_T u; 
  real_T u_0; 
 
  /* DiscreteIntegrator: '<S3>/Discrete-Time Integrator' */ 
  heading_control_B.DiscreteTimeIntegrator = 
    heading_control_DWork.DiscreteTimeIntegrator_DSTATE; 
 
  /* Gain: '<S3>/Gain1' */ 
  heading_control_B.Gain1 = 0.04 * heading_control_B.DiscreteTimeIntegrator; 
 
  /* DiscreteTransferFcn: '<S3>/Discrete Transfer Fcn' */ 
  denAccum = 0.0392 * heading_control_DWork.DiscreteTransferFcn_DSTATE; 
  heading_control_B.DiscreteTransferFcn = denAccum; 

Figure 124 – Fragment of Autogenerated C Code for Heading Control Model 
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5.1.2 Properties to Be Checked 

Abstract interpretation is a technique which can be applied at the source code level in order to 

prove the absence of runtime errors including division by zero, arithmetic overflow, and out-of-

bounds array indexing. This kind of non-functional requirement is in general difficult to verify 

using testing, since runtime errors might only occur under certain very special circumstances that 

are not exposed in any test case. In contrast, abstract interpretation can guarantee that certain 

classes of runtime errors cannot occur under any circumstances.  

Typical run-time errors that can be detected by abstract interpretation include:  

• Unreachable code 

• Out of bounds array index 

• Division by zero 

• Non-initialized variables 

• Scalar and float overflows 

• Uninitialized return value 

• Shift operation errors 

• Illegal pointer dereferencing 

• Non-initialized pointers 

• User assertions 

• Non-termination of call 

• Non-termination of loop 

• Standard library function call error 

Roughly speaking, abstract interpretation tools compute over-approximations of the set of all 

possible executions of a given program. This means that the tool does not only consider program 

executions which can really occur, but also executions which cannot occur because they would 

not respect the relations which exist between certain variables of a program. This is often 

referred to as the precision of an analysis: higher precision is more difficult to achieve, but 

means that there are fewer impossible executions which are included in the analysis. 

A low precision analysis is easier to achieve.  However, in this case the analyzer might indicate 

that a runtime error could happen at a certain point in a program, but none of the program 
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executions which can really occur will provoke this error. Such errors are called false alarms, 

and if they occur, the precision of the analysis must be increased by user interaction.  A tool that 

produces a high number of false alarms not only results in an increased workload, but is 

annoying to use and is likely to be rejected by developers. 

5.2 Software Verification Plan 

In this case study, we will use abstract interpretation to verify the outputs of the software coding 

and integration process.  In the example, this corresponds to verification that the source code 

implementing the Heading Control Law is correct.  Current abstract interpretation tools are best 

suited to checking for run-time errors in the code rather than satisfaction of behavioral 

requirements, so this is where we will focus our effort.  The purpose of these verification 

activities is to detect any errors that may have been introduced during the software coding 

process.   

Verification will be performed on source code generated from the Simulink control law model.  

Our primary objective is to check the code for accuracy and consistency (DO-333 Section 

6.3.4.f).  We can also check for unreachable code.  We assume that the code will be tested 

against high and low level requirements-based test cases as part of a traditional test-based 

verification process.   

Astrée is a C code analysis tool which has been developed by the team of Professor Patrick 

Cousot at the Ecole Normale Supérieure in Paris [2] in close cooperation with Airbus. Therefore, 

Astrée provides some analysis capabilities which have been designed especially for real-time 

control software such as the code generated from SCADE models. In recent years, Astrée has 

been commercialized by the German company AbsInt, and features for the analysis of more 

general programs have been added, as well as a powerful GUI [1]. 

An example of a feature which enables the proof of absence of overflow errors in control 

applications is the so-called filter domain, which is able to express invariants of first and second 

order filters implemented by the analyzed code. Typically, filters have invariants in the form of 

ellipsoids, which cannot be described by linear expressions. Astrée tries to find patterns in the 

code which correspond to filters, and then uses the filter domain to compute invariants, taking 

into account that floating-point rounding errors can occur. 
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Polyspace is a commercial static analysis tool based on abstract interpretation and sold by 

MathWorks. It verifies both C and C++ code. Polyspace identifies the potential for overflow, 

divide by zero, out of bound array access, and other runtime errors. Polyspace provides some 

support for automated analysis to check compliance with the Software Architecture. It also 

supports compliance checking of the software against coding standards.  

Since some runtime errors are dependent on the target CPU and operating system, the user must 

specify the type of CPU and operating system used in the target environment before running a 

verification.  Other configuration parameters support tailoring of the precision of the analysis: 

• Precision Level: This identifies the abstraction algorithm that is used to model the state of 

the program that is to be verified.  It provides a trade-off between precision and analysis 

time.   

• Verification Level: This indicates the Software Safety Analysis Level (0–4). This 

specifies how many times the abstract interpretation algorithm passes through the code. 

The deeper the verification goes the more precise it is. Each iteration results in a deeper 

level of propagation of calling and called context. 

Polyspace can perform verification against some coding standards, such as MISRA C. This 

includes enforcing naming conventions checking for implicit type conversions, and detecting 

other error-prone coding practices. The tool has features to select only some rules among the set 

of all the available custom rules. 

Polyspace provides some limited support to verify compliance with the software architecture. It 

generates a call tree that must be manually checked to see if it preserves the software architecture 

of the original model. It also determines the procedures and functions that have not been used. 

There are also several open source abstract interpretation tools available, but which are outside 

the scope of this case study.  Frama-C [6] is a suite of static analysis tools for software written in 

C.  Its Value Analysis plugin uses abstract interpretation to compute a set of possible values for 

each variable in a program, and operates in both automatic and user-guided modes.  IKOS is a 

C++ library designed to facilitate the development of sound static analyzers based on Abstract 

Interpretation [16]. IKOS provides a generic and efficient implementation of state-of-the-art 

Abstract Interpretation data structures and algorithms, such as control-flow graphs, fixpoint 

iterators, numerical abstract domains, etc.  
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5.2.1 Life Cycle Data Items 

Low-Level Software Requirements The low-level software requirements are specified as a 

MATLAB Simulink model in the file heading_control.mdl, along with model libraries 

Controller_Lib.mdl and Actuator_Lib.mdl, and a collection of associated scripts.   

Source Code  The source code to be analyzed is C code autogenerated from the Simulink Low-

Level Requirements using the MathWorks RTW.  The code is contained in the files ert_main.c, 

heading_control.c, and heading_control.h, along with several other header files.   

No separate behavioral requirements are verified in this case study.  Abstract interpretation is 

being used to verify a standard set of run-time properties of C code.   

5.2.2 Objectives to Be Satisfied 

The DO-178C and DO-333 objectives to be satisfied through abstract interpretation are 

summarized in Table 49.  A more detailed discussion of how each objective is satisfied is 

provided in this section. 
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Table 49 – Summary of Objectives Satisfied by Abstract Interpretation 

Objective Description A B C D Notes 

A-5.1 Source Code complies with 
low level requirements. 

    Not addressed 

A-5.2 Source Code complies with 
software architecture. 

    Not addressed 

A-5.3 Source Code is verifiable. □ □   This may be partially satisfied by demonstrating 
that the code conforms to input restrictions for the 
analysis tool. 

A-5.4 Source Code conforms to 
standards 

□ □ □  This may be partially or fully satisfied by different 
analysis tools, depending upon the coding 
standards and tool qualification. 

A-5.5 Source Code is traceable to 
low-level requirements. 

    Not addressed 

A-5.6 Source Code is accurate and 
consistent. 

□ □ □  The absence of some classes of run-time errors is 
established through analysis with abstract 
interpretation tools. 

A-5.7 Output of software integration 
process is complete and 
correct. 

    Not addressed 

A-5.8 Parametric Data Item File is 
correct and complete. 

    Not addressed 

A-5.9 Verification of Parametric Data 
Item File is achieved. 

    Not addressed 

FM.A-5.10 Formal analysis cases and 
procedures are correct. 

■ ■ ■  Established as part of tool qualification 

FM.A-5.11 Formal analysis results are 
correct and discrepancies 
explained. 

■ ■ ■  Established by review 

FM.A-5.12 Requirements formalization is 
correct. 

■ ■ ■  Established as part of tool qualification 

FM.A-5.13 Formal method is correctly 
defined, justified, and 
appropriate. 

■ ■ ■ ■ Established by review 

■  Full credit claimed □  Partial credit claimed                 Satisfaction of objective is at applicant’s discretion 

Objective A-5.3 – Source Code is verifiable. This objective is met by demonstrating that the code 

to be analyzed conforms to any input restrictions of the analysis tool, and that it was, in fact, 

accepted by the tool.  Any portion of the code that does not conform to the tool restrictions or 

that is not processed by the tool for some other reason will have to be verified by some other 

method.   

Objective A-5.4 – Source Code conforms to standards.  Some abstract interpretation tools will 

check conformance to standard or user-defined coding rules.  This may be used to fully or 



   

 
166 

partially satisfy the objective, depending upon the particular coding standards to be enforced.  

Tool qualification for checking conformance to standards would also be required.   

Objective A-5.6 – Source Code is accurate and consistent. This objective is met by verifying the 

absence of run-time errors in the Source Code using an abstract interpretation tool.  False alarms 

generated by the tool must be justified by separate analysis or testing.  Any portion of the code 

for which the tool provides an “indeterminate” result must be verified through other methods.   

Objective FM.A-5.10 Formal analysis cases and procedures are correct. This objective is met 

through review to ensure that the analyses and procedures satisfy the objectives for which credit 

is claimed. Since the properties to be checked are defined implicitly in the analysis tool, some 

aspects of tool qualification will be used to satisfy this objective.  

Objective FM.A-5.11 Formal analysis results are correct and discrepancies explained. This 

objective is met through review of the analysis results to ensure that all of the code has been 

analyzed, and that any false alarms or indeterminate results from the tool have been justified 

through reviews or further analysis.   

Objective FM.A-5.12 Requirements formalization is correct. This objective is met through tool 

qualification since the properties to be checked are implicit in the tool itself.   

Objective FM.A-5.13 Formal method is correctly defined, justified, and appropriate. This objective 

is met through a review to ensure: 

a. All notations used for formal analysis are verified to have precise, unambiguous, 

mathematically defined syntax and semantics. Abstract interpretation methods are based 

upon the formal semantics of the programming language to be analyzed. 

b. The soundness of each formal analysis method is justified. Abstract interpretation tools 

may return an “indeterminate” result for some portions of the code, meaning that the tool 

was unable to conclusively determine that code to be error-free.  Evidence of soundness 

should be provided through citations to publications addressing basis of soundness for the 

underlying analysis method.      

c. Assumptions related to each formal analysis are described and justified.  It is typical for 

proof of the absence of over/underflow to hold only if the program inputs stay within 
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defined ranges.  These bounds are assumptions that must be documented, as described in 

the case study analysis.   

In this case study, we have primarily demonstrated use of abstract interpretation for a specific 

objective, the absence of runtime errors as required by objective A-5.6, Source Code is accurate 

and consistent.  The software tools we have used may also be used to partially satisfy a number 

of other objectives, including objectives related to Executable Object Code (EOC).  In general, 

taking credit for EOC objectives in Table FM.A-6 based on activities performed on the source 

code requires that the equivalence of EOC and source code be established (see DO-333 

paragraph 6.7.f).   

Abstract interpretation tools have also been used to compute worst case execution time and stack 

usage.  These analyses may be useful in satisfying other objectives such as those specified in 

FM.6.7.e and FM.A-6.5, Executable Object Code is compatible with target computer.  These 

evaluations are outside the scope of the current case study.   

5.2.3 Tool Qualification Issues 

A DO-178C/DO-330 tool qualification kit is available for Polyspace from the vendor, 

MathWorks.  MathWorks provides artifacts and evidence to support qualification under Criteria 

2 since they suggest that the tool may be used to reduce object code verification processes in 

addition to automating source code verification processes.  If this tool is being used to verify 

Level A or B software, this would map to TQL-4, while for Level C or D software this would 

map to TQL-5.   The Polyspace qualification kit includes development artifacts and an extensive 

list of TORs.  Test cases are defined with input code for the errors that the tool is intended to 

detect.   

For Astrée, a Qualification Support Kit (QSK) is available from its vendor, AbsInt. The currently 

available QSK can be used for qualification up to level A under DO-178B. 

5.3 Analysis of the Heading Control Law Source Code with Astrée 

Astrée can be used to prove that no overflow errors can occur during the execution of the control 

code, but this is only possible if the user does some fine-tuning in order to eliminate false alarms. 

This fine-tuning is done by indicating to Astrée that at certain points in the program, different 

cases need to be distinguished, which is called partitioning in the terminology of Astrée. To find 
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the places in the code where partitioning is needed, and to determine the conditions which 

distinguish the different cases in the partitioning, the user needs to have some understanding of 

the implemented system. 

Astrée initially reported four potential issues (or alarms) in the source code corresponding to C 

statements which might cause floating-point overflow errors. The Astrée graphical user interface 

allows one to find the code line which corresponds to an alarm easily by clicking on the alarm 

message, as shown in Figure 125. 

 

Figure 125 – Astrée Analysis Results 

The alarms can be explained as follows: The code of the control law implements four integrators, 

which are protected from overflow by anti-windup mechanisms. However, the abstraction made 

by Astrée keeps the tool from detecting the effectiveness of the overflow prevention. To enable 

Astrée to prove that these mechanisms are effective, the analysis needs to be guided by some 

partitioning information provided by the user. 

By analyzing the way the anti-windup-mechanism works, the necessary analysis partitions can 

be found. For every integrator, case distinctions need to be done according to two criteria: firstly, 

the case where the input value of the integrator is zero or positive must be distinguished from the 

case where the value is negative. Secondly, three cases must be distinguished depending on the 
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internal value of the integrator: the case where the value is within a certain interval must be 

distinguished from the case where it is above it and the case where it is below this interval. 

 
__ASTREE_partition_control if (integrator >  25.01); 
__ASTREE_partition_control if (integrator < -25.01); 
__ASTREE_partition_control if (diff1 < 0.0); 
 
sum1 = 0.04 * integrator + 0.15 * diff1; 

Figure 126 – Astrée Directives to Define Partitions 

Astrée is in general not able to provide direct feedback to show where the case partitions must be 

done, but this must be determined by the user. However, an experienced user can find the 

necessary fine-tuning relatively easily. Also, there is some hope that future versions of Astrée 

will be able to handle this kind of program automatically, since new partitioning heuristics are 

being developed by AbsInt. However, it is not always possible to fine-tune the analysis in such a 

way that all false alarms disappear. 

Astrée is also able to detect dead code, which is reported in the GUI by highlighting unreachable 

code lines. Astrée has some powerful features to detect dead code by determining for example 

that a given condition will always be evaluated to a constant value. 

5.4 Analysis of the Heading Control Law Source Code with Polyspace 

A summary of the results obtains from applying Polyspace to the Heading Control Law source 

code is shown in Table 50. 

Table 50 – Initial Polyspace Analysis Results 

Run-Time Checks   

Polyspace Verifier Enabled 

Number of Result Sets x 1 

Number of Red Run-Time Checks  0  

Number of Gray Run-Time Checks  12  

Number of Orange Run-Time Checks  13  

Number of Green Run-Time Checks  478  

Proven 97.4% 

Pass/Fail - 
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Possible runtime errors were detected in two categories indicated by color coding:  Gray checks 

correspond to unreachable code and orange checks corresponding to unproven or potential 

runtime errors.  No proven runtime errors (reported in red) were detected.   

For the unreachable code, Polyspace reports an error such as: 

 if-condition always evaluates to false at line 779 (column 6) 
        block ends at line 782 (column 2) 
 

Upon further investigation, it was determined that all of the unreachable code was the result of 

branch conditions in the anti-windup logic for the integrators which always evaluate to false.  

The model constant ‘gain_sign’ is used to select a positive or negative value in the logic (see 

Figure 127).  Therefore, once this constant is set in the application, the unused branch of the 

logic can be optimized away by either the code generator or the compiler, eliminating the 

unreachable code.   

 

Figure 127 – Anti-Windup Logic 

The unproven orange checks all corresponded to potential floating-point overflow errors (Table 

51).  Polyspace reports an error of the form: 
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heading_control_B.Sum1 = heading_control_U.ref_cmds[1]  
 
OVFL.10 Unproven : operation [-] on float may overflow (on MIN or MAX bounds of 
FLOAT64) 
    If appropriate, applying Data Range Specification (DRS) to initialization of  
    heading_control_U by the main generator, may remove this orange. 
    If appropriate, applying DRS to initialization of heading_control_DWork by the  
    main generator, may remove this orange. 
    operator - on type float 64 
         left:   full-range [-1.7977E+308 .. 1.7977E+308] 
         right:  [-7.047E+306 .. 7.047E+306] 
         result: full-range [-1.7977E+308 .. 1.7977E+308] 
 

For the variables indicated, this means that it is not possible to guarantee that their values will 

not overflow unless some additional information about the system is provided.  Polyspace 

provides a mechanism to specify range limits on inputs to the system (Data Range Specification, 

or DRS).  These limits can then be used to more precisely compute the actual range of the 

variables whose values are computed from these inputs.  Once a DRS is set up for each of the 

system inputs, the potential overflow errors are eliminated.    

Table 51 – Unproven Runtime Checks 

Check Function Line Col. Detail Jus. Class Status 

 OVFL.10  heading_control_step() 65 57 Unproven : operation [-] 
on float may overflow 
(on MIN or MAX bounds 
of FLOAT64) 

No - - 

 

Polyspace can also be used to check code for conformance to standards.  This can include 

standard coding rules (such as MISRA-C) or user-defined rules.  This can be used to partially 

satisfy objective A-5.4, Source Code conforms to standards.  To demonstrate, the heading 

control code was analyzed for conformance with the MISRA-C standard.  The results are shown 

in Table 52. 

Table 52 – Coding Rules Analysis 

File Warnings Errors Total 

C:\rw_apps\polyspace_workspace\Heading_Control\source\heading_control.c 278 0 278 

C:\rw_apps\polyspace_workspace\Heading_Control\include\rtwtypes.h 16 0 16 

Total 294 0 294 
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6 Conclusion 
The three case studies in this report illustrate the use of different formal methods tools to satisfy 

the certification objectives defined in DO-178C and its accompanying formal methods 

supplement, DO-333.  These case studies provide a practical demonstration of theorem proving, 

model checking, and abstract interpretation applied to a Flight Guidance System design that is 

representative of systems deployed in commercial aircraft.  The case studies show how the 

evidence produced by these three techniques might be used in an actual certification effort.  Each 

technique has strengths and weaknesses and each could be applied to different life cycle data 

items and different objectives from those described here.   

Formal methods and tools have already been used to a limited extent in several actual aircraft 

certification efforts.  However, due to the proprietary nature of the models, code, and other 

artifacts, it has not been possible to make these results public.  We hope that by providing a 

collection of publicly available examples, our case studies will be useful to industry and 

government personnel in understanding both the new certification guidance in DO-333 and the 

benefits that can be realized through the use of formal methods.   
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Appendix A  Acronyms 
ADS Air Data System 

AFDX Avionics Full-Duplex Switched Ethernet  

AHRS Attitude Heading Reference System 

ALT Altitude Hold Mode 

ALTSEL Altitude Select Mode 

APPR  Approach 

AP Autopilot 

BDD Binary Decision Diagram 

DCP Display Control Panel 

DRS Data Range Specification 

EOC Executable Object Code 

ERT Embedded Real Time 

FCP Flight Control Panel 

FCS Flight Control System 

FGS Flight Guidance System 

FD Flight Director 

FGS Flight Guidance System 

FLC Flight Level Change Mode 

FMS Flight Management System 

GA Go Around 

HDG Heading Hold Mode 

HOL Higher Order Logic 

IAS Indicated Airspeed  
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ILS Instrument Landing System 

LAPPR Lateral Approach Mode 

LGA Lateral Go Around Mode 

NAV Lateral Navigation Mode 

PFD Primary Flight Display 

PITCH Pitch Hold Mode 

QSK Qualification Support Kit 

ROLL Roll Hold Mode 

RTW Real-Time Workbench 

SMT Satisfiability Modulo Theories  

TCC Type-Correctness Condition 

TOR Tool Operational Requirements  

TQL Tool Qualification Level 

TTA Time-Triggered Architecture 

UAV Unmanned Aerial Vehicle 

UMN University of Minnesota 

VAPPR Vertical Approach Mode 

VGA Vertical Go Around Mode 

VS Vertical Speed Mode 
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Appendix B Mode Logic Properties 
 
--==================================================================================== 
-- SAFETY PROPERTIES 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- At least one lateral mode shall always be active  
-- when the FD is displayed or the AP is engaged. 
-------------------------------------------------------------------------------------- 
 At_Least_One_Lateral_Mode_Active =  
   ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active or LGA_Active; 
      
 check At_Least_One_Lateral_Mode_Active; 
    
-------------------------------------------------------------------------------------- 
-- At most one lateral mode shall be active  
-- when the FD is displayed or the AP is engaged. 
-------------------------------------------------------------------------------------- 
 At_Most_One_Lateral_Mode_Active =  
   (ROLL_Active   =>  
     not (               HDG_Active or NAV_Active or LAPPR_Active or LGA_Active)) and 
   (HDG_Active    =>  
     not (ROLL_Active or               NAV_Active or LAPPR_Active or LGA_Active)) and 
   (NAV_Active    =>  
     not (ROLL_Active or HDG_Active or               LAPPR_Active or LGA_Active)) and 
   (LAPPR_Active  =>  
     not (ROLL_Active or HDG_Active or NAV_Active or                 LGA_Active)) and 
   (LGA_Active    =>  
     not (ROLL_Active or HDG_Active or NAV_Active or LAPPR_Active              )); 
       
 check At_Most_One_Lateral_Mode_Active; 
   
-------------------------------------------------------------------------------------- 
-- At least one vertical mode shall always be active  
-- when the FD is displayed or the AP is engaged. 
-------------------------------------------------------------------------------------- 
 At_Least_One_Vertical_Mode_Active =  
   PITCH_Active or VS_Active or FLC_Active or ALT_Active or ALTSEL_Active or  
   VAPPR_Active or VGA_Active; 
      
 check At_Least_One_Vertical_Mode_Active; 
     
-------------------------------------------------------------------------------------- 
-- At most one vertical mode shall be active  
-- when the FD is displayed or the AP is engaged. 
-------------------------------------------------------------------------------------- 
 At_Most_One_Vertical_Mode_Active =  
   (PITCH_Active  =>  
     not (                VS_Active or FLC_Active or ALT_Active or ALTSEL_Active or 
          VAPPR_Active or VGA_Active)) and 
   (VS_Active     =>  
     not (PITCH_Active or              FLC_Active or ALT_Active or ALTSEL_Active or  
          VAPPR_Active or VGA_Active)) and  
   (FLC_Active    =>  
     not (PITCH_Active or VS_Active or               ALT_Active or ALTSEL_Active or  
          VAPPR_Active or VGA_Active)) and 
   (ALT_Active    =>  
     not (PITCH_Active or VS_Active or FLC_Active or               ALTSEL_Active or  
          VAPPR_Active or VGA_Active)) and 
   (ALTSEL_Active =>  
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     not (PITCH_Active or VS_Active or FLC_Active or ALT_Active or                   
          VAPPR_Active or VGA_Active)) and 
   (VAPPR_Active  =>  
     not (PITCH_Active or VS_Active or FLC_Active or ALT_Active or ALTSEL_Active or 
                          VGA_Active)) and 
   (VGA_Active    =>  
     not (PITCH_Active or VS_Active or FLC_Active or ALT_Active or ALTSEL_Active or  
          VAPPR_Active              )); 
         
 check At_Most_One_Vertical_Mode_Active; 
    
-------------------------------------------------------------------------------------- 
-- VGA mode shall be active if LGA mode is active (except for one step). 
--------------------------------------------------------------------------------------   
 LGA_Active_Implies_VGA_Active =  
   pre LGA_Active and LGA_Active => pre VGA_Active; 
     
 check LGA_Active_Implies_VGA_Active; 
   
-------------------------------------------------------------------------------------- 
-- LGA mode shall be active if VGA mode is active (except for one step). 
--------------------------------------------------------------------------------------   
 VGA_Active_Implies_LGA_Active =  
   pre VGA_Active and VGA_Active => pre LGA_Active; 
     
 check VGA_Active_Implies_LGA_Active; 
    
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be active only if LAPPR mode is active (except for one step). 
--------------------------------------------------------------------------------------   
 VAPPR_Active_Implies_LAPPR_Active =  
   pre VAPPR_Active and VAPPR_Active => pre LAPPR_Active; 
     
 check VAPPR_Active_Implies_LAPPR_Active; 
    
-------------------------------------------------------------------------------------- 
-- FLC, ALT, ALTSEL, or PITCH mode shall be active  
-- while an overspeed condition exists. 
--------------------------------------------------------------------------------------   
 Overspeed_Implies_FLC_ALT_ALTSEL_PITCH =  
   Overspeed => FLC_Active or ALT_Active or ALTSEL_Active or PITCH_Active; 
     
 check Overspeed_Implies_FLC_ALT_ALTSEL_PITCH; 
    
-------------------------------------------------------------------------------------- 
-- PITCH mode shall be active for only one step while an overspeed condition exists. 
--------------------------------------------------------------------------------------   
 Overspeed_and_PITCH_Transitiory = true -> 
   pre PITCH_Active and Overspeed => not PITCH_Active; 
     
 check Overspeed_and_PITCH_Transitiory; 
         



   

 
179 

--==================================================================================== 
-- FUNCTIONAL PROPERTIES 
--==================================================================================== 
 
--==================================================================================== 
-- MODE ANNUNCIATIONS 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- The mode annunciations shall be off at system start up. 
-------------------------------------------------------------------------------------- 
 Modes_Off_At_Startup =   
   not Modes_On -> true; 
          
 check Modes_Off_At_Startup; 
  
-------------------------------------------------------------------------------------- 
-- The mode annunciations shall be on if the AP is engaged. 
-------------------------------------------------------------------------------------- 
 AP_Engaged_Implies_Modes_On = true -> 
   Is_AP_Engaged => Modes_On; 
          
 check AP_Engaged_Implies_Modes_On; 
  
 -------------------------------------------------------------------------------------
- 
-- The mode annunciations shall be on if the offside FD is on. 
-------------------------------------------------------------------------------------- 
 Offside_FD_On_Implies_Modes_On = true -> 
   Offside_FD_On => Modes_On; 
          
 check Offside_FD_On_Implies_Modes_On; 
      
-------------------------------------------------------------------------------------- 
-- The mode annunciations shall be on if the onside FD is on. 
-------------------------------------------------------------------------------------- 
 Onside_FD_On_Implies_Modes_On =  
   FD_On => Modes_On; 
          
 check Onside_FD_On_Implies_Modes_On; 
         
-------------------------------------------------------------------------------------- 
-- The mode annunciations shall be on if and only if the onside FD is on,  
-- the offside FD is on, or the AP is engaged. 
-------------------------------------------------------------------------------------- 
 Modes_On_Iff_FD_On_or_AP_Engaged = true -> 
   Modes_On = (FD_On or Offside_FD_On or Is_AP_Engaged); 
     
 check Modes_On_Iff_FD_On_or_AP_Engaged; 
    
--==================================================================================== 
-- FLIGHT DIRECTOR 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- The onside FD shall be off at system start up 
-------------------------------------------------------------------------------------- 
 FD_Off_At_Startup = (not FD_On -> true); 
          
 check FD_Off_At_Startup; 
  
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the FD switch is pressed. 
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-------------------------------------------------------------------------------------- 
 FD_Switch_Turns_FD_On = 
   not pre FD_On and RISING(FD_Switch)  
   and No_Higher_Event_Than_FD_Switch_Pressed => FD_On; 
            
 check FD_Switch_Turns_FD_On; 
     
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the AP is engaged. 
-------------------------------------------------------------------------------------- 
 AP_Engaged_Turns_FD_On =  
   RISING(Is_AP_Engaged) => FD_On; 
            
 check AP_Engaged_Turns_FD_On; 
    
-------------------------------------------------------------------------------------- 
-- The onside FD shall be on when an overspeed condition exists. 
-------------------------------------------------------------------------------------- 
 Overspeed_Implies_FD_On = true -> 
   Overspeed => FD_On; 
            
 check Overspeed_Implies_FD_On; 
    
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the HDG switch is pressed.  
-------------------------------------------------------------------------------------- 
 HDG_Switch_Turns_FD_On =  
   RISING(HDG_Switch) and No_Higher_Event_Than_HDG_Switch_Pressed => FD_On; 
            
 check HDG_Switch_Turns_FD_On; 
      
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the NAV switch is pressed. 
-------------------------------------------------------------------------------------- 
 NAV_Switch_Turns_FD_On =  
   RISING(NAV_Switch) and No_Higher_Event_Than_NAV_Switch_Pressed => FD_On; 
            
 check NAV_Switch_Turns_FD_On; 
  
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the APPR switch is pressed. 
-------------------------------------------------------------------------------------- 
 APPR_Switch_Turns_FD_On =  
   RISING(APPR_Switch) and No_Higher_Event_Than_APPR_Switch_Pressed => FD_On; 
            
 check APPR_Switch_Turns_FD_On; 
            
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the GA switch is pressed. 
-------------------------------------------------------------------------------------- 
 GA_Switch_Turns_FD_On =  
   RISING(GA_Switch) and No_Higher_Event_Than_GA_Switch_Pressed => FD_On; 
            
 check GA_Switch_Turns_FD_On; 
    
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the VS switch is pressed. 
-------------------------------------------------------------------------------------- 
 VS_Switch_Turns_FD_On =  
   RISING(VS_Switch)and No_Higher_Event_Than_VS_Switch_Pressed => FD_On; 
            
 check VS_Switch_Turns_FD_On; 
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-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the FLC switch is pressed. 
-------------------------------------------------------------------------------------- 
 FLC_Switch_Turns_FD_On =  
   RISING(FLC_Switch) and No_Higher_Event_Than_FLC_Switch_Pressed => FD_On; 
            
 check FLC_Switch_Turns_FD_On; 
                             
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the ALT switch is pressed. 
-------------------------------------------------------------------------------------- 
 ALT_Switch_Turns_FD_On =  
   RISING(ALT_Switch) and No_Higher_Event_Than_ALT_Switch_Pressed => FD_On; 
            
 check ALT_Switch_Turns_FD_On; 
                 
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the VS Pitch Wheel is rotated 
-- while this side is active and VS and VAPPR mode are not active  
-- and an overspeed condition does not exist. 
-------------------------------------------------------------------------------------- 
 VS_Pitch_Wheel_Rotated_Turns_FD_On =  
   RISING(VS_Pitch_Wheel_Rotated)  
   and pre Active_Side  
   and not pre VS_Active and not pre VAPPR_Active  
   and not Overspeed  
   and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated => FD_On; 
            
 check VS_Pitch_Wheel_Rotated_Turns_FD_On; 
       
-------------------------------------------------------------------------------------- 
-- The onside FD shall turn on when the ALTSEL target altitude is changed 
-- while this side is active and ALTSEL mode is active. 
-------------------------------------------------------------------------------------- 
 ALTSEL_Target_Changed_Turns_FD_On =  
   RISING(ALTSEL_Target_Changed)and pre Active_Side and pre ALTSEL_Active 
   and No_Higher_Event_Than_ALTSEL_Target_Changed => FD_On; 
            
 check ALTSEL_Target_Changed_Turns_FD_On; 
  
--------------------------------------------------------------------------------------
- 
-- The onside FD shall turn on when there is a pilot flying transfer 
-- to this side of the aircraft while the mode annunciations are on.  
-------------------------------------------------------------------------------------- 
 Pilot_Flying_Transfer_While_Modes_On_Turns_FD_On = 
   pre not FD_On and pre Modes_On and RISING(Pilot_Flying_Side) => FD_On; 
            
 check Pilot_Flying_Transfer_While_Modes_On_Turns_FD_On; 
                                                                                                                                     
--------------------------------------------------------------------------------------
- 
-- The onside FD shall turn off when the FD switch is pressed 
-- while an overspeed condition does not exist. 
-------------------------------------------------------------------------------------- 
 FD_Switch_Turns_FD_Off = 
   pre FD_On and RISING(FD_Switch) and not Overspeed 
   and No_Higher_Event_Than_FD_Switch_Pressed => not FD_On; 
            
 check FD_Switch_Turns_FD_Off; 
    
--------------------------------------------------------------------------------------
- 
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-- Disengaging the AP shall not turn off the FD unless the FD switch is pressed 
-------------------------------------------------------------------------------------- 
 FD_Stays_On_When_AP_Disengaged = true -> 
   pre FD_On and not FALLING(Is_AP_Engaged) and not RISING(FD_Switch) => FD_On; 
            
 check FD_Stays_On_When_AP_Disengaged; 
    
--------------------------------------------------------------------------------------
- 
-- The onside FD shall not turn off unless the FD switch is pressed. 
-------------------------------------------------------------------------------------- 
 FD_Stays_On_Unless_FD_Switch_Pressed = true -> 
   pre FD_On and not RISING(FD_Switch) =>  FD_On; 
            
 check FD_Stays_On_Unless_FD_Switch_Pressed; 
  
--==================================================================================== 
-- INDEPENDENT MODE 
--==================================================================================== 
    
--------------------------------------------------------------------------------------
- 
-- Independent mode shall be active when VAPPR mode is active on both sides. 
--------------------------------------------------------------------------------------   
 Both_Sides_VAPPR_Active_Implies_Independent_Mode = true -> 
   pre VAPPR_Active and Is_Offside_VAPPR_Active => Independent_Mode; 
       
 check Both_Sides_VAPPR_Active_Implies_Independent_Mode; 
   
--------------------------------------------------------------------------------------
- 
-- Independent mode shall be active when VGA mode is active on both sides. 
--------------------------------------------------------------------------------------   
 Both_Sides_VGA_Active_Implies_Independent_Mode = true -> 
   pre VGA_Active and Is_Offside_VGA_Active => Independent_Mode; 
       
 check Both_Sides_VGA_Active_Implies_Independent_Mode; 
                        
--------------------------------------------------------------------------------------
- 
-- Independent mode shall imply either VAPPR or VGA is active on both sides. 
--------------------------------------------------------------------------------------   
 Independent_Mode_Implies_Both_VAPPR_or_VGA_Active =  
   Independent_Mode => 
     (pre VAPPR_Active and Is_Offside_VAPPR_Active) or 
     (pre VGA_Active   and Is_Offside_VGA_Active);  
       
 check Independent_Mode_Implies_Both_VAPPR_or_VGA_Active; 
    
--==================================================================================== 
-- ACTIVE SIDE 
--==================================================================================== 
    
-------------------------------------------------------------------------------------- 
-- This side shall be active iff it is in independent mode or the pilot flying side. 
--------------------------------------------------------------------------------------   
 Active_iff_Independent_or_Pilot_Flying =  
   Active_Side = Independent_Mode or Pilot_Flying_Side; 
       
 check Active_iff_Independent_or_Pilot_Flying; 
  
--==================================================================================== 
-- ROLL MODE 
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--==================================================================================== 
    
-------------------------------------------------------------------------------------- 
-- ROLL mode shall be active if and only if ROLL mode is selected. 
--------------------------------------------------------------------------------------   
 ROLL_Selected_Iff_ROLL_Active =  
   (ROLL_Active = ROLL_Selected); 
        
 check ROLL_Selected_Iff_ROLL_Active; 
     
-------------------------------------------------------------------------------------- 
-- ROLL mode shall be active iff no other lateral mode is active. 
--------------------------------------------------------------------------------------   
 Default_Lateral_Mode_Is_ROLL = true -> 
   ROLL_Active =  
     not (HDG_Active or NAV_Active or LAPPR_Active or LGA_Active); 
       
 check Default_Lateral_Mode_Is_ROLL; 
    
-------------------------------------------------------------------------------------- 
-- ROLL mode shall be active if the mode annunciations are off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Implies_ROLL_Active = true -> 
    not Modes_On => ROLL_Active; 
       
 check Modes_Off_Implies_ROLL_Active; 
      
-------------------------------------------------------------------------------------- 
-- ROLL mode shall be active if the FD switch is pressed  
-- while the mode annunciations are off. 
--------------------------------------------------------------------------------------   
 FD_Switch_Pressed_Modes_Off_Implies_ROLL_Active =  
   not Modes_On and RISING(FD_Switch)  
   and No_Higher_Event_Than_FD_Switch_Pressed => ROLL_Active; 
       
 check FD_Switch_Pressed_Modes_Off_Implies_ROLL_Active;      
         
-------------------------------------------------------------------------------------- 
-- ROLL mode shall be active if the AP is engaged  
-- while the mode annunciations are off. 
--------------------------------------------------------------------------------------   
 AP_Engaged_Modes_Off_Implies_ROLL_Active =  
   not Modes_On and RISING(Is_AP_Engaged) => ROLL_Active; 
       
 check AP_Engaged_Modes_Off_Implies_ROLL_Active;      
                       
--==================================================================================== 
-- HDG MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- HDG mode shall be selected if and only if HDG mode is active. 
--------------------------------------------------------------------------------------   
 HDG_Selected_Iff_HDG_Active = 
     HDG_Active = HDG_Selected; 
        
 check HDG_Selected_Iff_HDG_Active; 
  
-------------------------------------------------------------------------------------- 
-- HDG mode shall be selected if the HDG switch is pressed while HDG mode is cleared. 
--------------------------------------------------------------------------------------   
 HDG_Switch_Pressed_Selects_HDG =  
   not pre HDG_Selected and RISING(HDG_Switch)  
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   and No_Higher_Event_Than_HDG_Switch_Pressed => HDG_Selected; 
       
 check HDG_Switch_Pressed_Selects_HDG;    
    
-------------------------------------------------------------------------------------- 
-- HDG mode shall be cleared if the HDG switch is pressed while HDG mode is selected. 
--------------------------------------------------------------------------------------   
 HDG_Switch_Pressed_Clears_HDG =  
   pre HDG_Selected and RISING(HDG_Switch)  
   and No_Higher_Event_Than_HDG_Switch_Pressed => not HDG_Selected; 
       
 check HDG_Switch_Pressed_Clears_HDG;        
         
-------------------------------------------------------------------------------------- 
-- HDG mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_HDG =  
   pre HDG_Selected and CHANGED(Pilot_Flying_Side)  => not HDG_Selected; 
       
 check Pilot_Flying_Transfer_Clears_HDG;        
         
-------------------------------------------------------------------------------------- 
-- HDG mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_HDG =  
   pre HDG_Selected and not Modes_On  => not HDG_Selected; 
       
 check Modes_Off_Clears_HDG;        
  
--==================================================================================== 
-- NAV MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- NAV mode shall be selected if NAV mode is active. 
--------------------------------------------------------------------------------------   
 NAV_Selected_If_NAV_Active = 
     NAV_Active => NAV_Selected; 
        
 check NAV_Selected_If_NAV_Active; 
         
-------------------------------------------------------------------------------------- 
-- NAV mode shall be selected if the NAV switch is pressed while NAV mode is cleared. 
--------------------------------------------------------------------------------------   
 NAV_Switch_Pressed_Selects_NAV =  
   not pre NAV_Selected and RISING(NAV_Switch)  
   and No_Higher_Event_Than_NAV_Switch_Pressed => NAV_Selected; 
       
 check NAV_Switch_Pressed_Selects_NAV;    
      
-------------------------------------------------------------------------------------- 
-- NAV mode shall become active if the NAV capture condition is met  
--  while NAV mode is armed. 
--------------------------------------------------------------------------------------  
--   NAV_Active_When_Capture_Cond_Met = true -> 
--     pre NAV_Selected and not pre NAV_Active  
--     and NAV_Capture_Cond_Met 
--     and not Selected_NAV_Source_Changed  
--     and not Selected_NAV_Frequency_Changed 
--     and not CHANGED(Pilot_Flying_Side) 
--     and Modes_On 
--     and No_Higher_Event_Than_NAV_Capture_Cond_Met => NAV_Active; 
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--   check NAV_Active_When_Capture_Cond_Met;    
   
-------------------------------------------------------------------------------------- 
-- NAV mode shall be cleared if the NAV switch is pressed while NAV mode is selected. 
--------------------------------------------------------------------------------------   
 NAV_Switch_Pressed_Clears_NAV =  
   pre NAV_Selected and RISING(NAV_Switch)  
   and No_Higher_Event_Than_NAV_Switch_Pressed => not NAV_Selected; 
       
 check NAV_Switch_Pressed_Clears_NAV;        
    
-------------------------------------------------------------------------------------- 
-- NAV mode shall be cleared if the selected NAV source is changed. 
--------------------------------------------------------------------------------------   
 Selected_NAV_Source_Changed_Clears_NAV =  
   pre NAV_Selected 
   and Selected_NAV_Source_Changed => not NAV_Selected; 
       
 check Selected_NAV_Source_Changed_Clears_NAV;        
      
-------------------------------------------------------------------------------------- 
-- NAV mode shall be cleared if the selected NAV frequency is changed. 
--------------------------------------------------------------------------------------   
 Selected_NAV_Frequency_Changed_Clears_NAV =  
   pre NAV_Selected 
   and Selected_NAV_Frequency_Changed => not NAV_Selected; 
       
 check Selected_NAV_Frequency_Changed_Clears_NAV;        
    
-------------------------------------------------------------------------------------- 
-- NAV mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_NAV =  
   pre NAV_Selected and CHANGED(Pilot_Flying_Side)  => not NAV_Selected; 
       
 check Pilot_Flying_Transfer_Clears_NAV;        
           
-------------------------------------------------------------------------------------- 
-- NAV mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_NAV =  
   pre NAV_Selected and not Modes_On  => not NAV_Selected; 
       
 check Modes_Off_Clears_NAV;        
  
--==================================================================================== 
-- LAPPR MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- LAPPR mode shall be selected if LAPPR mode is active. 
--------------------------------------------------------------------------------------   
 LAPPR_Selected_If_LAPPR_Active = 
     LAPPR_Active => LAPPR_Selected; 
        
 check LAPPR_Selected_If_LAPPR_Active; 
         
-------------------------------------------------------------------------------------- 
-- LAPPR mode shall be selected if the APPR switch is pressed  
-- while LAPPR mode is cleared. 
--------------------------------------------------------------------------------------   
 APPR_Switch_Pressed_Selects_LAPPR =  
   not pre LAPPR_Selected and RISING(APPR_Switch)  
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   and No_Higher_Event_Than_APPR_Switch_Pressed => LAPPR_Selected; 
       
 check APPR_Switch_Pressed_Selects_LAPPR;    
      
-------------------------------------------------------------------------------------- 
-- LAPPR mode shall become active if the LAPPR capture condition is met  
-- while LAPPR mode is armed. 
--------------------------------------------------------------------------------------  
--   LAPPR_Active_When_Capture_Cond_Met = true -> 
--     pre LAPPR_Selected and not pre LAPPR_Active  
--     and LAPPR_Capture_Cond_Met 
--     and not Selected_NAV_Source_Changed  
--     and not Selected_NAV_Frequency_Changed 
--     and not CHANGED(Pilot_Flying_Side) 
--     and Modes_On 
--     and No_Higher_Event_Than_LAPPR_Capture_Cond_Met => LAPPR_Active; 
       
--   check LAPPR_Active_When_Capture_Cond_Met;    
   
-------------------------------------------------------------------------------------- 
-- LAPPR mode shall be cleared if the APPR switch is pressed  
-- while LAPPR mode is selected. 
--------------------------------------------------------------------------------------   
 APPR_Switch_Pressed_Clears_LAPPR =  
   pre LAPPR_Selected and RISING(APPR_Switch)  
   and No_Higher_Event_Than_APPR_Switch_Pressed => not LAPPR_Selected; 
       
 check APPR_Switch_Pressed_Clears_LAPPR;        
    
-------------------------------------------------------------------------------------- 
-- LAPPR mode shall be cleared if the selected NAV source is changed. 
--------------------------------------------------------------------------------------   
 Selected_NAV_Source_Changed_Clears_LAPPR =  
   pre LAPPR_Selected 
   and Selected_NAV_Source_Changed => not LAPPR_Selected; 
       
 check Selected_NAV_Source_Changed_Clears_LAPPR;        
      
-------------------------------------------------------------------------------------- 
-- LAPPR mode shall be cleared if the selected NAV frequency is changed. 
--------------------------------------------------------------------------------------   
 Selected_NAV_Frequency_Changed_Clears_LAPPR =  
   pre LAPPR_Selected 
   and Selected_NAV_Frequency_Changed => not LAPPR_Selected; 
       
 check Selected_NAV_Frequency_Changed_Clears_LAPPR;        
    
-------------------------------------------------------------------------------------- 
-- LAPPR mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_LAPPR =  
   pre LAPPR_Selected and CHANGED(Pilot_Flying_Side) => not LAPPR_Selected; 
       
 check Pilot_Flying_Transfer_Clears_LAPPR;        
           
-------------------------------------------------------------------------------------- 
-- LAPPR mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_LAPPR =  
   pre LAPPR_Selected and not Modes_On => not LAPPR_Selected; 
       
 check Modes_Off_Clears_LAPPR;        
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--==================================================================================== 
-- LGA MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- LGA mode shall be selected if and only if LGA mode is active. 
--------------------------------------------------------------------------------------   
 LGA_Selected_Iff_LGA_Active = 
     LGA_Active = LGA_Selected; 
        
 check LGA_Selected_Iff_LGA_Active; 
  
-------------------------------------------------------------------------------------- 
-- LGA mode shall be selected if the GA switch is pressed while LGA mode is cleared 
-- and an overspeed condition does not exist. 
--------------------------------------------------------------------------------------   
 GA_Switch_Pressed_Selects_LGA =  
   not pre LGA_Selected and RISING(GA_Switch) and not Overspeed 
   and No_Higher_Event_Than_GA_Switch_Pressed => LGA_Selected; 
       
 check GA_Switch_Pressed_Selects_LGA;    
  
-------------------------------------------------------------------------------------- 
-- LGA mode shall be cleared when the AP is engaged. 
--------------------------------------------------------------------------------------   
 AP_Engaged_Clears_LGA =  
   pre LGA_Selected and RISING(Is_AP_Engaged) => not LGA_Selected; 
       
 check AP_Engaged_Clears_LGA;        
    
-------------------------------------------------------------------------------------- 
-- LGA mode shall be cleared when VGA mode is cleared. 
--------------------------------------------------------------------------------------   
 VGA_Cleared_Clears_LGA =  
   pre LGA_Selected and not pre VGA_Selected => not LGA_Selected; 
       
 check VGA_Cleared_Clears_LGA;        
  
-------------------------------------------------------------------------------------- 
-- LGA mode shall be cleared when the SYNC switch is pressed  
-- while LGA mode is selected. 
--------------------------------------------------------------------------------------   
 SYNC_Switch_Pressed_Clears_LGA =  
   pre LGA_Selected and RISING(SYNC_Switch) => not LGA_Selected; 
       
 check SYNC_Switch_Pressed_Clears_LGA;        
  
 -------------------------------------------------------------------------------------
- 
-- LGA mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_LGA =  
   pre LGA_Selected and CHANGED(Pilot_Flying_Side) => not LGA_Selected; 
       
 check Pilot_Flying_Transfer_Clears_LGA;        
         
-------------------------------------------------------------------------------------- 
-- LGA mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_LGA =  
   pre LGA_Selected and not Modes_On  => not LGA_Selected; 
       
 check Modes_Off_Clears_LGA;        
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--==================================================================================== 
-- PITCH MODE 
--==================================================================================== 
    
-------------------------------------------------------------------------------------- 
-- PITCH mode shall be active iff no other vertical mode is active. 
--------------------------------------------------------------------------------------   
 Default_Vertical_Mode_Is_PITCH = true -> 
   PITCH_Active = not (VS_Active or FLC_Active or ALT_Active or  
                       ALTSEL_Active or VAPPR_Active or VGA_Active); 
       
 check Default_Vertical_Mode_Is_PITCH; 
    
-------------------------------------------------------------------------------------- 
-- PITCH mode shall be active if the mode annunciations are off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Implies_PITCH_Active = true -> 
   not Modes_On => PITCH_Active; 
       
 check Modes_Off_Implies_PITCH_Active; 
  
-------------------------------------------------------------------------------------- 
-- PITCH mode shall be active if the FD switch is pressed  
-- while the mode annunciations are off. 
--------------------------------------------------------------------------------------   
 FD_Switch_Pressed_Modes_Off_Implies_PITCH_Active =  
   not Modes_On and RISING(FD_Switch)  
   and No_Higher_Event_Than_FD_Switch_Pressed => PITCH_Active; 
       
 check FD_Switch_Pressed_Modes_Off_Implies_PITCH_Active;   
    
-------------------------------------------------------------------------------------- 
-- PITCH mode shall be active if the AP is engaged  
-- while the mode annunciations are off. 
--------------------------------------------------------------------------------------   
 AP_Engaged_Modes_Off_Implies_PITCH_Active =  
   not Modes_On and RISING(Is_AP_Engaged) => PITCH_Active; 
       
 check AP_Engaged_Modes_Off_Implies_PITCH_Active;      
                                         
--==================================================================================== 
-- VS MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- VS mode shall be selected if and only if VS mode is active. 
--------------------------------------------------------------------------------------   
 VS_Selected_Iff_VS_Active = 
     (VS_Active = VS_Selected); 
        
 check VS_Selected_Iff_VS_Active; 
  
-------------------------------------------------------------------------------------- 
-- VS mode shall be selected if the VS switch is pressed while VS mode is cleared 
-- if VAPPR mode is not active and an overspeed condition does not exist. 
--------------------------------------------------------------------------------------   
 VS_Switch_Pressed_Selects_VS =  
   not pre VS_Selected and RISING(VS_Switch)  
   and not pre VAPPR_Active and not Overspeed 
   and No_Higher_Event_Than_VS_Switch_Pressed => VS_Selected; 
       
 check VS_Switch_Pressed_Selects_VS;    
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-------------------------------------------------------------------------------------- 
-- VS mode shall be cleared if the VS switch is pressed while VS mode is selected. 
--------------------------------------------------------------------------------------   
 VS_Switch_Pressed_Clears_VS =  
   pre VS_Selected and RISING(VS_Switch)  
   and No_Higher_Event_Than_VS_Switch_Pressed => not VS_Selected; 
       
 check VS_Switch_Pressed_Clears_VS;        
         
-------------------------------------------------------------------------------------- 
-- VS mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_VS =  
   pre VS_Selected and CHANGED(Pilot_Flying_Side)  => not VS_Selected; 
       
 check Pilot_Flying_Transfer_Clears_VS;        
         
-------------------------------------------------------------------------------------- 
-- VS mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_VS =  
   pre VS_Selected and not Modes_On  => not VS_Selected; 
       
 check Modes_Off_Clears_VS;        
                
--==================================================================================== 
-- FLC MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- FLC mode shall be selected if and only if FLC mode is active. 
--------------------------------------------------------------------------------------   
 FLC_Selected_Iff_FLC_Active = 
     (FLC_Active = FLC_Selected); 
        
 check FLC_Selected_Iff_FLC_Active; 
  
-------------------------------------------------------------------------------------- 
-- FLC mode shall be selected if the FLC switch is pressed while FLC mode is cleared 
-- if VAPPR mode is not active. 
--------------------------------------------------------------------------------------   
 FLC_Switch_Pressed_Selects_FLC =  
   not pre FLC_Selected and RISING(FLC_Switch)  
   and not pre VAPPR_Active 
   and No_Higher_Event_Than_FLC_Switch_Pressed => FLC_Selected; 
       
 check FLC_Switch_Pressed_Selects_FLC;    
    
-------------------------------------------------------------------------------------- 
-- FLC mode shall be activated if an overspeed condition occurs  
-- while neither ALT or ALTSEL are active. 
--------------------------------------------------------------------------------------   
 Overspeed_Activates_FLC = true -> 
   not pre FLC_Active  
   and Overspeed 
   and not pre ALT_Active and not ALT_Active 
   and not pre ALTSEL_Active and not ALTSEL_Active => FLC_Selected; 
       
 check Overspeed_Activates_FLC;    
    
-------------------------------------------------------------------------------------- 
-- FLC mode shall be cleared if the FLC switch is pressed while FLC mode is selected 
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-- and an overspeed condition does not exist. 
--------------------------------------------------------------------------------------   
 FLC_Switch_Pressed_Clears_FLC =  
   pre FLC_Selected and RISING(FLC_Switch)  
   and not Overspeed 
   and No_Higher_Event_Than_FLC_Switch_Pressed => not FLC_Selected; 
       
 check FLC_Switch_Pressed_Clears_FLC;        
         
-------------------------------------------------------------------------------------- 
-- FLC mode shall be cleared if the VS Pitch Wheel is rotated while 
-- an overspeed condition does not exist. 
--------------------------------------------------------------------------------------   
 VS_Pitch_Wheel_Rotated_Clears_FLC =  
   pre FLC_Selected  
   and RISING(VS_Pitch_Wheel_Rotated) 
   and not Overspeed 
   and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated => not FLC_Selected; 
       
 check VS_Pitch_Wheel_Rotated_Clears_FLC;        
         
-------------------------------------------------------------------------------------- 
-- FLC mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_FLC =  
   pre FLC_Selected and CHANGED(Pilot_Flying_Side) => not FLC_Selected; 
       
 check Pilot_Flying_Transfer_Clears_FLC;        
         
-------------------------------------------------------------------------------------- 
-- FLC mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_FLC =  
   pre FLC_Selected and not Modes_On  => not FLC_Selected; 
       
 check Modes_Off_Clears_FLC;        
 
--==================================================================================== 
-- ALT MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- ALT mode shall be selected if and only if ALT mode is active. 
--------------------------------------------------------------------------------------   
 ALT_Selected_Iff_ALT_Active = 
   (ALT_Active = ALT_Selected); 
        
 check ALT_Selected_Iff_ALT_Active; 
  
-------------------------------------------------------------------------------------- 
-- ALT mode shall be selected if the ALT switch is pressed while ALT mode is cleared 
-- while VAPPR mode is not active. 
--------------------------------------------------------------------------------------   
 ALT_Switch_Pressed_Selects_ALT =  
   not pre ALT_Selected and RISING(ALT_Switch) and not pre VAPPR_Active 
   and No_Higher_Event_Than_ALT_Switch_Pressed => ALT_Selected; 
       
 check ALT_Switch_Pressed_Selects_ALT;    
    
-------------------------------------------------------------------------------------- 
-- ALT mode shall be selected if the ALTSEL target is changed  
-- while in ALTSEL Track mode. 
--------------------------------------------------------------------------------------   
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 ALTSEL_Target_Changed_Selects_ALT =  
   pre ALTSEL_Track and RISING(ALTSEL_Target_Changed) 
   and No_Higher_Event_Than_ALTSEL_Target_Changed => ALT_Selected; 
       
 check ALTSEL_Target_Changed_Selects_ALT;    
    
-------------------------------------------------------------------------------------- 
-- ALT mode shall be cleared if the ALT switch is pressed while ALT mode is selected. 
--------------------------------------------------------------------------------------   
 ALT_Switch_Pressed_Clears_ALT =  
   pre ALT_Selected and RISING(ALT_Switch)  
   and No_Higher_Event_Than_ALT_Switch_Pressed => not ALT_Selected; 
       
 check ALT_Switch_Pressed_Clears_ALT;        
         
-------------------------------------------------------------------------------------- 
-- ALT mode shall be cleared if the VS Pitch Wheel is rotated  
-- while ALT mode is selected. 
--------------------------------------------------------------------------------------   
 VS_Pitch_Wheel_Rotated_Clears_ALT =  
   pre ALT_Selected and RISING(VS_Pitch_Wheel_Rotated)  
   and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated => not ALT_Selected; 
       
 check VS_Pitch_Wheel_Rotated_Clears_ALT;        
         
-------------------------------------------------------------------------------------- 
-- ALT mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_ALT =  
   pre ALT_Selected and CHANGED(Pilot_Flying_Side)  => not ALT_Selected; 
       
 check Pilot_Flying_Transfer_Clears_ALT;        
         
-------------------------------------------------------------------------------------- 
-- ALT mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_ALT =  
   pre ALT_Selected and not Modes_On  => not ALT_Selected; 
       
 check Modes_Off_Clears_ALT;        
 
--==================================================================================== 
-- ALTSEL MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- ALTSEL mode shall be selected if ALTSEL mode is active. 
--------------------------------------------------------------------------------------   
 ALTSEL_Selected_If_ALTSEL_Active = 
     (ALTSEL_Active => ALTSEL_Selected); 
        
 check ALTSEL_Selected_If_ALTSEL_Active; 
     
-------------------------------------------------------------------------------------- 
-- ALTSEL mode shall be active if ALTSEL is tracking the target altitude. 
--------------------------------------------------------------------------------------   
 ALTSEL_Active_If_ALTSEL_Track = 
   (ALTSEL_Track => ALTSEL_Active); 
        
 check ALTSEL_Active_If_ALTSEL_Track; 
    
-------------------------------------------------------------------------------------- 
-- If the mode annunciations are on, ALTSEL mode shall be selected if  



   

 
192 

-- none of ALT, VAPPR, or VGA mode are active. 
--------------------------------------------------------------------------------------   
 ALTSEL_Selected_If_Not_ALT_VAPPR_VGA_Active = true -> 
   Modes_On and not (ALT_Active or VAPPR_Active or VGA_Active) => ALTSEL_Selected; 
        
 check ALTSEL_Selected_If_Not_ALT_VAPPR_VGA_Active; 
    
-------------------------------------------------------------------------------------- 
-- ALTSEL mode shall become active if the ALTSEL capture condition is met  
-- while ALTSEL mode is armed 
--------------------------------------------------------------------------------------  
--   ALTSEL_Active_When_Capture_Cond_Met = true -> 
--     pre ALTSEL_Selected and not pre ALTSEL_Active  
--     and ALTSEL_Capture_Cond_Met 
--     and not (ALT_Active or VAPPR_Active or VGA_Active) 
--     and Modes_On 
--     and No_Higher_Event_Than_ALTSEL_Capture_Cond_Met => ALTSEL_Active; 
       
--   check ALTSEL_Active_When_Capture_Cond_Met;    
   
-------------------------------------------------------------------------------------- 
-- ALTSEL mode shall start tracking if the ALTSEL track condition is met  
-- while ALTSEL  
-- capturing the target altitude 
--------------------------------------------------------------------------------------  
--   ALTSEL_Track_When_Track_Cond_Met = true -> 
--     pre ALTSEL_Active and not pre ALTSEL_Track  
--     and ALTSEL_Track_Cond_Met 
--     and not ALTSEL_Target_Changed 
--     and not VS_Pitch_Wheel_Rotated  
--     and not CHANGED(Pilot_Flying_Side)  
--     and ALTSEL_Active 
--     and not (ALT_Active or VAPPR_Active or VGA_Active) 
--     and Modes_On 
--     and No_Higher_Event_Than_ALTSEL_Track_Cond_Met => ALTSEL_Track; 
       
--   check ALTSEL_Track_When_Track_Cond_Met;    
   
-------------------------------------------------------------------------------------- 
-- ALTSEL mode shall revert to armed mode if the ALTSEL target is changed  
-- while in capture mode. 
--------------------------------------------------------------------------------------  
 ALTSEL_Deactivated_When_Target_Changed =  
   pre ALTSEL_Active and not pre ALTSEL_Track  
   and RISING(ALTSEL_Target_Changed) 
   and not (ALT_Active or VAPPR_Active or VGA_Active) 
   and Modes_On 
   and No_Higher_Event_Than_ALTSEL_Target_Changed 
       => (ALTSEL_Selected and not ALTSEL_Active); 
       
 check ALTSEL_Deactivated_When_Target_Changed;    
   
-------------------------------------------------------------------------------------- 
-- ALTSEL mode shall revert to armed mode if the VS Pitch Wheel is rotated  
-- while in capture mode. 
--------------------------------------------------------------------------------------  
 ALTSEL_Deactivated_When_VS_Pitch_Wheel_Rotated =  
   pre ALTSEL_Active and not pre ALTSEL_Track  
   and RISING(VS_Pitch_Wheel_Rotated) 
   and not (ALT_Active or VAPPR_Active or VGA_Active) 
   and Modes_On 
   and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated  
       => (ALTSEL_Selected and not ALTSEL_Active); 
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 check ALTSEL_Deactivated_When_VS_Pitch_Wheel_Rotated;    
   
-------------------------------------------------------------------------------------- 
-- ALTSEL mode shall revert to armed mode if there is a pilot flying transfer  
-- while in capture mode. 
--------------------------------------------------------------------------------------  
 ALTSEL_Deactivated_When_Pilot_Flying_Transfer =  
   pre ALTSEL_Active and not pre ALTSEL_Track  
   and CHANGED(Pilot_Flying_Side) 
   and not (ALT_Active or VAPPR_Active or VGA_Active) 
   and Modes_On => (ALTSEL_Selected and not ALTSEL_Active); 
       
 check ALTSEL_Deactivated_When_Pilot_Flying_Transfer;    
   
-------------------------------------------------------------------------------------- 
-- ALTSEL mode shall revert to armed mode if a new vertical mode becomes active  
-- while in capture mode. 
--------------------------------------------------------------------------------------  
 ALTSEL_Deactivated_When_New_Active_Vertical_Mode =  
   pre ALTSEL_Active and not pre ALTSEL_Track  
   and not ALTSEL_Active 
   and not (ALT_Active or VAPPR_Active or VGA_Active) 
   and Modes_On => (ALTSEL_Selected and not ALTSEL_Active); 
       
 check ALTSEL_Deactivated_When_New_Active_Vertical_Mode;    
    
-------------------------------------------------------------------------------------- 
-- If the mode annunciations are on, ALTSEL mode shall be cleared if  
-- any of ALT, VAPPR, or VGA mode become active. 
--------------------------------------------------------------------------------------   
 ALTSEL_Cleared_If_ALT_VAPPR_VGA_Active = 
   Modes_On and (ALT_Active or VAPPR_Active or VGA_Active) => not ALTSEL_Selected; 
        
 check ALTSEL_Cleared_If_ALT_VAPPR_VGA_Active; 
    
   
--==================================================================================== 
-- VAPPR MODE 
--==================================================================================== 
 
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be selected if VAPPR mode is active. 
--------------------------------------------------------------------------------------   
 VAPPR_Selected_If_VAPPR_Active = 
   (VAPPR_Active => VAPPR_Selected); 
        
 check VAPPR_Selected_If_VAPPR_Active; 
         
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be selected if the APPR switch is pressed  
-- while VAPPR mode is cleared. 
--------------------------------------------------------------------------------------   
 APPR_Switch_Pressed_Selects_VAPPR =  
   not pre VAPPR_Selected and RISING(APPR_Switch)  
   and No_Higher_Event_Than_APPR_Switch_Pressed => VAPPR_Selected; 
       
 check APPR_Switch_Pressed_Selects_VAPPR;    
      
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall become active if the VAPPR capture condition is met  
-- while VAPPR mode is armed and LAPPR mode is active and  
-- an overspeed condition does not exist. 
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--------------------------------------------------------------------------------------  
--   VAPPR_Active_When_Capture_Cond_Met = true -> 
--     pre VAPPR_Selected and not pre VAPPR_Active  
--     and VAPPR_Capture_Cond_Met 
--     and LAPPR_Active and 
--     and not Overspeed 
--     and not Selected_NAV_Source_Changed  
--     and not Selected_NAV_Frequency_Changed 
--     and not CHANGED(Pilot_Flying_Side) 
--     and Modes_On 
--     and No_Higher_Event_Than_VAPPR_Capture_Cond_Met => VAPPR_Active; 
       
--   check VAPPR_Active_When_Capture_Cond_Met;    
   
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be cleared if the APPR switch is pressed  
-- while VAPPR mode is selected. 
--------------------------------------------------------------------------------------   
 APPR_Switch_Pressed_Clears_VAPPR =  
   pre VAPPR_Selected and RISING(APPR_Switch)  
   and No_Higher_Event_Than_APPR_Switch_Pressed => not VAPPR_Selected; 
       
 check APPR_Switch_Pressed_Clears_VAPPR;        
   
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be cleared if LAPPR mode is cleared. 
--------------------------------------------------------------------------------------   
 LAPPR_Cleared_Clears_VAPPR =  
   pre VAPPR_Selected and not pre LAPPR_Selected => not VAPPR_Selected; 
       
 check LAPPR_Cleared_Clears_VAPPR;        
     
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be cleared if the selected NAV source is changed. 
--------------------------------------------------------------------------------------   
 Selected_NAV_Source_Changed_Clears_VAPPR =  
   pre VAPPR_Selected and Selected_NAV_Source_Changed => not VAPPR_Selected; 
       
 check Selected_NAV_Source_Changed_Clears_VAPPR;        
      
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be cleared if the selected NAV frequency is changed. 
--------------------------------------------------------------------------------------   
 Selected_NAV_Frequency_Changed_Clears_VAPPR =  
   pre VAPPR_Selected and Selected_NAV_Frequency_Changed => not VAPPR_Selected; 
       
 check Selected_NAV_Frequency_Changed_Clears_VAPPR;        
    
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_VAPPR =  
   pre VAPPR_Selected and CHANGED(Pilot_Flying_Side)  => not VAPPR_Selected; 
       
 check Pilot_Flying_Transfer_Clears_VAPPR;        
           
-------------------------------------------------------------------------------------- 
-- VAPPR mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_VAPPR =  
   pre VAPPR_Selected and not Modes_On  => not VAPPR_Selected; 
       
 check Modes_Off_Clears_VAPPR;        
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--==================================================================================== 
-- VGA MODE 
--==================================================================================== 
   
-------------------------------------------------------------------------------------- 
-- VGA mode shall be selected if and only if VGA mode is active. 
--------------------------------------------------------------------------------------   
 VGA_Selected_Iff_VGA_Active = 
   (VGA_Active = VGA_Selected); 
        
 check VGA_Selected_Iff_VGA_Active; 
  
-------------------------------------------------------------------------------------- 
-- VGA mode shall be selected if the GA switch is pressed  
-- while VGA mode is cleared and an overspeed condition does not exist. 
--------------------------------------------------------------------------------------   
 GA_Switch_Pressed_Selects_VGA =  
   not pre VGA_Selected and RISING(GA_Switch) and not Overspeed 
   and No_Higher_Event_Than_GA_Switch_Pressed => VGA_Selected; 
       
 check GA_Switch_Pressed_Selects_VGA;    
  
-------------------------------------------------------------------------------------- 
-- VGA mode shall be cleared when the AP is engaged. 
--------------------------------------------------------------------------------------   
 AP_Engaged_Clears_VGA =  
   pre VGA_Selected and RISING(Is_AP_Engaged)  => not VGA_Selected; 
       
 check AP_Engaged_Clears_VGA;        
    
-------------------------------------------------------------------------------------- 
-- VGA mode shall be cleared when LGA mode is cleared. 
--------------------------------------------------------------------------------------   
 LGA_Cleared_Clears_VGA =  
   pre VGA_Selected and not pre LGA_Selected  => not VGA_Selected; 
       
 check LGA_Cleared_Clears_VGA;        
  
-------------------------------------------------------------------------------------- 
-- VGA mode shall be cleared when the SYNC switch is pressed  
-- while VGA mode is selected. 
--------------------------------------------------------------------------------------   
 SYNC_Switch_Pressed_Clears_VGA =  
   pre VGA_Selected and RISING(SYNC_Switch) => not VGA_Selected; 
       
 check SYNC_Switch_Pressed_Clears_VGA;        
  
-------------------------------------------------------------------------------------- 
-- VGA mode shall be cleared when the VS Pitch Wheel is rotated VGA mode is selected. 
--------------------------------------------------------------------------------------   
 VS_Pitch_Wheel_Rotated_Clears_VGA =  
   pre VGA_Selected and RISING(VS_Pitch_Wheel_Rotated) 
   and No_Higher_Event_Than_VS_Pitch_Wheel_Rotated  => not VGA_Selected; 
       
 check VS_Pitch_Wheel_Rotated_Clears_VGA;        
  
-------------------------------------------------------------------------------------- 
-- VGA mode shall be cleared when there is a pilot flying transfer. 
--------------------------------------------------------------------------------------   
 Pilot_Flying_Transfer_Clears_VGA =  
   pre VGA_Selected and CHANGED(Pilot_Flying_Side)  => not VGA_Selected; 
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 check Pilot_Flying_Transfer_Clears_VGA;        
         
-------------------------------------------------------------------------------------- 
-- VGA mode shall be cleared when the mode annunciations are turned off. 
--------------------------------------------------------------------------------------   
 Modes_Off_Clears_VGA =  
   pre VGA_Selected and not Modes_On  => not VGA_Selected; 
       
 check Modes_Off_Clears_VGA;        
                                                                                                                                                   
--==================================================================================== 
-- Auxilliary signals used to simplify statement of properties. 
--==================================================================================== 
 No_Higher_Event_Than_SYNC_Switch_Pressed = true; 
      
 No_Higher_Event_Than_GA_Switch_Pressed =  
  (not RISING(SYNC_Switch) and No_Higher_Event_Than_SYNC_Switch_Pressed);  
       
 No_Higher_Event_Than_APPR_Switch_Pressed =  
  (not RISING(GA_Switch) and No_Higher_Event_Than_GA_Switch_Pressed); 
      
 No_Higher_Event_Than_HDG_Switch_Pressed =  
  (not RISING(APPR_Switch) and No_Higher_Event_Than_APPR_Switch_Pressed); 
        
 No_Higher_Event_Than_NAV_Switch_Pressed =  
  (not RISING(HDG_Switch) and No_Higher_Event_Than_HDG_Switch_Pressed); 
       
 No_Higher_Event_Than_AP_Engaged = true; 
        
 No_Higher_Event_Than_ALTSEL_Target_Changed =  
  (not RISING(APPR_Switch) and No_Higher_Event_Than_APPR_Switch_Pressed); 
       
 No_Higher_Event_Than_ALT_Switch_Pressed =  
  (not RISING(ALTSEL_Target_Changed) and  No_Higher_Event_Than_ALTSEL_Target_Changed); 
       
 No_Higher_Event_Than_FLC_Switch_Pressed =  
  (not RISING(ALT_Switch) and No_Higher_Event_Than_ALT_Switch_Pressed); 
       
 No_Higher_Event_Than_VS_Switch_Pressed =  
   (not RISING(FLC_Switch) and No_Higher_Event_Than_FLC_Switch_Pressed); 
       
 No_Higher_Event_Than_VS_Pitch_Wheel_Rotated =  
  (not RISING(VS_Switch) and No_Higher_Event_Than_VS_Switch_Pressed); 
    
 No_Higher_Event_Than_FD_Switch_Pressed  =  
  (    (not RISING(NAV_Switch) and No_Higher_Event_Than_NAV_Switch_Pressed) 
   and (not RISING(Is_AP_Engaged) and No_Higher_Event_Than_AP_Engaged)  
   and (not RISING(VS_Pitch_Wheel_Rotated) and  
        No_Higher_Event_Than_VS_Pitch_Wheel_Rotated)); 
      
 No_Higher_Event_Than_LAPPR_Capture_Cond_Met =  
  (not RISING(FD_Switch) and No_Higher_Event_Than_FD_Switch_Pressed); 
       
 No_Higher_Event_Than_NAV_Capture_Cond_Met =  
  (not LAPPR_Capture_Cond_Met and No_Higher_Event_Than_LAPPR_Capture_Cond_Met); 
 
 No_Higher_Event_Than_VAPPR_Capture_Cond_Met =  
  (not RISING(FD_Switch) and No_Higher_Event_Than_FD_Switch_Pressed); 
       
 No_Higher_Event_Than_ALTSEL_Track_Cond_Met =  
  (not VAPPR_Capture_Cond_Met and No_Higher_Event_Than_VAPPR_Capture_Cond_Met); 
       
 No_Higher_Event_Than_ALTSEL_Capture_Cond_Met =  
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  (not ALTSEL_Track_Cond_Met and No_Higher_Event_Than_ALTSEL_Track_Cond_Met); 
            
tel; 
 
-------------------------------------------------------------------------------------- 
-- RISING - returns true when signal s changes from false to true 
-------------------------------------------------------------------------------------- 
node RISING (s : bool) returns (p : bool); 
let 
   p = false -> (not pre s and s); 
tel; 
 
-------------------------------------------------------------------------------------- 
-- FALLING - returns true when signal s changes from true to false 
-------------------------------------------------------------------------------------- 
node FALLING (s : bool) returns (p : bool); 
let 
   p = false -> (pre s and not s); 
tel; 
 
-------------------------------------------------------------------------------------- 
-- CHANGED - returns true when signal s changes value 
-------------------------------------------------------------------------------------- 
node CHANGED (s : bool) returns (p : bool); 
let 
   p = false -> (not (s = pre s)); 
tel; 
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Appendix C Mode Logic Error Log 

 

 

Date Location Classification Description How Resolved Notes

10/4/2012
Event 
Processing Minor

Incorrect inhibiting of input events. The inhibit_In of the 
When_Switch_Pressed_Seen block was wired to the 
output of the next higher priority block.

Modified the 
When_Switch_Pressed_Seen block to 
output an Inhbit_Out that was the OR of 
the Inhibit_In and the output indicating if 
the event was seen.

Checking that at least one lateral 
mode is active.

10/4/2012 Event 
Processing

Minor LGA_Active being set to false when VGA exits the active 
state.

Corrected copy and paste error. Checking that at least one lateral 
mode is active.

10/16/2012
Flight 
Modes Moderate

Incorrectly predicting if a lateral or vertical mode would be 
activated on a step. Failed to account for the case where 
LNAV, LAPPR, ALTSEL, or VAPPR could be cleared at 
the same time the capture condition is met.

Updated Will_MODEX_Be_Activated to 
take into account the simultaneous 
occurrence of being cleared at the same 
time as the capture condition is met.

Checking that at least one lateral 
mode is active and that at least one 
vertical mode is active.

10/16/2012 Event 
Processing

Minor

Incorrect inhibiting of input conditions. The inhibit_In of 
the If_Condition_Seen block was wired to the output of 
the next higher priority block.

Modified the If_Condition_Seen block to 
output an Inhbit_Out that was the OR of 
the Inhibit_In and the output indicating if 
the condition was seen.

Checking that at most one vertical 
mode is active.

10/16/2012
Flight 
Modes Major

Two vertical modes active at the same time caused by 
an Overspeed condition selecting FLC mode at the same 
time the ALT switch is pressed.

Modified the condition for selecting FLC 
mode so that FLC mode is not selected 
if ALT or ALTSEL are already active or 
will become active on this step.

Checking that at most one vertical 
mode is active.

10/16/2012
Flight 
Modes Moderate

Two vertical modes active at the same time caused by 
pressing the FLC swtich while ALTSEL Capture is active.

Fixed the definition of 
Will_FLC_Be_Active by removing the 
condition that Clear_FLC be false.

Checking that at most one vertical 
mode is active.

11/20/2012 Mode Logic Minor
NAV_Switch input incorrectly named NAV_Swiitch. Changed the name of input to 

NAV_Switch.
Checking definition of 
No_Higher_Event_Than_FD_Switch_
Pressed.

11/28/2012
Flight 
Modes Moderate

Execution sequence of Independent and Active mode 
machines was incorrect - Independent was assigned an 
execution order of 5 and Active was assigned an 
exectuion order of 6. This placed their execution after 
Lateral and Vertical had executed.

Changed the execution order of 
Independent to 3 and the execution order 
of Active to 4.

Checking that onside and offside 
VAPPR active implies the FGS is in 
Independent mode.

11/29/2012
Flight 
Modes Moderate

A pilot flying transfer did not make PITCH mode active 
while ALTSEL was active.

Added a deactivate transition from 
ALTSEL.Active to ALTSEL.Armed mode.

Checking that a Pilot Flying Transfer 
should make PITCH mode active.

11/29/2012 Flight 
Modes

Major

ROLL mode was not active while the mode annunciations 
were off.

Simplified definition of 
Lateral_Mode_Manually_Selected and 
Veritical_Mode_Manually_Selected to 
not test if mode annunciations were off in 
the previous step or if this side is active.

Checking that ROLL mode is active 
while the mode annunications are 
off.

11/29/2012
Flight 
Modes Major

PITCH mode was not active while the mode 
annunciations were off.

Changed definition of 
Vertical_Mode_Manually_Selected to not 
if this side is active when the ALTSEL 
target altitude is changed while ALTSEL 
mode is tracking.

Checking that PITCH mode is active 
while the mode annunciations are 
off.

12/7/2012 Mode Logic Minor

Selected_NAV_Source_Changed and 
Selected_NAV_Frequency_Changed incorrectly named 
Selected_Nav_Source_Changed and 
Selected_Nav_Frequency_Changed.

Changed spelling to 
Selected_NAV_Source_Changed and 
Selected_NAV_Frequency_Changed.

Checking that NAV mode becomes 
active when the NAV capture 
condition is met.

12/13/2012
Flight 
Modes Moderate

Truth table for ALT Select was overspecified. Stated that 
ALT mode should be selected if the ALTSEL target was 
changed while in ALTSEL Track mode and not in VAPPR 
Active mode. The dependence on VAPPR Active mode 
was not needed since ALTSEL Track is an active mode 
and only one vertical mode can be active at a time.

Changed the dependence on VAPPR 
Active to a don't care in ALT Select truth 
table.

Checking that ALT mode is selected 
when the ALTSEL target is changed 
while in ALTSEL Track mode.

12/17/2012 Flight 
Modes

Major

Transitions between ALTSEL Clear and ALTSEL 
Selected would occur on the current step if ALT mode 
became active/inactive and on the next step if VAPPR or 
VGA became active/inactive. This occurred since the 
order of executing these state machines was ALT, 
ATLSEL, VAPRR, followed by VGA.

Changed the order of execution of 
ALTSEL to follow execution of ALT, 
VAPPR, and VGA modes.

Found checking that ALTSEL mode 
is selected iff none of ALT, VAPPR, 
or VGA modes are active. While the 
error was not serious (the necessary 
transition would occur in the current 
or next step), it would be  difficult to 
detect through testing.

12/17/2012
Flight 
Modes Moderate

Turning the mode annunciations off only deactivated 
ALTSEL mode (i.e. took it from ACTIVE to ARMED 
mode).  Turning the mode annunciation off should clear 
ALTSEL mode (i.e. take it from SELECTED to 
CLEARED mode). 

Moved column enabling a transition when 
the modes are turned off from the 
ALTSEL Deactivate truth table to the 
ATLSEL Clear truth table.

Found checking that ALTSEL mode 
is selected iff none of ALT, VAPPR, 
or VGA modes are active.

12/18/2012 Flight 
Modes

Major

Possible to have two modes active at the same time if an 
overspeed condition occurs (activating FLC) at the same 
time as the ALTSEL capture condition is met (activating 
ALTSEL Capture).

Strengthened the ALTSEL Capture() truth 
table to not capture ALTSEL mode while 
an overspeed condition exists.

Checking at most one vertical mode 
active while adding Active Side 
logic.

Classification
Trivial 0 Spelling or Punctuation
Minor 5 Likely to be detected by traditional verification.
Moderate 6 Potential to not be detected by traditional verification.
Major 5 Unlikely to be detected by traditional verification.
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